首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
To investigate the mode of interactions between heme metal, bound oxygen and the distal residue at the E7 site, we have measured accurate oxygen equilibrium curves, oxygen binding relaxations following temperature-jump, and electron paramagnetic resonance spectra of natural and cobalt-substituted opossum hemoglobin, which has glutamine and histidine at the E7 site of the α chain and the β chain, respectively, and compared them with those of natural and cobalt-substituted human hemoglobin, which has histidine at the E7 site of both the α and β chains.Natural opossum hemoglobin has a lower oxygen affinity, slightly smaller and pH-dependent co-operativity, a somewhat greater Bohr effect, and a smaller effect of organic phosphates such as 2,3-diphosphoglycerate and inositol hexaphosphate on oxygen affinity as compared to natural human hemoglobin. Upon substitution of cobalt for iron, these oxygenation characteristics of opossum hemoglobin relative to those of human hemoglobin were preserved well. The behavior of the intrinsic oxygen association constants pertaining to the four oxygenation steps (i.e. the Adair constants) upon addition of the organic phosphates or pH changes indicates that the allosteric equilibrium in opossum hemoglobin is biased towards the T state as compared with that in human hemoglobin, and that the oxygen affinity of the R structure is lower for opossum hemoglobin than for human hemoglobin. The temperature-jump kinetic data indicate that the lower oxygen affinity of opossum cobalt-hemoglobin in comparison with that of human cobalt-hemoglobin can be ascribed to a decreased oxygen association rate constant. The electron paramagnetic resonance experiments on oxy and deoxy opossum and human cobalt-hemoglobins in buffered H2O and 2H2O, including their photolysed products at a low temperature, provided the following information. The cobaltous ion of the α subunits of deoxy opossum cobalt-hemoglobin is in an environment that is similar to that for cobaltous ions of deoxy human cobalt-hemoglobin in the T state. The hydrogen bond between the bound oxygen and the residue at E7, which has been shown to exist in oxy human cobalt-hemoglobin and oxy sperm whale cobalt-myoglobin, is absent or, at least, significantly altered in the α subunits of oxy opossum cobalt-hemoglobin, probably resulting in a lower oxygen affinity. Interference by isoleucine at E11α with an oxygen molecule is suggested as an explanation for the lowered affinity of opossum iron-hemoglobin. However, no straightforward structural explanation is available for the lower oxygen affinity of the R structure and the allosteric equilibrium biased towards the T state in opossum iron-hemoglobin.  相似文献   

2.
The interaction of dromedary hemoglobin with various solvent components [2-(p-chlorophenoxy)-2-methylpropionic acid (CFA), 2,3-bisphospho-D-glycerate (glycerate-2,3-P2) and chloride] has been studied. 1. CFA greatly lowers the oxygen affinity of dromedary hemoglobin. 2. The oxygen-linked CFA binding sites are probably located in the deoxy derivative at the alpha cleft, while in the oxy form and in the presence of two other effectors (glycerate-2,3-P2 and chloride) additional, structurally and possibly functionally relevant binding site(s) should be considered. 3. Both CFA and glycerate-2,3-P2 stabilize the deoxy-like tertiary structure in the oxy derivative. 4. Chloride appears to be fundamental to obtain quaternary structural changes. 5. Interaction energy, retained in the protein when the three ligands (CFA, glycerate-2,3-P2 and chloride) are bound to the oxy form, favours intermediates not stable if only one or two allosteric effector(s) is (are) present on the protein. 6. The oxygen affinity appears to be related to both tertiary and quaternary structural changes, while cooperatively is largely invariant with solvent conditions. In conclusion, the functional properties of dromedary hemoglobin do not depend in any simple way on the variety of stabilized conformations.  相似文献   

3.
The crystal structure of a high oxygen affinity species of hemoglobin, bar-headed goose hemoglobin in deoxy form, has been determined to a resolution of 2.8 A. The R and R(free) factor of the model are 0.197 and 0.243, respectively. The structure reported here is a special deoxy state of hemoglobin and indicates the differences in allosteric mechanisms between the goose and human hemoglobins. The quaternary structure of the goose deoxy hemoglobin shows obvious differences from that of human deoxy hemoglobin. The rotation angle of one alphabeta dimer relative to its partner in a tetramer molecule from the goose oxy to deoxy hemoglobin is only 4.6 degrees, and the translation is only 0.3 A, which are much smaller than those in human hemoglobin. In the alpha(1)beta(2) switch region of the goose deoxy hemoglobin, the imidazole ring of His beta(2)97 does not span the side-chain of Thr alpha(1)41 relative to the oxy hemoglobin as in human hemoglobin. And the tertiary structure changes of heme pocket and FG corner are also smaller than that in human hemoglobin. A unique mutation among avian and mammalian Hbs of alpha119 from proline to alanine at the alpha(1)beta(1 )interface in bar-headed goose hemoglobin brings a gap between Ala alpha119 and Leu beta55, the minimum distance between the two residues is 4.66 A. At the entrance to the central cavity around the molecular dyad, some residues of two beta chains form a positively charged groove where the inositol pentaphosphate binds to the hemoglobin. The His beta146 is at the inositol pentaphosphate binding site and the salt-bridge between His beta146 and Asp beta94 does not exist in the deoxy hemoglobin, which brings the weak chloride-independent Bohr effect to bar-headed goose hemoglobin.  相似文献   

