首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
OBJECTIVE: To analyze multilamellar cytoplasmic structures by confocal laser scanning microscopy (CLSM) combined with factor analysis of biomedical image sequences (FAMIS). STUDY DESIGN: After treatment of U937 cells with 7-ketocholesterol (7-keto), cytoplasmic alterations were assessed with monodansylcadaverine (MDC). By ultraviolet excitation of a confocal laser scanning microscope (UV-CLSM), spectral sequences were performed to characterize 7-keto and MDC distribution inside cells. FAMIS was used to transform the image sequences in factor curves and images. RESULTS: By UV-CLSM, 7-keto fluorescence was detected together with MDC, which revealed morphologic cytoplasmic changes in cells. The factor images obtained from confocal image sequences emphasized the view of these results. These data are in agreement with biochemical characterizations of MDC-positive structures. CONCLUSION: The combined use of confocal microscopy and FAMIS allowed us to detect MDC-positive cytoplasmic structures in 7-keto-treated cells and to colocalize MDC and 7-keto distribution. This new method confirms the usefulness of MDC as a marker of oxysterol-induced cell death.  相似文献   

2.
OBJECTIVE: To show the effect of 7-ketocholesterol (7KC) on cellular lipid content by means of flow cytometry and the interaction of 7KC with Nile Red (NR) via ultraviolet fluorescence resonance energy transfer (FRET) excitation of NR on U937 monocytic cells by means of 2-photon excitation confocal laser scanning microscopy (CLSM). STUDY DESIGN: Untreated and 7KC-treated U937 cells were stained with NR and analyzed by flow cytometry and CLSM. 3D sequences of images were obtained by spectral analysis in a 2-photon excitation CLSM and analyzed by the factor analysis of medical image sequences (FAMIS) algorithm, which provides factor curves and images. Factor images are the result of the FAMIS image processing method, which handles emission spectra. In FRET analysis, preparations are screened at selected UV wavelengths to avoid emission of NR in the absence of 7KC. RESULTS: During 7KC-induced cell death,flow cytometry and CLSM revealed a modification of the cellular lipid content. Factor images show FRET occurrence and subsequent colocalization of 7KC and NR. CONCLUSION: This investigation established the utility of 2-photon excitation CLSM to assess colocalization of 7KC with NR by FRET and to identify and distinguish polar and neutral lipids stained by NR that accumulate from the effect of 7KC.  相似文献   

3.
OBJECTIVE: To evaluate CD36 expression with quantum dots 605 (QDs 605) on untreated and 7-ketocholesterol (7KC)-treated monocytic U937 cells by flow cytometry (FCM) and confocal and multiphoton laser scanning microscopy (CLSM). STUDY DESIGN: Cells were analyzed by CLSM, following flow cytometric quantification of CD36 expression and 7KC uptake. Image sequences were obtained by spectral analysis in monophoton and multiphoton CLSM and analyzed by the factor analysis of medical image sequences (FAMIS) algorithm to differentiate emission spectra. In CLSM analysis, cell deposits were screened in ultraviolet excitation modes to optimize the possibilities of QDs 605 and have the benefit of nuclei counterstaining by DAPI. RESULTS: FCM and CLSM reveal the expression of CD36 by means of QDs 605. FCM provides information on 7KC uptake. CLSM provides the localization of 7KC vs. DAPI. As factor curves and images show the red, narrow emission of QDs 605 vs. violet and blue emissions of 7KC and DAPI, respectively, a reliable identification of CD36 is obtained. CONCLUSION: QDs 605 are useful tools to perform antigenic expression in FCM and CLSM. Moreover, CLSM and subsequent spectral analysis provide a more specific characterization of QDs 605 fluorescent emission in the UV excitation mode and a simultaneous identification of 7KC.  相似文献   

