首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 90 毫秒
1.
A novel cytochrome P450, CYP4F8, was recently cloned from human seminal vesicles. CYP4F8 was expressed in yeast. Recombinant CYP4F8 oxygenated arachidonic acid to (18R)-hydroxyarachidonate, whereas prostaglandin (PG) D(2), PGE(1), PGE(2), PGF(2alpha), and leukotriene B(4) appeared to be poor substrates. Three stable PGH(2) analogues, 9,11-epoxymethano-PGH(2) (U-44069), 11, 9-epoxymethano-PGH(2) (U-46619), and 9,11-diazo-15-deoxy-PGH(2) (U-51605) were rapidly metabolized by omega2- and omega3-hydroxylation. U-44069 was oxygenated with a V(max) of approximately 260 pmol min(-)(1) pmol P450(-1) and a K(m) of approximately 7 micrometer. PGH(2) decomposes mainly to PGE(2) in buffer and to PGF(2alpha) by reduction with SnCl(2). CYP4F8 metabolized PGH(2) to 19-hydroxy-PGH(2), which decomposed to 19-hydroxy-PGE(2) in buffer and could be reduced to 19-hydroxy-PGF(2alpha) with SnCl(2). 18-Hydroxy metabolites were also formed (approximately 17%). PGH(1) was metabolized to 19- and 18-hydroxy-PGH(1) in the same way. Microsomes of human seminal vesicles oxygenated arachidonate, U-44069, U-46619, U-51605, and PGH(2), similar to CYP4F8. (19R)-Hydroxy-PGE(1) and (19R)-hydroxy-PGE(2) are the main prostaglandins of human seminal fluid. We propose that they are formed by CYP4F8-catalyzed omega2-hydroxylation of PGH(1) and PGH(2) in the seminal vesicles and isomerization to (19R)-hydroxy-PGE by PGE synthase. CYP4F8 is the first described hydroxylase with specificity and catalytic competence for prostaglandin endoperoxides.  相似文献   

2.
3.
Rapid and slow hydroxylators of seminal E prostaglandins   总被引:1,自引:0,他引:1  
Human seminal fluid contains prostaglandin (PG) E1, PGE2, 19-hydroxy-PGE1 and 19-hydroxy-PGE2 in large and variable amounts. 19-Hydroxy-PGE1 and 19-hydroxy-PGE2 are formed from PGE1 and PGE2 by prostaglandin 19-hydroxylase, a cytochrome P-450 enzyme, in seminal vesicles. The hypothesis that genetic polymorphism of this enzyme might contribute to the variable concentrations of PGE1, PGE2, 19-hydroxy-PGE1 and 19-hydroxy-PGE2 was examined by analysis of seminal fluid of 40 normal men. E prostaglandins were measured with 17-phenyl-PGE2 as an internal standard by high-performance liquid chromatography on beta-cyclodextrin silica. Using the ratios of substrate/product, i.e., R1 = PGE1/19-hydroxy-PGE1 and R2 = PGE2/19-hydroxy-PGE2, as indicators of prostaglandin 19-hydroxylase capacity, a bimodal distribution of R values was found: nine men (23%) were slow hydroxylators (R1 greater than 0.45 and R2 greater than 0.45), while the remaining men were rapid hydroxylators (both R1 and R2 less than 0.45). Semen of slow hydroxylators and semen of the five most rapid hydroxylators (both R1 and R2 less than 0.10) differed in absolute amounts of PGE1 and PGE2 but not in 19-hydroxy-PGE1 and 19-hydroxy-PGE2. 20-Hydroxy-PGE1 and 20-hydroxy-PGE2 are formed from PGE1 and PGE2 by cytochrome P-450 in the vesicular glands and the ampullae of deferent ducts of the ram. Seminal fluid of five rams was analyzed for PGE1, PGE2, 20-hydroxy-PGE1 and 20-hydroxy-PGE2, and a large variation in substrate/product ratios was found. Polymorphism of cytochrome P-450 might contribute to variations in seminal prostaglandins in man and in sheep.  相似文献   

