首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Cotton (Gossypium hirsutum L. var. DP 61) was grown at different temperatures during 12-h light periods, with either 1800–2000 mol photons m–2 s–1 (high photon flux density, PFD) or 1000–1100 mol m–2 s–1 (medium PFD) incident on the plants. Night temperature was 25°C in all experiments. Growth was less when leaf temperatures were below 30°C during illumination, the effect being greater in plants grown with high PFD (Winter and Königer 1991). Leaf pigment composition and the photon-use efficiency of photosynthesis were analysed to assess whether plants grown with high PFD and suboptimal temperatures experienced a higher degree of high irradiance stress during development than those grown with medium PFD. The chlorophyll content per unit area was 3–4 times less, and the content of total carotenoids about 2 times less, with the proportion of the three xanthophylls zeaxanthin + antheraxanthin + violaxanthin being greater in leaves grown at 20–21°C than in leaves grown at 33–34°C. In leaves from plants grown at 21°C and 1800–2000 mol photons m–2 s–1, zeaxanthin accounted for as much as 34% of total carotenoids in the middle of the photoperiod, the highest level recorded in this study. This finding is consistent with a protective role of zeaxanthin under conditions of excess light. At the lower temperatures, the photochemical efficiency of photosystem II, measured as the ratio of variable to maximum fluorescence yield (F V/F M) after 12-h dark adaptation, was 0.76 in medium PFD plants and 0.75 in high PFD plants compared with 0.83 and 0.79, respectively, at the higher temperatures. The photon-use efficiency of O2 evolution () based on absorbed light between 630 and 700nm, decreased with decrease in temperature from 0.102 to 0.07 under conditions of high PFD, but remained above 0.1 at medium PFD. Owing to compensatory reactions in these long-term growth experiments, sustained differences inF V/F M and were much less pronounced than the differences in chlorophyll content and dry matter, particularly in plants which had developed at high PFD and low temperature. In fact, in these plants, which exhibited pronounced photobleaching, a largely functional photosynthetic apparatus was still maintained in cells adjacent to the lower leaf surfaces. This was indicated by measurements of photon use efficiencies of photosynthetic O2 evolution with leaves illuminated first at the upper, and then at the lower surface.Abbreviations F O yield of dark level fluorescence - F M maximum yield of fluorescence, induced in a pulse of saturating light - F V yield of variable fluorescence (=F M-F o) - PFD photon flux density - iw photon use efficiency of O2 evolution based on white (400–700 nm) incident light - ir photon use efficiency based on red (630–700 nm) incident light - aw photon use efficiency based on white absorbed light - ar photon use efficiency based on red absorbed light  相似文献   

2.
The light utilization efficiency and relative photon requirement of photosynthesis in pulsed and continuous light from light emitting diodes (LEDs) has been measured. First, we chacterized the photon requirement of photosynthesis from light of LEDs that differ in spectral quality. A photon requirement of 10.3±0.4 was measured using light from a 658 nm peak wavelength (22 nm half band width) LED over the range of 0–50 mol photons m–2 s–1 in 2 kPa O2 in leaves of tomato (Lycopersicon esculentum Mill., cv. VF36). Because the conversion of electrical power to photons increased with wavelength, LED lamps with peak photon output of 668 nm were most efficient for converting electricity to photosynthetically fixed carbon. The effect of pulsed irradiation on photosynthesis was then measured. When all of the light to make the equivalent of 50 mol photons m–2 s–1 was provided during 1.5 s pulses of 5000 mol photons m–2 s–1 followed by 148.5 s dark periods, photosynthesis was the same as in continuous 50 mol photons m–2 s–1. When the pulse light and dark periods were lengthened to 200 s and 19.8 ms, respectively, photosynthesis was reduced, although the averaged photon flux density was unchanged. Under these conditions, the light pulses delivered 1017 photons m–2, which we calculate to be equivalent to the capacitance of PS I or PS II. Data support the theory that photons in pulses of 100 s or shorter are absorbed and stored in the reaction centers to be used in electron transport during the dark period. When light/dark pulses were lengthened to 2 ms light and 198 ms dark, net photosynthesis was reduced to half of that measured in continuous light. Pigments of the xanthophyll cycle were not affected by any of these pulsed light treatments even though zeaxanthin formation occurred when leaves were forced to dissipate an equal amount of continuous light.Abbreviations CWF cool white fluorescent - EPS xanthophyll epoxidation state - LED light emitting diode - LUE light utilization efficiency - PFD photon flux density - PR photon requirement (for CO2 fixation) - PS II primary donor in Photosystem II - RPR relative photon requirement  相似文献   