4.
A procedure commonly used to transform native adult human hemoglobin (Hb) into a physiological oxygen carrier consists of a pyridoxylation of the protein to lower its oxygen affinity, followed by its polymerization in the presence of glutaraldehyde, with or without further reduction, to increase its circulating half-life. This series of reactions yields derivatives presenting a great molecular heterogeneity that have to be fractionated for use in vivo. Hemoglobin derivatives with low oxygen affinity and a narrow distribution of molecular weights were obtained by linking a dextran polyaldehydic derivative to deoxyhemoglobin at pH 8. From oxygen-binding measurements carried out in the presence of inositolhexaphosphate, a strong effector of hemoglobin, it appeared that the allosteric site of hemoglobin was blocked, probably by crosslinking bonds, which stabilizes its deoxy structure. On the other hand, when the reaction was performed in the presence of inositolhexaphosphate, the resulting conjugates exhibited an oxygen affinity identical to that of unmodified hemoglobin. After treatment with NaBH4, the polymer-hemoglobin derivatives were stable and possessed a reversible oxygen-carrying capacity similar to that of blood. The conjugates prepared from oxyhemoglobin all possessed a lower P50 than native hemoglobin whatever the reaction conditions.  相似文献   

5.
The oxidation of sheep hemoglobin, in both the oxygenated and deoxygenated forms, by cuprous ions have been studied by spectrophotometric and stopped-flow techniques. Mixing of both the oxy and deoxy forms with excess Cu2+ leads to the rapid oxidation of the iron atoms of all four of the hem groups of the tetrameric protein, followed by the slow formation of hemichromes (low spin FeIII forms of hemoglobin). Stopped-flow studies show that the oxidations follow simple monophasic kinetics with second-order rate constants of 65 and 310 M?1 sec?1 for the oxy and deoxy forms, respectively. Variable temperature studies yield Arrhenius activation energies of 43 for the oxy form and 113 kJ mole?1 for the deoxy form. For each form of the protein the activation energy is very similar to the activation enthalpy. While the deoxy form is characterized by an activation energy and enthalpy that is more than twice the corresponding value in the oxy form. The activation entropies show highly significant differences being ?128 e.u. and 136 e.u. at 25°C for the oxy and deoxy forms, respectively.  相似文献   

6.
In leghemoglobin a, which is the major hemoglobin component in soybean root nodules, the haem iron has been replaced by cobalt. The electron spin resonance (ESR) of frozen solutions of the cobalt-substituted leghemoglobin has been studied at 77 K in the deoxy and oxy forms respectively. Both ligation states exhibit rhombic g tensors. The hyperfine constants of 59Co, 14N-imidazole (residue of the proximal histidine) and 14N-pyrroles are determined for the three principal directions of the g tensor. Both, the oxy and the deoxy state exhibit pH-dependent changes of the hyperfine structures. For oxy cobalt leghemoglobin a quantitative analysis of the pH titration and of the ESR parameters of the low and high-pH forms respectively are performed. The interconversion of the low and the high-pH forms is controlled by a proton-dissociating group with pK=6.4 which is most probably the distal histidine. g tensors and hyperfine constants are compared with those described for oxy cobalt myoglobin crystal spectra [34] allowing assignments of the low and high-pH species of leghemoglobin to stereoelectronic structures with non-equivalent and equivalent dioxygen atoms respectively. Hydrogen-bonding of the distal histidine with dioxygen favours the structure with equivalent oxygen atoms. The pH dependence of the deoxy form is interpreted as interaction of the proximal imidazole with the central cobalt atom.  相似文献   

7.
The energy difference between the quaternary structures of deoxy- and oxyhemoglobin is evaluated on the basis of the atomic coordinates determined by X-ray diffraction analysis. Calculation of the van der Waals interaction between subunits shows that in a hemoglobin molecule as a whole, the interaction is more attractive in the oxy form than in the deoxy form by about 8 kcal/mol, and that in each pair of two subunits except the pair alpha1alpha2, the interaction energy varies by about 15 kcal/mol. The electrostatic interactions originating in the partial charges on all constituent atoms of hemoglobin and in the polar residues on the surface of hemoglobin make only a small contribution to the energy difference between the quaternary structures of deoxy- and oxyhemoglobin. Thus, the contribution of the clusters of the polar residues in the internal cavity between like subunits and also of the freedom of rotation of the C-terminal of each subunit in oxyhemoglobin may be important energetically in the transition from deoxy to oxy quaternary structure. In this point, the present calculation supports Perutz' model, but suggests necessity of further investigations on the transitional characteristics of the quaternary structure in the intermediate steps of oxygenation. The discussion on the transitional characteristics is given in the last section.  相似文献   