4.
Cyclooxygenase-2 (COX-2), cytochrome P450 4F8 (CYP4F8), and microsomal PGE synthase-1 (mPGES-1) form PGE and 19-hydroxy-PGE in human seminal vesicles. We have examined COX-2, CYP4F8, and mPGES-1 in normal skin and in psoriasis. All three enzymes were detected in epidermis by immunofluorescence and co-localized in the suprabasal cell layers. In lesional psoriasis the enzymes were also co-localized in the basal cell layers. Real-time RT-PCR analysis suggested that CYP4F8 mRNA was induced 15-fold in lesional compared to non-lesional epidermis. mRNA of all enzymes were present in cultured HEK and HaCaT cells, but the prominent induction of CYP4F8 mRNA in psoriasis could not be mimicked by treatment of these keratinocytes with a mixture of inflammatory cytokines or with phorbol 12-myristate-13-acetate. The function of CYP4F8 in epidermis might be related to lipid oxidation and keratinocyte proliferation.  相似文献   

5.
Prostaglandin (PG) 19-hydroxylase of monkey seminal vesicles metabolizes PGE1 and PGE2 to their 19-hydroxy metabolites, while PGE2 20-hydroxylase of ram vesicular glands metabolizes PGE2 to 20-hydroxy-PGE2. The purpose of the present study was determine whether PGF2 alpha is a substrate of these enzymes. Deuterated 20-hydroxy-PGF2 alpha was employed as an internal standard to study the hydroxylation of PGF2 alpha (0.2 mM) by microsomes of monkey (Macaca fascicularis) seminal vesicles in the presence of NADPH, and the biosynthesis was compared with the hydroxylation of PGE2 under identical conditions. 19-Hydroxy-PGF2 alpha was formed at a rate of 3.5% of the formation of 19-hydroxy-PGE2. Microsomes of ram vesicular glands also hydroxylated PGE2 more efficiently than PGF2 alpha, which was converted to both 20-hydroxy-PGF2 alpha and 19-hydroxy-PGF2 alpha at a combined rate of 5% of the biosynthesis of 20-hydroxy-PGE2 under the same conditions. 20-Hydroxy-PGF2 alpha was demonstrated in ram semen, but the concentration was low (0.1 microM) in comparison with 20-hydroxy-PGE2 (24 microM). The two genital PG hydroxylases thus metabolize PGF2 alpha much less efficiently than PGE2. This finding may suggest that 19-hydroxy- and 20-hydroxy-PGF2 alpha in seminal fluids also could be formed by other mechanisms, e.g., from 19-hydroxy- and 20-hydroxy-PGE2 by the PGE 9-keto reductase enzyme.  相似文献   

6.
7.
E H Oliw 《Prostaglandins》1988,35(4):523-533
18-Hydroxy-PGE1 and 18-hydroxy-PGE2 were identified in human seminal fluid by capillary gas-liquid chromatography-mass spectrometry. The levels of these prostaglandins was 1-2% of the corresponding 19-hydroxy-PGE compounds in human semen. 18-Hydroxy-PGE1 and 18-hydroxy-PGE2 are likely formed by cytochrome P-450 in seminal vesicles in analogy with the 19-hydroxy-PGE compounds. This was supported by the finding that microsomes of seminal vesicles of the cynomolgus monkey, Macaca fascicularis, supplemented with 1 mM NADPH, metabolized PGE1 to both 19-hydroxy-PGE1 (92%) and 18-hydroxy-PGE1 (8%). The hydroxylation of prostaglandins in seminal vesicles of primates may thus show a high but not absolute specificity for the penultimate carbon of prostaglandins.  相似文献   