3.
Laurencia brongniartii is usually found at depths below 4 m, but can be found in shallow subtidal areas in crevices and on the walls of a coral reef in Amami Oshima Island, Kagoshima Prefecture, Japan, where irradiances were significantly lower than those at similar depths in open water. In preparation for the possible cultivation of this species for its antibiotic compounds, the effects of temperature and irradiance on photosynthesis and growth were measured. Photosynthesis and growth rates of L. brongniartii explants were highest at 26 and 28 °C, which closely corresponded to temperatures found during August to late December when it was most abundant. The estimated maximum photosynthesis rate (P max) was 4.41 mol photon m–2 s–1 at 26 °C and 4.07 mol photon m–2 s–1 at 28 °C. Saturating irradiance occurred at 95 mol photon m–2 s–1 at 26 °C and 65 mol photon m–2 s–1 at 28 °C. In contrast, growth experiments at 41.7 mol photon m–2 s–1 caused bleaching of explants and the maximum growth rate observed during the study was 3.02 ± 0.75% day–1 at 28 °C and 25 mol photon m–2 s–1. The difference in the saturating irradiance for photosynthesis and the irradiance that caused bleaching in growth experiments suggests that long-term exposure to high irradiance was detrimental and should be addressed before the initiation of large scale cultivation.  相似文献   

4.
Husen  Jia  Dequan  Li 《Photosynthetica》2002,40(1):139-144
The responses to irradiance of photosynthetic CO2 assimilation and photosystem 2 (PS2) electron transport were simultaneously studied by gas exchange and chlorophyll (Chl) fluorescence measurement in two-year-old apple tree leaves (Malus pumila Mill. cv. Tengmu No.1/Malus hupehensis Rehd). Net photosynthetic rate (P N) was saturated at photosynthetic photon flux density (PPFD) 600-1 100 (mol m-2 s-1, while the PS2 non-cyclic electron transport (P-rate) showed a maximum at PPFD 800 mol m-2 s-1. With PPFD increasing, either leaf potential photosynthetic CO2 assimilation activity (Fd/Fs) and PS2 maximal photochemical activity (Fv/Fm) decreased or the ratio of the inactive PS2 reaction centres (RC) [(Fi – Fo)/(Fm – Fo)] and the slow relaxing non-photochemical Chl fluorescence quenching (qs) increased from PPFD 1 200 mol m-2 s-1, but cyclic electron transport around photosystem 1 (RFp), irradiance induced PS2 RC closure [(Fs – Fo)/Fm – Fo)], and the fast and medium relaxing non-photochemical Chl fluorescence quenching (qf and qm) increased remarkably from PPFD 900 (mol m-2 s-1. Hence leaf photosynthesis of young apple leaves saturated at PPFD 800 mol m-2 s-1 and photoinhibition occurred above PPFD 900 mol m-2 s-1. During the photoinhibition at different irradiances, young apple tree leaves could dissipate excess photons mainly by energy quenching and state transition mechanisms at PPFD 900-1 100 mol m-2 s-1, but photosynthetic apparatus damage was unavoidable from PPFD 1 200 mol m-2 s-1. We propose that Chl fluorescence parameter P-rate is superior to the gas exchange parameter P N and the Chl fluorescence parameter Fv/Fm as a definition of saturation irradiance and photoinhibition of plant leaves.  相似文献   

5.
Young sporophytes of short-stipe ecotype ofEcklonia cavafrom a warmer locality (Tei, Kochi Pref., southern Japan) and those of long-stipe ecotype from a cooler locality (Nabeta, Shizuoka Pref., central Japan) were transplanted in 1995 to artificial reefs immersed at the habitat of long-stipe ecotype in Nabeta Bay, Shizuoka Pref., central Japan. The characteristics of photosynthesis and respiration of bladelets of the transplanted sporophytes of the two ecotypes were compared in winter and summer 1997; the results were assessed per unit area, per unit chlorophyllacontent and per unit dry weight. In photosynthesis-light curves at 10–29 °C, light saturation occurred at 200–400 mol photon m–2s–1in sporophytes from both Tei and Nabeta. The maximum photosynthetic rate (P max) at 10–29 °C and the light-saturation index (I k) at 25–29 °C in sporophytes from both localities were generally higher in winter than in summer.P maxat 25–29 °C (per unit area and chlorophylla) were higher in sporophytes from Tei than those from Nabeta in both seasons. The optimum temperature for photosynthesis was 25 °C in winter and 27 °C in summer at high light intensities of 100–400 mol photon m–2s–1. However, at lower light intensities of 12.5–50 mol photon m–2s–1, it was 20 °C in winter and 25–27 °C in summer for sporophytes from both locations. Dark respiration increased with temperature rise in the range of 10–29 °C in sporophytes from both locations in summer and winter. The sporophytes transplanted from Tei (warmer area) showed higher photosynthetic activities than those from Nabeta (cooler area) at warmer temperatures even under the same environmental conditions. This indicates that these physiological ecotypes have arisen from genetic differentiation.  相似文献   

