首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Very little is known about oocyte nuclear architecture during folliculogenesis. Using antibodies to reveal centromeres, Hoechst-staining to detect the AT-rich pericentromeric heterochromatin (chromocenters), combined with confocal microscopy for the three-dimensional analysis of the nucleus, we demonstrate that during mouse folliculogenesis the oocyte nuclear architecture undergoes dynamic changes. In oocytes isolated from primordial and primary follicles, centromeres and chromocenters were preferentially located at the periphery of the nucleus. During oocyte growth, centromeres and chromocenters were initially found spread within the nucleus and then progressively clustered around the periphery of the nucleolus. Our results indicate that the oocyte nuclear achitecture is developmentally regulated and they contribute to a further understanding of the role of nuclear organization in the regulation of genome functioning during differentiation and development.  相似文献   

2.
Effects of DNA methylation inhibitor; 5-azacytidine (5-aza-C); and histone acetylation inhibitor, trichostatine A (TSA), on the structure of pericentric heterochromatin of L929 mouse cells have been studied. 5-aza-C treatment for 48 h resulted in the transformation of ovoid chromocenters into elongated structures in 85% of cells. Hypotonic treatment of these cells reveals tandemly arranged DAPI-positive globules that are well distinguishable by light microscopy. Similar globular units can be observed in hypotonic-treated control cells. TSA treatment for 48 h causes dramatic decrease in HP1α content in cells. In 25% of treated cells chromocenters became highly decondensed and can not be reliably detected by light and electron microscopy. 85% cells demonstrate globular chromocenters with low HP1α content. Hypotonic treatment induces transformation of compact chromocenters into ring-like structures that can be either single or clustered. Rings are formed by uniform fiber in which no globular subunits are detected. The data obtained are discussed concerning several mechanisms of heterochromatin structure maintenance and the role of epigenetic factors.  相似文献   

3.
A new method for isolation of the constitutive heterochromatin (chromocenters) from interphase nuclei of mouse liver has been developed. This method allows separation of chromocenters of different size. Chromocenter fractions are essentially free of nucleoli and other contaminants. In contrast to nuclei and nucleoli, the chromocenter fraction is characterized by simpler protein composition, this fraction having a reduced number of proteins (especially high molecular weight proteins). Chromocenters contain all histone fractions; however, the relative proportion of histone H1 is lower and histone H3 is higher than in the total nuclear chromatin. The amount of non-histone proteins of 51, 63, 73, and 180 kD is higher in the chromocenter fraction than in nuclei and nucleoli. The use of immunocytochemistry and immunoblotting methods revealed the presence of the specific kinetochore component, CENP A protein. This suggests tight association of some molecular kinetochore components with chromocenters in the interphase.  相似文献   

4.
The ability of cloned embryos to sustain full-term development depends on the ability of the recipient ooplasm to reprogram the donor cell genome. As the nuclear architecture has recently emerged as a key-factor in the regulation of gene expression, we questioned whether early embryos obtained from transfer of ES metaphasic chromosomes into mouse ooplasm would adopt the somatic or embryonic type of nuclear organization. We have particularly focused on the arrangement of chromosomal territories with respect to the nucleolar compartment, and the pericentric heterochromatin domains called chromocenters. We found that nuclear transfer triggers profound chromatin rearrangements including the dispersion of the donor cell chromocenters components. These rearrangements lead to a typical 1-cell pronuclear organization, namely a radial arrangement of the chromosome territories with centromeres attached to the nucleoli, which adopt the compact fibrillar structure of nucleolar precursor bodies (NPBs). Subsequently, during the second cycle, the cloned embryos undergo further reorganization with the establishment of new chromocenters, clustered in one part of the nucleus, as during normal embryogenesis. We could also establish that the adequate distribution of chromosomal territories at the pronuclear stage seems important for the development until blastocyst.  相似文献   

5.
Human and mouse nuclei can be distinguished by differences in the constitutive heterochromatin when stained with quinacrine dihydrochloride. With the staining method described, mouse heterochromatin during interphase appears as brilliant fluorescent chromocenters. By replacing the commonly used aqueous buffer mounting medium with a xylene-diluted synthetic resin, the haziness of the nuclear fluorescence is eliminated thus allowing identification of the heterochromatin pattern in histological preparations. A requirement for the definite identification of cells of human or murine origin in the nude mouse is the knowledge that the heterochromatin arrangements changes according to the stage of differentiation of the cell of the position of a particular nucleus within the cell cycle.  相似文献   

6.
Cover: The cover shows the localization of Uhrf2‐GFP (green) at heterochromatic chromocenters in mouse embryonic fibroblasts counterstained with DAPI (blue) and immunostained for H3K9me3 (red). See article in this issue by Pichler et al, pages 2585–2593.  相似文献   