8.
The microsomal fraction of homogenates of seminal vesicles of men and monkeys, Macaca fascicularis, were analyzed for prostaglandin (PG) 19-hydroxylase activity. The microsomes of the monkey seminal vesicles, supplemented with 1 mM NADPH, metabolized 0.2 mM PGE1 to 19-hydroxy-PGE1 at a mean rate of 0.26 nmol/min/mg of protein (with an apparent Km and an apparent Vmax of 40 microM and 0.30 nmol/min/mg of protein, respectively). The enzyme catalyzed the incorporation of atmospheric oxygen into the substrate. Substituting NADH for NADPH reduced the prostaglandin E1 19-hydroxylase activity to 40%. Carbon monoxide and proadifen (SKF 525A) inhibited the enzyme. Prostaglandin E2 (0.2 mM) was metabolized to 19-hydroxyprostaglandin E2 (0.2 nmol/min/mg of protein), but PGE1 was preferred as a substrate. Prostaglandin B1 was metabolized to 18-hydroxy-, 19-hydroxy-, and 20-hydroxyprostaglandin B1 at a combined rate of approximately 25% of prostaglandin E1. 19-Hydroxyprostaglandin B1 was the main product. The microsomes of human seminal vesicles metabolized 0.2 mM PGE2 to 19-hydroxy-PGE2 in the presence of 1 mM NADPH, while carbon monoxide inhibited this reaction. These results suggest that prostaglandin 19-hydroxylase of seminal vesicles might be a cytochrome P-450. The biosynthesis of 19-hydroxyprostaglandin E1 and 19-hydroxyprostaglandin E2 was also studied in vivo in man by analysis of the product/substrate ratios (i.e. 19-hydroxyprostaglandin E1/prostaglandin E1 and 19-hydroxyprostaglandin E2/prostaglandin E2) in a series of consecutive ejaculates, which were obtained during short intervals. There was a 10-fold interindividual difference in these ratios. Although the product/substrate ratios decreased, the 19-hydroxylation of E prostaglandins appeared to be efficient in vivo, which was in contrast to the rather slow biosynthesis in vitro.  相似文献   

9.
The stereoselectivity of the oxidation of 7,8-dihydrobenzo[a]pyrene (H2BP) to 9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (H4BP-epoxide) by prostaglandin H (PGH) synthase and cytochrome P-450 has been studied using microsomal preparations from ram seminal vesicles and rat liver. Incubations were performed in the presence of polyguanylic acid and the adducts formed between H4BP-epoxide and guanosine were isolated following the recovery and hydrolysis of the poly(G). When (+/-)-H4BP-epoxide was reacted with poly(G), four diastereomeric adducts were formed by the cis and trans addition of the exocyclic amino group of guanine to the benzylic carbon of the epoxide enantiomers. Each diastereomer was identified by a combination of ultraviolet, nuclear magnetic resonance, circular dichroism, and mass spectroscopy. Under comparable conditions, ram seminal vesicle microsomes in the presence of arachidonic acid triggered the binding of H2BP to poly(G) to a greater extent than rat liver microsomes from untreated and phenobarbital- and methylcholanthrene pretreated animals in the presence of NADPH. Quantitation of the (-)-cis- and (+)-cis-guanosine adducts revealed the degree of stereoselectivity of epoxidation. The ratio of (-)/(+) adducts was 54:46 for PGH synthase and 89:11 (control), 62:38 (phenobarbital), and 69:31 (methylcholanthrene) for cytochrome P-450-catalyzed reactions. PGH synthase catalyzed the epoxidation of H2BP with little or no stereoselectivity in contrast to cytochrome P-450. The utility of the poly(G) binding technique for the elucidation of the stereoselective generation of chiral electrophiles is discussed along with the mechanistic implications of the results.  相似文献   

10.
Preparation and biochemical properties of PGH3   总被引:1,自引:0,他引:1  
PGH3 was biosynthesised from all-cis-5,8,11,14,17-eicosapentaenoic acid (20:5 omega 3) by an acetone-pentane powder of ram seminal vesicles and its structure was confirmed by GLC-MS after its reduction to PGF 3 alpha. PGH3 was transformed by horse platelet microsomes to TXB3, and by aortic microsomes to delta 17-6-keto-PGF 1 alpha. The structures of these compounds were confirmed by GLC-MS.  相似文献   