4.
OBJECTIVE: To demonstrate CD36 expression with quantum dots (QDs) 525 and/or 605 on human monocytic U937 cells and atherosclerotic tissue sections by means of flow cytometry (FCM) and/or confocal laser scanning microscopy (CLSM). STUDY DESIGN: U937 cells and tissue sections were analyzed by means of FCM and/or CLSM. FCM was performed, using different ultraviolet (UV) and visible (488/532 nm) excitation modes. In the visible mode, fluorescence intensities of QDs, phycoerythrin (PE) and fluorescein isothiocyanate (FITC) were compared. Three-dimensional (3-D) sequences of images were obtained by spectral analysis in a CLSM and analyzed by the factor analysis of medical image sequences (FAMIS) algorithm, providing factor curves and images. Factor images are the result of the FAMIS image processing method, which differentiates emission spectra from 3D sequences of images. In CLSM analysis, preparations are screened in a UV excitation mode to optimize the possibilities of QDs and have the benefit of 4',6-diamino-2-phenylindole or Hoechst 33342 counterstaining of nuclei. RESULTS: FCM and CLSM revealed CD36 expression by means of QDs 525 and/or 605. Fluorescence intensity of PE and of FITC was higher than that of QDs 525 and of 605. As factor curves and images show the red emission of QDs 605 only, subsequent reliable identification and localization of CD36 was obtained. CONCLUSION: QDs 525 and 605 are useful to analyze antigenic expression. Following FCM, which is well adapted to detect fluorescence emission of QDs in the UV or visible excitation mode, CLSM and subsequent spectral analysis assess more specific characterization of QD fluorescent emissions.  相似文献   

5.
OBJECTIVE: To visualize and localize specific viral DNA sequences revealed with Eu by fluorescence in situ hybridization, confocal laser scanning microscopy (CLSM) and factor analysis of biomedical image sequences (FAMIS). STUDY DESIGN: Human papillomavirus DNA (HPV-DNA) was identified in HeLa cells with biotinylated DNA probes recognizing HPV-DNA types 16/18. DNA-DNA hybrids were revealed by a three-step immunohistochemical amplification procedure involving an antibiotin mouse monoclonal antibody, a biotinylated goat antimouse polyclonal antibody and streptavidin-Eu. Cell nuclei were counterstained with Hoechst 33342. Image sequences were obtained using a CLSM that made possible ultraviolet excitation. The location of fluorescent signals inside cellular preparations was determined by FAMIS and selection of filters at emission. Image sequences were summarized into a reduced number of images, or factor images, and curves, or factors. Factors estimate spectral or temporal patterns and depth emission profiles. Factor images correspond to spatial distributions of the different factors. RESULTS: We distinguished between Eu corresponding to HPV-DNA hybridization signals and nuclear staining by taking into account differences in their spectral and temporal patterns and (using their decay rates). CONCLUSION: FAMIS, together with CLSM and Eu, made possible the detection and characterization of viral papillomavirus DNA sequences in HeLa cells.  相似文献   

6.
Living yeast cells can be selectively stained with the lipophilic cationic cyanine dye DiOC6(3) in a mitochondrial membrane potential-dependent manner. Our study extends the use of flow cytometric analysis and sorting to DiOC6(3)-stained yeast cells. Experimental conditions were developed that prevented the toxic side effect of the probe and gave a quantitative correlation between fluorescence and mitochondrial membrane potential, without any staining of other membranes. The localization of the fluorochrome was checked by confocal microscopy and image cytometry. The mitochondrial membrane alterations were also tested through cardiolipin staining with nonyl acridine orange. Differences in light scattering and in fluorescence were detected in mutants (rho-, rho degrees, mit-, or pet-) and wild-type (rho+mit+) populations of yeast. The dye uptake of respiratory-deficient yeast strains was significantly reduced as compared to that of the wild-type. Application of an uncoupler (mCICCP), which collapsed the mitochondrial membrane potential (alphapsi(m)), led to a drastic reduction of the dye uptake. It was observed that a decrease in deltapsi(m), was usually correlated with a decrease in cardiolipin stainability by nonyl acridine orange (NAO). Quantitative flow cytometry is a fast and reproducible technique for rapid screening of yeast strains that might be suspected of respiratory dysfunction and/or mitochondrial structural changes. We give evidence that it is an adequate method to characterize and isolate respiratory mutants through sorting procedure, with selective enrichment of the population studied in respiring or non-respiring yeast cells. Confocal microscopy and image cytometry corroborate the flow cytometry results.  相似文献   