6.
The effects of a 60 min exposure to photosynthetic photon flux densities ranging from 300 to 2200 mol m–2s–1 on the photosynthetic light response curve and on PS II heterogeneity as reflected in chlorophyll a fluorescence were investigated using the unicellular green alga Chlamydomonas reinhardtii. It was established that exposure to high light acts at three different regulatory or inhibitory levels; 1) regulation occurs from 300 to 780 mol m–2s–1 where total amount of PS II centers and the shape of the light response curve is not significantly changed, 2) a first photoinhibitory range above 780 up to 1600 mol m–2s–1 where a progressive inhibition of the quantum yield and the rate of bending (convexity) of the light response curve can be related to the loss of QB-reducing centers and 3) a second photoinhibitory range above 1600 mol m–2s–1 where the rate of light saturated photosynthesis also decreases and convexity reaches zero. This was related to a particularly large decrease in PS II centers and a large increase in spill-over in energy to PS I.Abbreviations Chl chlorophyll - DCMU 3,(3,4-dichlorophenyl)-1,1-dimethylurea - FM maximal fluorescence yield - Fpl intermediate fluorescence yield plateau level - F0 non-variable fluorescence yield - Fv total variable fluorescence yield (FM-F0) - initial slope to the light response curve, used as an estimate of initial quantum yield - convexity (rate of bending) of the light response curve of photosynthesis - LHC light-harvesting complex - Pmax maximum rate of photosynthesis - PQ plastoquinone - Q photosynthetically active photon flux density (400–700 nm, mol m–2s–1) - PS photosystem - QA and QB primary and secondary quinone electron acceptor of PS II  相似文献   

7.
Egorova  E.A.  Bukhov  N.G. 《Photosynthetica》2002,40(3):343-347
Photosystem 2 (PS2)-driven electron transfer was studied in primary leaves of barley (Hordeum vulgare L.) seedlings grown under various photon fluxes (0.3–170.0 mol m–2 s–1) of blue (BR) or red (RR) radiation using modulated chlorophyll fluorescence. The Fv/Fm ratio was 0.78–0.79 in leaves of all radiation variants, except in seedlings grown under BR or RR of 0.3 mol m–2 s–1. The extent of the photochemical phase of the polyphasic Fv rise induced by very strong white light was similar in leaves of all radiation treatments. Neither radiation quality nor photon flux under plant cultivation influenced the amount of non QB-transferring centres of PS2 except in leaves of seedlings grown under BR of 0.3 mol m–2 s–1, in which the amount of such centres increased threefold. Both BR and RR stimulated the development of photochemically competent PS2 at photon fluxes as low as 3 mol m–2 s–1. Three exponential components with highly different half times were distinguished in the kinetics of Fv dark decay. This indicates different pathways of electron transfer from QA , the reduced primary acceptor of PS2, to other acceptors. Relative magnitudes of the individual decay components did not depend on the radiation quality or the photon flux during plant cultivation. Significant differences were found, however, between plants grown under BR or RR in the rate of the middle and fast components of Fv dark decay, which showed 1.5-times faster intersystem linear electron transport in BR-grown leaves.  相似文献   

8.
D. H. Greer  W. A. Laing 《Planta》1992,186(3):418-425
Kiwifruit (Actinidia deliciosa (A. Chev.) C.F. Liang et A.R. Ferguson) plants grown in an outdoor enclosure were exposed to the natural conditions of temperature and photon flux density (PFD) over the growing season (October to May). Temperatures ranged from 14 to 21° C while the mean monthly maximum PFD varied from 1000 to 1700 mol · m–2 · s–1, although the peak PFDs exceeded 2100 mol · m–2 · s–1. At intervals, the daily variation in chlorophyll fluorescence at 692 nm and 77K and the photon yield of O2 evolution in attached leaves was monitored. Similarly, the susceptibility of intact leaves to a standard photoinhibitory treatment of 20° C and a PFD of 2000 mol · m–2 · s–1 and the ability to recover at 25° C and 20 mol · m–2 · s–2 was followed through the season. On a few occasions, plants were transferred either to or from a shade enclosure to assess the suceptibility to natural photoinhibition and the capacity for recovery. There were minor though significant changes in early-morning fluorescence emission and photon yield throughout the growing season. The initial fluorescence, Fo, and the maximum fluorescence, Fm, were, however, significantly and persistently different from that in shade-grown kiwifruit leaves, indicative of chronic photoinhibition occurring in the sun leaves. In spring and autumn, kiwifruit leaves were photoinhibited through the day whereas in summer, when the PFDs were highest, no photoinhibition occurred. However, there was apparently no non-radiative energy dissipation occurring then also, indicating that the kiwifruit leaves appeared to fully utilize the available excitation energy. Nevertheless, the propensity for kiwifruit leaves to be susceptible to photoinhibition remained high throughout the season. The cause of a discrepancy between the severe photoinhibition under controlled conditions and the lack of photoinhibition under comparable, natural conditions remains uncertain. Recovery from photoinhibition, by contrast, varied over the season and was maximal in summer and declined markedly in autumn. Transfer of shade-grown plants to full sun had a catastrophic effect on the fluorescence characteristics of the leaf and photon yield. Within 3 d the variable fluorescence, Fv, and the photon yield were reduced by 80 and 40%, respectively, and this effect persisted for at least 20 d. The restoration of fluorescence characteristics on transfer of sun leaves to shade, however, was very slow and not complete within 15 d.Abbreviations and Symbols Fo, Fm, Fv initial, maximum, variable fluorescence - Fi Fv at t = 0 - F Fv at t = - PFD photon flux density - PSII photosystem II - leaf absorptance ratio - (a photon yield of O2 evolution (absorbed basis) - i a at t = 0 - a at t = We thank Miss Linda Muir and Amanda Yeates for their technical assistance in this study.  相似文献   