7.
Mouse chromocenters are clusters of late-replicating pericentric heterochromatin containing HP1 bound to trimethylated lysine 9 of histone H3 (Me3K9H3). Using a cell-free system to initiate replication within G1-phase nuclei, we demonstrate that chromocenters acquire the property of late replication coincident with their reorganization after mitosis and the establishment of a global replication timing program. HP1 dissociated during mitosis but rebound before the establishment of late replication, and removing HP1 from chromocenters by competition with Me3K9H3 peptides did not result in early replication, demonstrating that this interaction is neither necessary nor sufficient for late replication. However, in cells lacking the Suv39h1,2 methyltransferases responsible for K9H3 trimethylation and HP1 binding at chromocenters, replication of chromocenter DNA was advanced by 10-15% of the length of S phase. Reintroduction of Suv39h1 activity restored the later replication time. We conclude that Suv39 activity is required for the fine-tuning of pericentric heterochromatin replication relative to other late-replicating domains, whereas separate factors establish a global replication timing program during early G1 phase.  相似文献   

8.
Methyl-CpG binding domain (MBD) proteins in Arabidopsis thaliana bind in vitro methylated CpG sites. Here, we aimed to characterize the binding properties of AtMBDs to chromatin in Arabidopsis nuclei. By expressing in wild-type cells AtMBDs fused to green fluorescent protein (GFP), we showed that AtMBD7 was evenly distributed at all chromocenters, whereas AtMBD5 and 6 showed preference for two perinucleolar chromocenters adjacent to nucleolar organizing regions. AtMBD2, previously shown to be incapable of binding in vitro-methylated CpG, was dispersed within the nucleus, excluding chromocenters and the nucleolus. Recruitment of AtMBD5, 6, and 7 to chromocenters was disrupted in ddm1 and met1 mutant cells, where a significant reduction in cytosine methylation occurs. In these mutant cells, however, AtMBD2 accumulated at chromocenters. No effect on localization was observed in the chromomethylase3 mutant showing reduced CpNpG methylation or in kyp-2 displaying a reduction in Lys 9 histone H3 methylation. Transient expression of DDM1 fused to GFP showed that DDM1 shares common sites with AtMBD proteins. Glutathione S-transferase pull-down assays demonstrated that AtMBDs bind DDM1; the MBD motif was sufficient for this interaction. Our results suggest that the subnuclear localization of AtMBD is not solely dependent on CpG methylation; DDM1 may facilitate localization of AtMBDs at specific nuclear domains.  相似文献   

9.
In isolated mouse nuclei the chromocenters were shown to be the pericentromeric heterochromatin regions (PCHR). After the decreasing of bivalent ion concentration (0.1 mM Ca2+, 2 mM Mg2+) the main and peripheral parts of the chromatin remained on the contrary as the compact chromatin bodies. The additional ultrasound treatment of isolated nuclei in the presence of 0.1 mM Ca2+ with DNAase II and triton X-100 resulted in the species enriched by the condensed PCHR.  相似文献   

10.
11.
Plants possess a single gene for the structurally related HETEROCHROMATIN PROTEIN1 (HP1), termed LIKE-HP1 (LHP1). We investigated the subnuclear localization, binding properties, and dynamics of LHP1 proteins in Arabidopsis thaliana cells. Transient expression assays showed that tomato (Solanum lycopersicum) LHP1 fused to green fluorescent protein (GFP; Sl LHP1-GFP) and Arabidopsis LHP1 (At LHP1-GFP) localized to heterochromatic chromocenters and showed punctuated distribution within the nucleus; tomato but not Arabidopsis LHP1 was also localized within the nucleolus. Mutations of aromatic cage residues that recognize methyl K9 of histone H3 abolished their punctuated distribution and localization to chromocenters. Sl LHP1-GFP plants displayed cell type-dependent subnuclear localization. The diverse localization pattern of tomato LHP1 did not require the chromo shadow domain (CSD), whereas the chromodomain alone was insufficient for localization to chromocenters; a nucleolar localization signal was identified within the hinge region. Fluorescence recovery after photobleaching showed that Sl LHP1 is a highly mobile protein whose localization and retention are controlled by distinct domains; retention at the nucleolus and chromocenters is conferred by the CSD. Our results imply that LHP1 recruitment to chromatin is mediated, at least in part, through interaction with methyl K9 and that LHP1 controls different nuclear processes via transient binding to its nuclear sites.  相似文献   

12.
Cycling cells of Quercus robur have a simple nuclear organization where most of the heterochromatin is visible as DAPI-positive chromocenters, which correspond to DAPI bands at the (peri)centromeric region of each of the 24 chromosomes of the oak complement. Immunofluorescence using 5-mC revealed dispersed distribution of the signal throughout the interphase nucleus/chromosomes without enrichment within DAPI-positive chromocenters/bands, suggesting that DNA methylation was not restricted to constitutive heterochromatin, but was associated with both euchromatic and heterochromatic domains. While H3K9ac exhibited typical euchromatin-specific distribution, the distributional pattern of histone methylation marks H3K9me1, H3K27me2, and H3K4me3 showed some specificity. The H3K9me1 and H3K27me2, both heterochromatin-associated marks, were not restricted to chromocenters, but showed additional dispersed distribution within euchromatin, while H3K27me2 mark also clustered in foci that did not co-localize with chromocenters. Surprisingly, even though H3K4me3 was distributed in the entire chromatin, many chromocenters were enriched with this euchromatin-specific modification. We discuss the distribution of the epigenetic marks in the context of the genome composition and lifestyle of Q. robur.  相似文献   