7.
OBJECTIVE: To visualize and localize specific DNA sequences by fluorescence in situ hybridization, confocal laser scanning microscopy (CLSM) and factor analysis of biomedical image sequences (FAMIS). STUDY DESIGN: Human papillomavirus (HPV) DNA was identified in cervical tissue sections with biotinylated DNA probes recognizing the whole genome of HPV DNA types 18 and 16, and DNA-DNA hybrids were revealed by streptavidin-alkaline phosphatase and Fast Red (FR). Cell nuclei were counterstained with TOTO-iodide. Image sequences were obtained using successive dynamic or spectral sequences of images on different optical slices from CLSM. The location of fluorescent signals inside tissue preparations was determined by FAMIS and/or selection of filters at emission. Image sequences were summarized into a reduced number of images, called "factor images," and curves, called "factors." Factors estimate spectral patterns and depth emission profiles. Factor images correspond to spatial distributions of the different factors. RESULTS: We distinguished between FR and nucleus staining in HPV DNA hybridization signals by taking into account differences in their spectral patterns and improved visualization by taking into account differences in their focus (depth emission profiles). CONCLUSION: FAMIS, together with CLSM, made possible the detection and characterization of HPV DNA sequences in cells of cervical tissue sections.  相似文献   

8.
OBJECTIVE: To analyze externalization of phosphatidylserine via annexin V on apoptotic cells by laser scanning confocal microscopy and factor analysis of biomedical image sequences (FAMIS). STUDY DESIGN: Streptavidin-fluorescein isothiocyanate (FITC), -europium (Eu), -phycoerythrin (PE) and -Texas Red (TR) were chosen to reveal the binding of biotinylated annexin V on apoptotic U937 human leukemic cells and ECV-304 human endothelial cells induced under treatment with 7-ketocholesterol or 7 beta-hydroxycholesterol. Excitation of each fluorochrome was obtained by selection of specific lines (351 + 364 nm, 488 nm) of the argon laser of a confocal microscope. Temporal and spectral series were performed to characterize each fluorochrome. FAMIS was applied to these series to estimate images corresponding to stains. RESULTS: Each fluorochrome was clearly distinguished, and images showed localization of phosphatidylserine, which was improved by image analysis. CONCLUSION: On apoptotic cells it is possible to analyze differences in the improved visualization of phosphatidylserine in series processed by FAMIS with the use of biotinylated annexin V revealed with streptavidin-FITC, -Eu, -PE or -TR.  相似文献   

9.
OBJECTIVE: To visualize and localize fragmented DNA strands within apoptotic cells by means of fluorescence using TdT-mediated dUTP-biotin nick end labeling (TUNEL) techniques, laser scanning confocal microscopy (CLSM) and factor analysis of biomedical image sequences (FAMIS). STUDY DESIGN: For this experiment, lymphoid reverted cells were used as a model. Characteristic DNA breaks inside apoptotic cells were detected using TUNEL techniques by a reaction involving tetramethyl rhodamin isothyocyanate (TRITC). The DNA from cell nuclei was counterstained using chromomycin A3 (CA3). The tandem TRITC-CA3 in CLSM was applied to investigate the ability to detect DNA breaks in individual cells using TUNEL techniques and its amplified variants (TUNEL-CARD). FAMIS was applied on dynamic sequences of images of TUNEL preparations and on four-dimensional (4-D) sequences of images of TUNEL-CARD preparations. RESULTS: Distribution and amplitude of fluorescent structures were characterized on dynamic sequences of images. Characterization was improved when FAMIS was applied on 4-D sequences of images, taking into account differences in photobleaching and/or spectrum of TRITC and CA3. CONCLUSION: It is possible to discriminate targets from CA3. FAMIS and TUNEL methods can be used to visualize and localize multiple DNA breaks in lymphoid reverted cells in improved methods of experimentation.  相似文献   

10.
BACKGROUND: The 7-ketocholesterol (7KC)-induced cell death has some characteristics of apoptosis and is associated with polar lipid accumulation. So, we investigated the effects of the broad-spectrum caspase inhibitor z-VAD-fmk and of the caspase-2 inhibitor z-VDVAD-fmk on lipid profile evaluated by staining with Nile Red (NR). METHODS: The 7KC-treated human monocytic U937 cells were cultured in the absence or in the presence of the caspase inhibitors z-VAD-fmk or z-VDVAD-fmk. When staining with NR is performed, neutral and polar lipids have yellow and orange/red emission, respectively, and fluorescence was then analyzed by flow cytometry (FCM) and by confocal laser scanning microscopy (CLSM) combined with subsequent image processing. The 3D-image sequences were obtained by means of CLSM using spectral analysis, and were analyzed by the factor analysis of medical image sequences algorithm to differentiate spectra inside mixed fluorescence emission and get corresponding specific images. RESULTS: By FCM, comparatively to untreated cells, higher percentages of red fluorescent cells were identified in 7KC-treated cells. Factor curves and images reveal orange and red fluorescence emissions in 7KC-treated cells and show yellow, orange, and red fluorescence emissions in 7KC-treated cells cultured in the presence of z-VAD-fmk or z-VDVAD-fmk. CONCLUSIONS: Our data support that investigation by FCM and by spectral analysis in CLSM associated with subsequent image processing provides useful tools to determine the effect of caspase inhibitors on lipid content evaluated with NR. They also favor the hypothesis of relationships between caspase activity and polar lipid accumulation.  相似文献   