9.
The effect of repeated exposure to high light (1200 mol · m–2 · s–1 photosynthetic photon flux density, PPFD) at 5° C was examined in attached leaves of cold-grown spring (cv. Katepwa) and winter (cv. Kharkov) wheat (Triticum aestivum L.) over an eight-week period. Under these conditions, Kharkov winter wheat exhibited a daily reduction of 24% in FV/FM (the ratio of variable to maximal fluorescence in the dark-adapted state), in contrast to 41% for cold-grown Katepwa spring wheat. Both cultivars were able to recover from this daily suppression of FV/FM such that the leaves exhibited an average morning FV/FM of 0.651 ± 0.004. Fluorescence measurements made under steady-state conditions as a function of irradiance from 60 to 2000 mol · m–2 · s–1 indicated that the yield of photosystem II (PSII) electron transport under light-saturating conditions was the same for photoinhibited and control cold-grown plants, regardless of cultivar. Repeated daily exposure to high light at low temperature did not increase resistance to short-term photoinhibition, although zeaxanthin levels increased by three- to fourfold. In addition, both cultivars increased the rate of dry-matter accumulation, relative to control plants maintained at 5° C and 250 mol · m–2 · s–1 PPFD (10% and 28% for Katepwa and Kharkov, respectively), despite exhibiting suppressed fv/fm and reduced photon yields for O2 evolution following daily high-light treatments. Thus, although photosynthetic efficiency is suppressed by a longterm, photoinhibitory treatment, light-saturated rates of photosynthesis are sufficiently high during the high-light treatment to offset any reduction in photochemical efficiency of PSII. We suggest that in these cold-tolerant plants, photoinhibition of PSII may represent a longterm, stable, down-regulation of photochemistry to match the overall photosynthetic demand for ATP and reducing equivalents.Abbreviations and Symbols Chl chlorophyll - HL high light - PPFD photosynthetic photon flux density - FO minimum fluorescence in the dark-adapted state - FM maximum fluorescence in the dark-adapted state - FV maximum variable fluorescence in the dark-adapted state (FM-FO) - FV/FV photosynthetic efficiency of the dark-adapted state - fV/fM photosynthetic efficiency of the light-adapted steady state - qP photochemical quenching parameter - qN non-photochemical quenching parameter - e yield of electron transport and equals qP · fV/fM - 1-qO FO quenching parameter - app apparent photon yield. The assistance of Amy So is gratefully acknowledged. This research was supported by a Natural Sciences and Engineering Research Council of Canada (NSERCC) Operating Grant to N.P.A.H. G.Ö. was supported by an NSERCC International Exchange Award and the Swedish Natural Sciences Research Council.  相似文献   