11.
18-Hydroxy-PGE1 and 18-hydroxy-PGE2 were identified in human seminal fluid by capillary gas-liquid chromatography-mass spectrometry. The levels of these prostaglandins was 1–2% of the corresponding 19-hydroxy-PGE compounds in human semen. 18Hydroxy-PGE1 and 18-hydroxy-PGE2 are likely formed by cytochrome P-450 in seminal vesicles in analogy with the 19-hydroxy-PGE compounds. This was supported by the finding that microsome of seminal vesicles of the cynomolgus monkey, Macaca fascicularis, supplemented with 1 nM NADPH, metabolized PGE1 to both 19-hydroxy-PGE1 (92%) and 18-hydroxy-PGE1 (8%). The hydroxylation of prostaglandins in seminal vesicles of primates may thus show a high but not absolute specificity for the penultimate carbon of prostaglandins.  相似文献   

12.
The effects of methylcholanthrene (MC) treatment of male rats on the regioselectivity of hydroxylation of prostaglandins E1 and E2 (PGE1 and PGE2) by liver microsomes, supplemented with NADPH or H2O2, was examined. In the presence of NADPH, control microsomes catalyzed the hydroxylation at omega-1 (C19) and at omega-(C20) sites with minimal formation of novel monohydroxy metabolites of PGE1 and PGE2, referred to as compounds X1 and X2, respectively. Similarly, H2O2 supported the 19-hydroxylation and the formation of compounds X1 and X2, but yielded only minimal amounts of 20-hydroxy products. With NADPH, MC-treated microsomal incubations demonstrated only minor quantitative change in the 19- and 20-hydroxylation as compared with controls, but showed a 7- to 11-fold increase in formation of compound X1 and a 10-fold increase in formation of X2. By contrast with H2O2, MC-treatment increased by about 3-fold the 19- and 20-hydroxylation of PGE1 and by 35- to 46-fold the formation of X1; similarly, there was an approximate 2-fold increase in 19- and 20-hydroxylation of PGE2 and a 10-fold increase in formation of X2. These findings suggest that several monooxygenases are involved in catalyzing the hydroxylation at the various sites of the PGE molecule. Inhibitors of monooxygenases (SKF 525A, alpha-naphthoflavone, and imidazole derivatives) provided further evidence that the hydroxylation at the three sites of PGEs is catalyzed by different P-450 monooxygenases. It is striking that the inhibitors had a much lesser effect on the 20-hydroxylation of PGE1 as compared with other sites of hydroxylation. Structural identification of compounds X1 and X2 was elucidated as follows. Resistance of the PGB derivative of X1 to periodate oxidation and mass fragmentation analysis of the t-butyldimethylsilyl ether methyl ester, placed the hydroxylation at C17 or C18. Finally, mass fragmentation of trimethylsilyl ether methyl ester PGB derivatives of X1 and X2 provided conclusive evidence that X1 and X2 are 18-hydroxy-PGE1 and 18-hydroxy-PGE2, respectively. The above findings indicate that the high regioselectivity of hydroxylation of PGE1 and PGE2, resulting in the formation of 18-hydroxy-PGE1 and 18-hydroxy-PGE2, respectively, is catalyzed by P-450 isozyme(s) which are induced by MC, possibly by P-450c.  相似文献   

13.
A novel natural E-prostaglandin was detected by HPLC among the endogenous prostaglandins extracted from ram seminal vesicles. The corresponding precursor - all-cis-eicosa-8, 11, 14, 17-tetraenoic acid was isolated from bovine liver lipids and the preparative biosynthesis with the microsomal fraction of ram seminal vesicles was performed. The isolated product was purified by HPLC and identified by GC-MS as 5,6-dihydro-PGE3. The results of in vitro tests demonstrate that 5,6-dihydro-PGE3 is 14 times less active uterine stimulant than PGE1, at the same time retaining 75% of the anti-aggregatory potency of PGE1. Thus, 5,6-dihydro-PGE3 meets the requirements of a selective antithrombotic agent more than PGE1.  相似文献   