11.
BACKGROUND: Chloromethyl-X-rosamine (CMXRos) and MitoTracker Green (MTG) have proved to be useful dyes with which to measure mitochondrial function. CMXRos is a lipophilic cationic fluorescent dye that is concentrated inside mitochondria by their negative mitochondrial membrane potential (MMP). MTG fluorescence has been used as a measure of mitochondrial mass independent of MMP. The fluorescence ratio of the two dyes is a relative measure of the MMP independent of mitochondrial mass. Because MTG was recently reported to be sensitive to MMP, we have reevaluated the effects of loss of MMP on MTG and CMXRos fluorescence, using both flow cytometry and laser scanning confocal microscopy (LSCM). METHODS: Using flow cytometry, the relative fluorescence of CMXRos, R123, and MTG was determined in human lymphoblastoid cell lines (LCLs) with or without carbonyl cyanide p-trifluoromethoxylphenyl-hydrazone (FCCP), used to collapse the MMP. LSCM analysis was also used to evaluate the effect of FCCP on MTG and CMXRos fluorescence of mouse cells and viable lenses in culture. The cytotoxicity of the dyes was determined using flow analysis of endogenous NADH fluorescence. The sensitivity of MTG fluorescence to H(2)O(2) was also evaluated using flow cytometry. RESULTS: CMXRos fluorescence was dependent on MMP, whereas MTG fluorescence was not affected by MMP, using either flow or LSCM. Specific staining of mitochondria was seen with both dyes in all cell types tested, without evidence of cytotoxicity, as determined by NADH levels. H(2)O(2) damage slightly increased MTG staining of cells. CONCLUSIONS: Our results indicate that CMXRos is a nontoxic sensitive indicator of relative changes in MMP, whereas MTG is relatively insensitive to MMP and oxidative stress, using both flow and LSCM analyses, provided optimal staining conditions are used. In addition, these dyes can be useful for the study of mitochondrial morphology and function in whole tissues, using LSCM.  相似文献   

12.
OBJECTIVE: To demonstrate that cellular preparations requiring color analysis of different domains stained by molecular cytogenetic methods (fluorescence in situ hybridization) can be processed by spectral analysis of fluorescent emissions by either factor analysis of medical image sequences (FAMIS) or a META confocal configuration to isolate fluorescent probes. STUDY DESIGN: Three-dimensional sequences of images obtained by spectral analysis in a META confocal microscope (Carl Zeiss SAS, Jena, Germany) were analyzed by META processing and the FAMIS algorithm, which provides factor curves. META and factor images were then the result of image-processing methods that cover emission spectra. RESULTS: Factor curves and factor or META images can help to analyze targets inside nuclei. CONCLUSION: It is possible to process preparations containing numerous spots on different colors to differentiate stained targets and to improve visualization and detection.  相似文献   

13.
Apoptosis was induced in human foreskin fibroblasts by the redox-cycling quinone naphthazarin (5,8-dihydroxy-1,4-naphthoquinone). Most of the cells displayed ultrastructure typical of apoptosis after 8 h of exposure to naphthazarin. Apoptosis was inhibited in fibroblasts pretreated with the cathepsin D inhibitor pepstatin A. Immunofluorescence analysis of the intracellular distribution of cathepsin D revealed a distinct granular pattern in control cells, whereas cells treated with naphthazarin for 30 min exhibited more diffuse staining that corresponded to release of the enzyme from lysosomes to the cytosol. After 2 h, release of cytochrome c from mitochondria to the cytosol was indicated by immunofluorescence. The membrane-potential-sensitive probe JC-1 and flow cytometry did not detect a permanent decrease in mitochondrial transmembrane potential (delta psi(m)) until after 5 h of naphthazarin treatment. Our findings show that, during naphthazarin-induced apoptosis, lysosomal destabilization (measured as release of cathepsin D) precedes release of cytochrome c, loss of delta psi(m), and morphologic alterations. Moreover, apoptosis could be inhibited by pretreatment with pepstatin A.  相似文献   