10.
D. H. Greer  W. A. Laing 《Planta》1988,174(2):159-165
Recovery of photoinhibition in intact leaves of shade-grown kiwifruit was followed at temperatures between 10° and 35° C. Photoinhibition was initially induced by exposing the leaves for 240 min to a photon flux density (PFD) of 1 500 mol·m-2·s-1 at 20° C. In additional experiments to determine the effect of extent of photoinhibition on recovery, this period of exposure was varied between 90 and 400 min. The kinetics of recovery were followed by chlorophyll fluorescence at 77K. Recovery was rapid at temperatures of 25–35° and slow or negligible below 20° C. The results reinforce those from earlier studies that indicate chilling-sensitive species are particularly susceptible to photoinhibition at low temperatures because of the low rates of recovery. At all temperatures above 15° C, recovery followed pseudo first-order kinetics. The extent of photoinhibition affected the rate constant for recovery which declined in a linear fashion at all temperatures with increased photoinhibition. However, the extent of photoinhibition had little effect on the temperature-dependency of recovery. An analysis of the fluorescence characteristics indicated that a reduction in non-radiative energy dissipation and repair of damaged reaction centres contributed about equally to the apparent recovery though biochemical studies are needed to confirm this. From an interpretation of the kinetics of photoinhibition, we suggest that recovery occurring during photoinhibition is limited by factors different from those that affect post-photoinhibition recovery.Abbreviations and symbols F o, F m, F v instantaneous, maximum, variable fluorescence - K D, K F, K P, K T rate constants for non-radiative energy dissipation, fluorescence, photochemistry, transfer to photosystem I - K(PI), k(R) rate constants for photoinhibition and recovery - PFD photon flux density - PSI, II photosystem I, II - i photon yield of photosynthesis (incident light)  相似文献   

11.
Carbon assimilation and standing crop biomass of Spartina alterniflora were studied in a contrasting streamside and inland salt marsh in Louisiana Gulf coast, USA. A substantially lower leaf dry weight, leaf area index, and standing crop biomass were recorded for inland plants as compared to streamside plants. Net assimilation rates ranged between 8 to 25 mol m–2 s–1 for streamside and between 4 to 19 mol m–2 s–1 for inland plants. The average photosynthetic rates were significantly lower for inland plants which were growing in an apparently more stressed environment. In addition, the differences were more profound with progression of the growing season. The reduced photosynthetic activity in the inland marsh was attributed to greater soil waterlogging, increased anaerobic root respiration, plant toxins (sulfide), restricted nutrient uptake or a combination of these factors.Abbreviations Eh = redox potential - gw = stomatal conductance - LAI = leaf area index - Pn = net photosynthesis - PPFD = photosynthetic photon flux density - T1 = leaf temperature  相似文献   

12.
Summary Respiration of an undescribed species of soil nematode of the genus Chiloplacus from the Canadian High Arctic was measured at 2°, 5°, 10°, 15°, 20° and 25°C. The corresponding metabolic rates were 0.2697×10-3 l, 0.3406×10-3 l, 0.8408×10-3 l, 0.8539×10-3 l, 1.8420×10-3 l and 2.9360×10-3 l O2 ind-1 h-1, respectively, for a nematode of 1.0 g dry weight. The relationship between respiration and dry weight for Chiloplacus sp. at 10°C is described by the function log R=-3.0693+0.8844 log W. Q10 values for the 2°–5°, 5°–10°, 10°–15°, 15°–20° and 20°–25°C temperature intervals were 2.18, 6.09, 1.03, 4.65 and 2.54, respectively. Chiloplacus sp. showed raised metabolic rates at low tempetatures compared with species from warmer environments. Metabolic rates of representative samples of the soil, nematode fauna (dominated by individuals of the genus Plectus) from the same location were 0.1593×10-3 l, 0.3603×10-3 l and 0.5332×10-3 l O2 ind-1 h-1 at 5°, 10° and 15°C for an average nematode of 0.4297 g dry weight.  相似文献   

13.
Xu  Qingzhang  Kirkham  M.B. 《Photosynthetica》2003,41(1):27-32
Grain sorghum [Sorghum bicolor (L.) Moench. cvs. TX430 and KS82] was grown in a Haynie very fine sandy loam (coarse-silty, mixed, superactive, calcareous, mesic Mollic Udifluvents) under constant 47 % shade or full irradiance in a greenhouse under two watering regimes to see the combined and individual effects of low irradiance (LI) and low water (LW) on the sorghum genotypes. Under the high-irradiance (HI) and high-water (HW) treatment (control) and the LI-HW treatment, TX430 grew taller than KS82. Both LI and LW reduced several times the fresh and dry masses. Under the control conditions, TX430 reached its maximum net photosynthetic rate (P Nmax) of 28.93 mol m–2 s–1 at a photosynthetic photon flux density (PPFD) of 1 707 mol m–2 s–1, and KS82 reached its P Nmax of 28.32 mol m–2 s–1 at a PPFD of 2 973 mol m–2 s–1. The fact that TX430 had P Nmax under a lower PPFD than KS82 may relate to its taller growth under LI conditions. Hence genotypes of sorghum might be selected for low irradiance using curves relating P N to PPFD.  相似文献   