14.
15.
We previously reported the cloning of a human liver leukotriene B(4) (LTB(4)) omega-hydroxylase P450 designated CYP 4F2 [Kikuta et al. (1994) FEBS Lett. 348, 70-74]. However, the properties of CYP 4F2 remain poorly defined. The preparation solubilized using n-octyl-beta-D-glucopyranoside from microsomes of CYP 4F2-expressing yeast cells catalyzes v- hydroxylation of LTB(4), 6-trans-LTB(4), lipoxin A(4), 8-hydroxyeicosatetraenoate, 12-hydroxyeicosatetraenoate, and 12-hydroxystearate in the presence of rabbit liver NADPH-P450 reductase. In addition, the enzyme shows ethoxycoumarin O-deethylase and p-nitroanisole O-demethylase activities. The enzyme was purified to apparent electrophoretic homogeneity from yeast cells by sequential chromatography of solubilized microsomes through amino-n-hexyl-Sepharose 4B, DEAE-HPLC, and hydroxylapatite HPLC columns. The final preparation showed a specific content of 11.1 nmol of P450/mg of protein, with an apparent molecular mass of 56.3 kDa. CYP 4F2 was distinguished from the closely homologous CYP 4F3 (human neutrophil LTB(4) omega-hydroxylase) by its much higher K(m) for LTB(4), inability to omega-hydroxylate lipoxin B(4), and extreme instability.  相似文献   

16.
We have cloned and expressed the inducible form of prostaglandin (PG) E synthase from rat and characterized its regulation of expression in several tissues after in vivo lipopoylsaccharide (LPS) challenge. The rat PGE synthase is 80% identical to the human enzyme at the amino acid level and catalyzes the conversion of PGH(2) to PGE(2) when overexpressed in Chinese hamster ovary K1 (CHO-K1) cells. PGE synthase activity was measured using [(3)H]PGH(2) as substrate and stannous chloride to terminate the reaction and convert all unreacted unstable PGH(2) to PGF(2alpha) before high pressure liquid chromatography analysis. We assessed the induction of PGE synthase in tissues from Harlan Sprague-Dawley rats after LPS-induced pyresis in vivo. Rat PGE synthase was up-regulated at the mRNA level in lung, colon, brain, heart, testis, spleen, and seminal vesicles. Cyclooxygenase (COX)-2 and interleukin 1beta were also up-regulated in these tissues, although to different extents than PGE synthase. PGE synthase and COX-2 were also up-regulated to the greatest extent in a rat model of adjuvant-induced arthritis. The RNA induction of PGE synthase in lung and the adjuvant-treated paw correlated with a 3.8- and 16-fold induction of protein seen in these tissues by immunoblot analysis. Because PGE synthase is a member of the membrane-associated proteins in eicosanoid and glutathione metabolism (MAPEG) family, of which leukotriene (LT) C(4) synthase and 5-lipoxygenase-activating protein are also members, we tested the effect of LTC(4) and the 5-lipoxygenase-activating protein inhibitor MK-886 on PGE synthase activity. LTC(4) and MK-886 were found to inhibit the activity with IC(50) values of 1.2 and 3.2 microm, respectively. The results demonstrate that PGE synthase is up-regulated in vivo after LPS or adjuvant administration and suggest that this is a key enzyme involved in the formation of PGE(2) in COX-2-mediated inflammatory and pyretic responses.  相似文献   