14.
Studies were performed on ejaculated human spermatozoa (32 subjects with normal sperm motility and 25 subjects with low sperm motility). Morphology of sperm midpiece was evaluated in light, fluorescent and transmission or scanning electron microscope. Changes in mitochondrial membrane potential (delta(psi)m) and mass of mitochondria were analysed by flow cytometry using mitochondrial specific probes JC-1 and Mito Tracker Green FM. Moreover, oxidoreductive capability of sperm mitochondria was assessed using cytochemical reaction for NADH-dependent dehydrogenases. In flow cytometry analysis of JC-1-stained spermatozoa, two asthenozoospermic subpopulations were distinguished: patients with a high percentage (76 +/- 11%, 13 subjects) and patients with a low percentage (29 +/- 14%,12 subjects) of spermatozoa with functional-polarized mitochondria with high delta(psi)m. Our microscopic investigations of spermatozoa of seven asthenozoospermic patients reveal that the deformed and unusually thickened sperm midpieces (50-70% of cells), occasionally with persistent cytoplasmic droplet, contain supernumerary mitochondria with normal substructure, full oxidoreductive capability and high delta(psi)m. The midpiece deformations cause nonprogressive movement or immotility. They can also appear in smaller number of spermatozoa (5-35% of cells) in patients with normal sperm motility. Moreover, in three cases of asthenozoospermia midpiece malformations were accompanied by abnormal morphology of outer dense fibers and axoneme. The cytochemical, fluorescence and SEM studies showed the absence of midpieces in many (60-80%) spermatozoa in some other cases of asthenozoospermia. The morphological observations corresponded with flow cytometry analysis of Mito Tracker Green FM-stained spermatozoa. Our results suggest that in some cases of asthenozoospermia the sperm mitochondria can be functionally active and display high delta(psi)m in large number of cells. The results may suggest that asthenozoospermia does not necessarily result from energetic disturbances of sperm mitochondria. The low sperm motility may be associated with deformations of the mitochondrial sheath containing functional mitochondria. The combination of fluorescence microscopy and flow cytometry with electron microscopic investigations is a sensitive, precise and comprehensive examination which helps discover sperm abnormalities responsible for asthenozoospermia.  相似文献   

15.
OBJECTIVE: To show that cellular preparations requiring depth analysis of different domains stained by molecular cytogenetic methods (fluorescence in situ hybridization and primed in situ) can be improved by regularized factor analysis of medical image sequences (FAMIS) to isolate fluorescent probes by means of intensity depth profiles of fluorochromes, to track relevant DNA sequences (cosmids and centromeres) in cell nuclei during interphase and to improve the use of cytogenetic techniques resulting in flat preparations of whole cells that are assumed to preserve probe access to their targets. STUDY DESIGN: 3D sequences of images obtained by depth displacement in a confocal microscope were first analyzed by the FAMIS algorithm, which provides factor curves. Factor images then resulted from regularization methods that improve signal/noise ratio while preserving target contours. RESULTS: Factor curves and regularized factor images helped analyze targets inside nuclei. CONCLUSION: It is possible to process preparations containing numerous spots (even when they are on different planes) to differentiate stained targets, to investigate depth differences and to improve visualization and detection.  相似文献   

16.
Exploiting the optical sectioning capabilities of laser scanning confocal microscopy and using parameter-specific fluorescent probes, we determined the distribution of pH, free Ca2+, electrical potential, and volume inside cultured adult rabbit cardiac myocytes during ATP depletion and reductive stress with cyanide and 2-deoxyglucose ("chemical hypoxia"). During normoxic incubations, myocytes exhibited a cytosolic pH of 7.1 and a mitochondrial pH of 8.0 (delta pH = 0.9 units). Sarcolemmal membrane potential (delta psi) was -80 mV, and mitochondrial delta psi was as high as -100 mV, yielding a mitochondrial protonmotive force (delta p) of -155 mV (delta P = delta psi - 60 delta pH). After 30 min of chemical hypoxia, mitochondrial delta pH decreased to 0.5 pH units, but mitochondrial delta psi remained essentially unchanged. By 40 min, delta pH was collapsed, and mitochondrial and cytosolic free Ca2+ began to increase. Mitochondrial and sarcolemmal delta psi remained high. as Ca2+ rose, myocytes shortened, hypercontracted, and blebbed with a 30% decrease of cell volume. After hypercontraction, extensive mitochondrial Ca2+ loading occurred. After another few minutes, mitochondrial depolarized completely and released their load of Ca2+. After many more minutes, the sarcolemmal permeability barrier broke down, and viability was lost. These studies demonstrate a sequence of subcellular ionic and electrical changes that may underlie the progression to irreversible hypoxic injury.  相似文献   