14.
Photoinhibition of photosynthesis was induced in intact leaves of Phaseolus vulgaris L. grown at a photon flux density (PFD; photon fluence rate) of 300 mol·m-2·s-1, by exposure to a PFD of 1400 mol·m-2·s-1. Subsequent recovery from photoinhibition was followed at temperatures ranging from 5 to 35°C and at a PFD of either 20 or 140 mol·m-2·s-1 or in complete darkness. Photoinhibition and recovery were monitored mainly by chlorophyll fluorescence emission at 77K but also by photosynthetic O2 evolution. The effects of the protein-synthesis inhibitors, cycloheximide and chloramphenicol, on photoinhibition and recovery were also determined. The results demonstrate that recovery was temperature-dependent with rates slow below 15°C and optimal at 30°C. Light was required for maximum recovery but the process was light-saturated at a PFD of 20 mol·m-2·s-1. Chloramphenicol, but not cycloheximide, inactivated the repair process, indicating that recovery involved the synthesis of one or more chloroplast-encoded proteins. With chloramphenicol, it was shown that photoinhibition and recovery occurred concomitantly. The temperature-dependency of the photoinhibition process was, therefore, in part determined by the effect of temperature on the recovery process. Consequently, photoinhibition is the net difference between the rate of damage and the rate of repair. The susceptibility of chilling-sensitive plant species to photoinhibition at low temperatures is proposed to result from the low rates of recovery in this temperature range.Abbreviations and symbols Da Dalton - Fo, Fm, Fv instantaneous, maximum, variable fluorescence emission - PFD photon flux density - PSII photosystem II - photon yield C.I.W.-D.P.B. Publication No. 871  相似文献   

15.
Short-term (up to 5 h) transfers of shade-adapted (100 mol · m–2 · s–1) clonal tissue of the marine macroalga Ulva rotundata Blid. (Chlorophyta) to higher irradiances (1700, 850, and 350 mol · m–2 · s–1) led to photoinhibition of room-temperature chlorophyll fluorescence and O2 evolution. The ratio of variable to maximum (Fv/Fm) and variable (Fv) fluorescence, and quantum yield () declined with increasing irradiance and duration of exposure. This decline could be resolved into two components, consistent with the separation of photoinhibition into energy-dissipative processes (photoprotection) and damage to photosystem II (PSII) by excess excitation. The first component, a rapid decrease in Fv/Fm and in Fv, corresponds to an increase in initial (Fo) fluorescence and is highly sensitive to 1 mM chloramphenicol. This component is rapidly reversible under dim (40 mol · m–2 · s–1) light, but is less reversible with increasing duration of exposure, and may reflect damage to PSII. The second (after 1 h exposure) component, a slower decline in Fv/Fm and Fv with declining Fo, appears to be associated with the photoprotective interconversion of violaxanthin to zeaxanthin and is sensitive to dithiothreitol. The accumulation of zeaxanthin in U. rotundata is very slow, and may account for the predominance of increases in Fo at high irradiances.Abbreviations and Symbols CAP chloramphenicol - DTT dithiothreitol - Fo, Fm, Fv initial, maximum, and variable fluorescence - quantum yield - PFD photon flux density - PSII photosystem II To whom correspondence should be addressedWe are grateful to O. Björkman and S. Thayer, Carnegie Institution of Washington, Stanford, Cal., USA, for analysis of xanthophyll pigments reported here. This research was supported by National Science Foundation grant OCE-8812157 to C.B.O. and J.R. Support for G.L. was provided by a NSF-CNRS (Centre National de la Recherche Scientifique) exchange fellowship.  相似文献   

16.
Photosynthetic activity, in leaf slices and isolated thylakoids, was examined at 25° C after preincubation of the slices at either 25° C or 4° C at a moderate photon flux density (PFD) of 450 mol·m–2·s–1, or at 4° C in the dark. The plants used wereSpinacia oleracea L.,Cucumis sativus L. andNerium oleander L. which was acclimated to growth at 20° C or 45° C. The plants were grown at a PFD of 550 mol·m–2·s–1. Photosynthesis, measured as CO2-dependent O2 evolution, was not inhibited in leaf slices from any plant after preincubation at 25° C at a moderate PFD or at 4° C in the dark. However, exposure to 4° C at a moderate PFD induced an inhibition of CO2-dependent O2 evolution within 1 h inC. sativus, a chilling-sensitive plant, and in 45° C-grownN. oleander. The inhibition in these plants after 5 h reached 80% and 40%, respectively, and was independent of the CO2 concentration but was reduced at O2 concentrations of less than 3%. Methyl-viologen-dependent O2 exchange in leaf slices from these plants was not inhibited. There was no photoxidation of chlorophyll, in isolated thylakoids, or any inhibition of electron transport at photosystem (PS)II, PSI or through both photosystems which would account for the inhibition of photosynthesis. The conditions which inhibit photosynthesis in chilling-sensitive plants do not cause inhibition inS. oleracea, a chilling-insensitive plant, or in 20° C-grownN. oleander. The CO2-dependent photosynthesis, measured at 5° C, was reduced to about 3% of that recorded at 25° C in chilling-sensitive plants but only to about 30% in the chilling-insensitive plants. Methyl-viologen-dependent O2 exchange, measured at 5° C, was greater than 25% of the activity at 25° C in all the plants. The results indicate that the mechanism of the chilling-induced inhibition of photosynthesis does not involve damage to PSII. That inhibition of photosynthesis is observed only in the chilling-sensitive plants indicates it is related, in some way, to the disproportionate decrease in photosynthetic activity in these plants at chilling temperatures.Abbreviations Chl chlorophyll - DPIPH reduced form of 2,6-dichlorophenol-indophenol - DMQ 2,5-dimethyl-p-benzoquinone - MV methyl viologen - 20°-oleander Nerium oleander grown at 20° C - 45°-oleander N. oleander grown at 45° C - PFD photon flux density (photon fluence rate) - PSI and PSII photosystem I and II, respectively  相似文献   