17.
Cui X  Nelson DR  Strobel HW 《Genomics》2000,68(2):161-166
By a combination of cDNA library screening and rapid amplification of cDNA ends analysis, a novel human cytochrome P450 4F isoform has been cloned and sequenced. The new 4F isoform is designated CYP4F11 and contains 1765 nucleotides. The coding region encodes 524 amino acid residues, and the heme-binding region is highly conserved. The CYP4F11 amino acid sequence has 80.0, 82.3, and 79.2% identity to CYP4F2, CYP4F3, and CYP4F8 amino acid sequences, respectively. In vitro translation shows the molecular mass of CYP4F11 is approximately 57 kDa, consistent with the calculated molecular mass. CYP4F11 is expressed mainly in human liver, followed by kidney, heart, and skeletal muscle. The genomic structure of CYP4F11 was solved by database searching and computer analysis. The coding region of CYP4F11 has 12 exons. The CYP4F11 gene is located 16 kb upstream of the CYP4F2 gene on chromosome 19. This is consistent with the notion that the human cytochrome P450 4F genes form a cluster on chromosome 19.  相似文献   

18.
We have reported that allicin, a constituent of garlic oil, has no effect on the activities of platelet cyclooxygenase or thromboxane synthase, or vascular PGI2 synthase. The effect of allicin on glutathione (GSH) dependent PGH2 to PGE2 isomerase is unknown. We therefore studied the effect of allicin on PGE2 biosynthesis in a murine mammary adenocarcinoma cell line (No 4526). Intact or sonicated cells were incubated with either 14C-arachidonic acid (AA) or 14C-PGH2, respectively. Following metabolism, products were extracted, separated by TLC and analyzed by radiochromatographic scan. PGE2 was predominantly formed with minimal amounts of PGF2 alpha and PGD2. Formation of 6-keto-PGF1 alpha or TXB2 was not detected indicating the absence of TXA2 and PGI2 synthase activity. Indomethacin and ibuprofen inhibited the PGE2 formation (p less than 0.05). The enzymatic PGE2 formation in sonicates was blocked by depletion of the cellular non-protein thiols by buthionine sulfoximine and was shown to be dependent on GSH. Allicin, over the range of 10-1000 microM, inhibited the formation of PGE2 in cells exposed to 2.0 microM 14C-AA for 20 min. and in sonicated cells incubated with 20.0 microM 14C-PGH2 for 2 min (p less than 0.05). Allicin did not alter cyclooxygenase-mediated oxygen utilization in ram seminal vessicle microsomes, suggesting that allicin selectively inhibits the GSH-dependent PGH2 to PGE2 isomerase in this adenocarcinoma cell line.  相似文献   

19.
Eicosapentaenoic acid (20:5n-3) is metabolized by cytochrome P-450w3 of monkey seminal vesicles to 17R(18S)epoxy-5,8,11,14-eicosatetraenoic acid (17R(18S)EpETE). PGH synthase is abundant in this tissue. Racemic 17(18)EpETE was therefore investigated as a substrate of PGH synthase. The main products were identified as two diastereoisomers of 17(18)epoxyprostaglandin E2, which were formed in a 4:5 ratio. The structures were confirmed by authentic material. The natural epoxide enantiomer can thus be metabolized to novel 17R(18S)epoxyprostaglandins.  相似文献   

20.
A novel human cytochrome P450 cDNA designated CYP2U1 was identified using homology searches, and the corresponding gene is located on chromosome 4. The deduced 544 amino acid sequence displays up to 39% identity to other CYP2 family members, with closest resemblance to CYP2R1 and is highly conserved between species. CYP2U1 shows some structural differences compared to other CYP2 family members. The gene has only five exons and the enzyme harbors two insertions in the N-terminal region. Northern blot analysis revealed high mRNA expression in human thymus, with weaker expression in heart and brain, whereas in the rat similar mRNA levels were detected in thymus and brain. Western blot analysis revealed much higher CYP2U1 protein expression in rat brain than in thymus, particularly in limbic structures and in cortex. The physiological and toxicological role of this novel P450 is still unknown, but the selective tissue distribution suggests an important endogenous function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号