13.
The structural organization of the nuclear matrix of pericentromeric heterochromatin blocks (chromocenters) was examined in cultured murine fibroblasts. After 2 M NaCl extraction without DNase I treatment, chromocenters became extremely swollen and could not be recognized with conventional electron microscopy. Using immunogolding with anti-topoisomerase IIα antibodies, we demonstrated that residual chromocenters were divided into numerous discrete aggregates. After 2 M NaCl extraction with DNase I treatment, the residual chromocenters looked as the dense meshwork of thin fibers and, therefore, were easily distinguished from the rest of nuclear matrix. Extraction with dextran sulfate and heparin resulted in chromocenter decondensation. Chromatin complexes with rosette organization (central core from which numerous DNA fibers radiated) were seen. Most likely, the appearance of these rosettes was a consequence of incomplete chromatin extraction. Thus, the nuclear matrix of pericentromeric chromosome regions in cultured murine fibroblasts is morphologically distinguished from the rest of the nuclear matrix.  相似文献   

14.
Foldback DNA, prepared from mouse and Scilla sibirica main band DNA, and from rye (Secale cereale) total DNA, was characterised by denaturation, renaturation, and electron microscopy. 3H-cRNA of this DNA was hybridised in situ to nuclei and chromosomes of the respective species. There is no universal labelling pattern among the three species. In mouse, highly repetitive foldback DNA is present in the whole chromatin including the satellite DNA-containing regions. In Scilla sibirica, on the contrary, the highly repetitive foldback sequences are excluded form the satellite DNA loci and are arranged in clusters in the remaining chromatin. In rye, there is a clear preferential labelling of the chromocenters in the interphase nuclei as well as metaphase chromosomes, indicating that highly repetitive foldback DNA is preferentially located among other highly repetitive sequences.  相似文献   

15.
The fluorescence patterns of interphase cells stained with the bibenzimidazol derivative “33258 Hoechst” are pH dependent. At pH 7 only chromocenters corresponding to centromeric heterochromatin (in mouse) or (in some other species) more diffusely dispersed DNA containing components display bright fluorescence. Staining at pH 2 reveals additional bright fluorescence of the nucleoli and the cytoplasma. The fluorescence of the RNA-containing cell structures disappears after transfer of the cells to pH 7.  相似文献   

16.
The ammoniacal silver reaction for histones was applied to Trillium kamtschaticum chromosomes. In the brown-stained metaphase chromosome complement, the specific regions of the specific chromosome pairs, which were previously registered as Giemsa-positive and non-heterochromatic regions, were differentiated as prominently black segments. In interphase nucleus these black segments formed the black-stained chromocenters, distinct from other chromocenters which were stained brown.  相似文献   

17.
The floral transition marks the switch from vegetative to reproductive growth, and is controlled by different pathways responsive to endogenous and exogenous cues. The developmental switch is accompanied by local changes in chromatin such as histone modifications. In this study we demonstrate large-scale reorganization of chromatin in rosette leaves during the floral transition. An extensive reduction in chromocenters prior to bolting is followed by a recovery of the heterochromatin domains after elongation of the floral stem. The transient reduction in chromocenters is a result of relocation away from chromocenters of methylated DNA sequences, 5S rDNA and interspersed pericentromeric repeats, but not of 45S rDNA or the 180-bp centromere tandem repeats. Moreover, fluorescence in situ hybridization analysis revealed decondensation of chromatin in gene-rich regions. A mutant analysis indicated that the blue-light photoreceptor CRYPTOCHROME 2 is involved in triggering chromatin decondensation, suggesting a light-signaling pathway towards large-scale chromatin modulation.  相似文献   

18.
We investigated whether the specific localization of DNA replicator sites at the nuclear membrane at the end of the S phase, found in dividing animal cells and in the plantHaplopappus gracilis, applied also to other plants. We found that nuclei labelled at the nuclear periphery were observed in plants where the chromocenters are localized at the nuclear membrane. In other plants, where the chromocenters are scattered throughout the nucleus, a different pattern of labelling is observed where the silver grains are restricted to a number of distinct sites, distributed in a fashion similar to that of the chromocenters. We believe that these nuclei were replicating the chromocentric heterochromatin and so were therefore at the end of the S phase. The specific patterns of the distribution of DNA replicator sites at the end of the S phase make it possible to distinguish nuclei which are in the late S phase and thus define a specific stage of the S phase, during which only heterochromatin replication occurs.  相似文献   

19.
Mouse fibroblast interphase nuclei stained with quinacrine dihydrochloride show distinctive differences in their fluorescent characteristics analogous to those which we have already observed in human and Syrian hamster cells. These patterns reflect the position of any given nucleus within the cell cycle. The brightly fluorescent chromocenters in the mouse nuclei were found to be in absolute aggreement with those stained by the C-banding technique, indicating that they represent centromeric heterochromatin. Furthermore, their number and size per nucleus were shown to vary in relation to the progress of the cell cycle.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号