17.
We investigated to what extent south-exposed leaves (E-leaves) of the evergreen ivy (Hedera helix L.) growing in the shadow of two deciduous trees suffered from photoinhibition of photosynthesis when leaf-shedding started in autumn. Since air temperatures drop concomitantly with increase in light levels, changes in photosynthetic parameters (apparent quantum yield, i and maximal photosynthetic capacity of O2 evolution, Pmax; chlorophyll-a fluorescence at room temperature) as well as pigment composition were compared with those in north-exposed leaves of the same clone (N-leaves; photosynthetic photon flux density PPFD< 100 mol · m–2 · s–2) and phenotypic sun leaves (S-leaves; PPFD up to 2000 mol · m–2 · s–1).In leaves exposed to drastic light changes during winter (E-leaves) strong photoinhibition of photosynthesis could be observed as soon as the incident PPFD increased in autumn. In contrast, in N-leaves the ratio of variable fluorescence to maximum fluorescence (FV/FMm) and i did not decline appreciably prior to severe frosts (up to -12° C) in January. At this time, i was reduced to a similar extent in all leaves, from about 0.073 mol O2 · mol–1 photons before stress to about 0.020. Changes in i were linearly correlated with changes in fv/fm (r = 0.955). The strong reduction in FV/FM on exposure to stress was caused by quenching in FM. The initial fluorescence (F0), however, was also quenched in all leaves. The diminished fluorescence yield was accompanied by an increase in zeaxanthin content. These effects indicate that winter stress in ivy primarily induces an increase in non-radiative energy-dissipation followed by photoinhibitory damage of PSII. Although a pronounced photooxidative bleaching of chloroplast pigments occurred in January (especially in E-leaves), photosynthetic parameters recovered completely in spring. Thus, the reduction in potential photosynthetic yield in winter may be up to three times greater in leaves subjected to increasing light levels than in leaves not exposed to a changing light environment.Abbreviations and Symbols F0, FM initial and maximal fluorescence yield when all PSII centres are open and closed - FV variable fluorescence (FM-F0) - Pmax maximal photosynthetic capacity at 1000 umol · m–2 · s–1 PPFD and CO2 saturation - PPFD photosynthetic photon flux density - i apparent quantum yield of photosynthetic O2 evolution - E-leaves, N-leaves shade leaves exposed, not exposed to drastic light changes during winter - S-leaves sun leaves from an open ivy stand Dedicated to Professor Otto Härtel on the occasion of his 80th birthdayThis work was supported by the Austrian Fonds zur Förderung der wissenschaftlichen Forschung.  相似文献   

18.
A. Laisk  O. Kiirats  V. Oja  U. Gerst  E. Weis  U. Heber 《Planta》1992,186(3):434-441
Exchange of CO2 and O2 and chlorophyll fluorescence were measured in the presence of 360 1 · 1–1 CO2 in nitrogen in Helianthus annuss L. leaves which had been preconditioned in the dark or at a photon flux density (PFD) of 24 mol · m–2 · s–1 either in 21 or 0% O2. An initial light-dependent O2 outburst of 6 mol · m–2 was measured after aerobic dark incubation. It was attributed to the reduction of electron carriers, predominantly plastoquinone. The maximum initial rate of O2 evolution at PFD 8000 mol · m–2 · s–1 was 170 mol · m–2 · s–2 or about four times the steady CO2-and light-saturated rate of photosynthesis. Fluorescence measurements showed that the rate was still acceptor-limited. Fast O2 evolution ceased after electron carriers were reduced in the dark-adapted leaf, but continued for a short time at the lower rate of 62 mol · m–2 · s–1 in the light-adapted leaf. The data are interpreted to show that enzymes involved in 3-phosphoglycerate reduction are dark-inhibited, but were fully active in low light. In a dark-adapted leaf, respiratory CO2 evolution continued under nitrogen; it was partially inhibited by illumination. Prolonged exposure of a leaf to anaerobic conditions caused reducing equivalents to accumulate. This was shown by a slowly increasing chlorophyll fluorescence yield which indicated the reduction of the PSII acceptor QA in the dark. When the leaf was illuminated, no O2 evolution was detected from short light pulses, although transient O2 production was appreciable during longer light pulses. This indicates that an electron donor (pool size about 2–3 e/PSII reaction center) became reduced in the dark and the first photons were used to oxidise this donor instead of water.Abbreviations Chl chlorophyll - CRC carbon reduction cycle - GAPDH NADP-glyceraldehyde-phosphate dehydrogenase - PFD photon flux density - PGA 3-phosphoglycerate - RuBP ribulose bisphosphate - TCA tricarboxylic acid cycle To whom correspondence should be addressedThis work received support by the Estonian Academy of Sciences, the Gottfried-Wilhelm-Leibniz Program of the Deutsche For-schungsgemeinschaft and the Sonderforschungsbereich 251 of the University of Würzburg.  相似文献   