17.
The infective tachyzoite form of the protozoan Toxoplasma gondii is able to penetrate into vertebrate host cells and to survive and multiply within a cytoplasmic vacuole known as the parasitophorous vacuole. Previous observations, confirmed in the present study, showed that extracellular, but not intravacuolar, tachyzoites are labeled with rhodamine 123, a dye that specifically binds to functional mitochondria, which present a high transmembrane potential. These observations led to the suggestion that intravacuolar tachyzoites do not possess functional mitochondria. However, our present observations using the new dye CMXRos and observation by confocal laser scanning microscopy (CLSM) showed that the mitochondria of both extracellular and intravacuolar tachyzoites were intensely labeled, indicating that they were functional. In addition, cytochrome c activity could be cytochemically detected in the inner mitochondrial membrane of intravacuolar tachyzoites. Three-dimensional reconstruction of serial optical sections of CMXRos-stained tachyzoites observed by CLSM and of serial thin sections examined by transmission electron microscopy revealed that the protozoan presented only one ramified mitochondrion, reinforcing previous observations by Seeber et al. (1998, Exp. Parasitol. 89, 137-139) Petitprez and Vivier (1972, Protistologica VIII, 199-221).  相似文献   

18.
To test if mitochondrial uncoupling in white adipocytes is responsible for obesity resistance of the aP2-Ucp transgenic mice expressing ectopic uncoupling protein 1 (UCPI) in white fat, mitochondrial membrane potential (delta psi(m)) was estimated by flow cytometry in adipocytes isolated from gonadal fat. Ectopic UCP1 (approximately 0.8 mol UCP1/mol respiratory chain) decreased the delta psi(m) and rendered the potential sensitive to GDP and fatty acids. These ligands of UCP1 had no effect on delta psi(m) in white adipocytes from non-transgenic mice, suggesting that the function of endogenous UCP2 in adipocytes was not affected. The results support the hypothesis that mitochondrial uncoupling in white fat may prevent development of obesity.  相似文献   

19.
OBJECTIVE: To determine the usefulness of the combination of confocal laser scanning microscopy (CLSM), image cytometry and three-dimensional (3D) imaging for analyzing architectural changes indicative of endometrial hyperplasia and grade 1 adenocarcinoma. STUDY DESIGN: Papanicolaou-stained endometrial samples (n = 180) were analyzed for specific cellular characteristics and analyzed by CLSM. Confocal images were obtained and then analyzed cytometrically and used for 3D reconstruction. RESULTS: Values obtained after image cytometry and 3D imaging increased significantly (P < .01) with the degree of cellular atypia. CONCLUSION: The combination of CLSM, image cytometry and 3D imaging is a valuable method for differential diagnosis of endometrial hyperplasia and grade 1 adenocarcinoma.  相似文献   

20.
The use of the supravital mitochondrial-specific dye Rhodamine 123 (Rh 123) in combination with flow cytometry permits the monitoring of the changes in the mitochondrial transmembrane potential, reflecting the overall mitochondrial activity of the living cell. While this probe appears to be a potent tool for these studies, it also exhibits an important limit in the interpretation of the results: it cannot distinguish between an increase in mitochondrial activity without biogenesis and a modification of mitochondrial content. 10-n-Nonyl Acridine Orange chloride (NAO) constitutes another mitochondrial specific fluorochrome. In contrast with Rh 123, NAO accumulation in the cell does not seem to be driven by the proton-motrice force but does seem to be related to specific interactions with mitochondrial membrane proteins and/or lipids. In this work, the cytotoxicity of NAO, the kinetics of cellular uptake and the release of the dye have been determined using flow cytometry. The use of several ionophores or mitochondrial inhibitors has confirmed the independence of NAO uptake regarding mitochondrial transmembrane potential. NAO was also used to examine the changes in the mitochondrial compartment during the transfer of articular chondrocytes from cartilage to the culture conditions, where Rh 123 evidenced changes in mitochondrial activity and/or biogenesis, in order to know whether the use of probes with different specificity allows one to distinguish between mitochondrial activity and biogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号