19.
Strawberry (Fragaria ananassaDuch. cv. Fengxiang) plantlets were cultured under two in vitroenvironments for rooting, and then acclimatized under two ex vitroirradiance conditions. At the end of rooting stage plant height, fresh weight and specific leaf area of T1-plants grown under high sucrose concentration (3 sucrose), low photosynthetic photon flux density (30 mol m–2 s–1) and normal CO2 concentration (350–400 l l–1) were significantly higher than those of T2-plantlets grown under low sucrose concentration (0.5), high photosynthetic photon flux density (90 mol m–2 s–1) and elevated CO2 concentration (700–800 l l–1). But T2-plantlets had higher net photosynthetic rate (Pn), effective photochemical quantum yield of PSII (PSII), effective photosynthetic electron transport rate (ETR), photochemical quenching (qP) and ratio of chlorophyll fluorescence yield decrease (Rfd). After transfer, higher irradiance obviously promoted the growth of plantlets and was beneficial for the development of photosynthetic functions during acclimatization. T2-plantlets had higher fresh weight, leaf area, PSII and ETR under higher ex vitroirradiance condition.  相似文献   

20.
Photoinhibition of photosynthesis was studied in intact barley leaves at 5 and 20°C, to reveal if Photosystem II becomes predisposed to photoinhibition at low temperature by 1) creation of excessive excitation of Photosystem II or, 2) inhibition of the repair process of Photosystem II. The light and temperature dependence of the reduction state of QA was measured by modulated fluorescence. Photon flux densities giving 60% of QA in a reduced state at steady-state photosynthesis (300 mol m–2s–1 at 5°C and 1200 mol m–2s–1 at 20°C) resulted in a depression of the photochemical efficiency of Photosystem II (Fv/Fm) at both 5 and 20°C. Inhibition of Fv/Fm occurred with initially similar kinetics at the two temperatures. After 6h, Fv/Fm was inhibited by 30% and had reached steady-state at 20°C. However, at 5°C, Fv/Fm continued to decrease and after 10h, Fv/Fm was depressed to 55% of control. The light response of the reduction state of QA did not change during photoinhibition at 20°C, whereas after photoinhibition at 5°C, the proportion of closed reaction centres at a given photon flux density was 10–20% lower than before photoinhibition.Changes in the D1-content were measured by immunoblotting and by the atrazine binding capacity during photoinhibition at high and low temperatures, with and without the addition of chloramphenicol to block chloroplast encoded protein synthesis. At 20°C, there was a close correlation between the amount of D1-protein and the photochemical efficiency of photosystem II, both in the presence or in the absence of an active repair cycle. At 5°C, an accumulation of inactive reaction centres occurred, since the photochemical efficiency of Photosystem II was much more depressed than the loss of D1-protein. Furthermore, at 5°C the repair cycle was largely inhibited as concluded from the finding that blockage of chloroplast encoded protein synthesis did not enhance the susceptibility to photoinhibition at 5°C.It is concluded that, the kinetics of the initial decrease of Fv/Fm was determined by the reduction state of the primary electron acceptor QA, at both temperatures. However, the further suppression of Fv/Fm at 5°C after several hours of photoinhibition implies that the inhibited repair cycle started to have an effect in determining the photochemical efficiency of Photosystem II.Abbreviations CAP D-threochloramphenicol - F0 and F 0 fluorescence when all Photosystem II reaction centres are open in dark- and light-acclimated leaves, respectively - Fm and F m fluorescence when all Photosystem II reaction centres are closed in dark- and light-acclimated leaves, respectively - Fs fluorescence at steady state - QA the primary, stable quinone acceptor of Photosystem II - qN non-photochemical quenching of fluorescence - qP photochemical quenching of fluorescence  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号