8.
Benzene hexacarboxylate-monosubstituted polyoxyethylene on contact with Hb decreases its oxygen affinity, probably because it specifically interacts with the amino groups of the phosphate-binding site. This site specificity was used to direct the covalent coupling of this polymeric reagent with hemoglobin, in the vicinity of this cleft in order to obtain conjugates with low oxygen affinity and well-defined molecular weight. Such conjugates could thus be regarded as potential candidates for blood substitutes. Covalent fixation of this polymeric site-labeling reagent onto hemoglobin was carried out with the oxy and the deoxy form in the presence of a water soluble carbodiimide. It turns out that the oxygen-binding properties of the resulting hemoglobin derivatives depend on the reaction conditions, yet in all cases the oxygen affinity of the modified protein was lower than that of native hemoglobin and was no longer affected by organic phosphates. These results indicate that phosphate-binding site amines are probably involved in the covalent coupling, although in some conjugates (especially those prepared with high ratios of reagents) other amino groups participate also in the linking to the polymer. Chromatographic analysis and trypic peptide mapping of some conjugates evidenced that the -terminal valine residue was in fact the preferential binding site of hexacarboxylate-monosubstituted polyoxyethylene.  相似文献   

9.
In this work, we corrected the resonance Raman (RR) results presented earlier for deoxy mesoheme IX-reconstituted hemoglobin (mesoHb) alpha and beta subunits implied that mesohemes in these subunits undergo substantial structural changes upon formation of a hemoglobin tetramer (Biochemistry 29 (1990) 5087). We show that these data were probably due to the improper handling of the deoxy mesoheme subunit preparation. Additionally, we discuss the RR spectra of deoxy, oxy, and CO species of mesoheme IX-reconstituted myoglobin (mesoMb) and alpha and beta deoxy meso hemoglobin subunits, including their analogues with deuterium-substituted mesoheme IX in all methyl groups (d(12)). Based on the obtained data, we propose a complete RR band assignment for all of the investigated molecules. The most pronounced changes are observed for the gamma(7) mode (out-of-plane movement of methane carbon atoms) associated with the interaction of the ethyl groups with the globin. We also show that in mesoheme IX-reconstituted proteins, the O(2) molecule binds stronger than in the case of native species. This is manifested by the up-shift of nu(Fe-O(2)).  相似文献   

10.
The Fe site structure in the recombinant wild-type and T721 mutant of the cooperative homodimeric hemoglobin (HbI) of the mollusc Scapharca itnaequivalvis has been investigated by measuring the Fe K-edge X-ray absorption near edge structure (XANES) spectra of their oxy, deoxy and carbonmonoxy derivatives, and the cryogenic photoproducts of the carbonmonoxy derivatives at T = 12 K. According to our results, the Fe site geometry in T72I HbI-CO is quite similar to that of human carbonmonoxy hemoglobin (HbA-CO), while in native HbI-CO it seems intermediate between that of HbA-CO and sperm whale MbCO. The XANES spectra of oxy and deoxy derivatives are similar to the homologous spectra of human HbA, except for T72I HbI, for which the absorption edge is blue-shifted (about + 1 eV) towards the spectrum of the oxy form. XANES spectra of the cryogenic photoproducts of HbA-CO (HbA*), HbI-CO (HbI*) and mutant HbI-CO (T72I HbI*) were acquired under continuous illumination at 12 K. The Fe-heme structures of the three photoproducts are similar; however, while in the case of HbA* and HbI* the data indicate incomplete structural relaxation of the Fe-heme towards its deoxy-like (T) form, the relaxation in T72I HbI* is almost completely towards the proposed "high affinity" Fe-heme structure of T72I HbI. This evidence suggests that minor tertiary restraints affect the Fe-heme dynamics of T72I HbI, corresponding to a reduction of the energy necessary for the T --> R structural transition, which can contribute to the observed dramatic enhancement in oxygen affinity of this hemoprotein, and the decreased cooperativity.  相似文献   

11.
Cobalt hemoglobin Zürich (alpha 2 beta 263His leads to Arg) has been successfully reconstituted from the apohemoglobin Zürich and cobaltous protoporphyrin IX. The oxygen affinity of cobalt hemoglobin Zurich, as well as that of iron hemoglobin Zürich, were measured in the absence and presence of organic phosphate and Cl-. The overall oxygen affinity of cobalt hemoglobin Zürich was found to be higher and the cooperativity as measured by the n value was smaller than those of cobalt hemoglobin A. Organic phosphate and Cl- affect the oxygen equilibrium properties of cobalt hemoglobin Zürich in a manner similar to that of cobalt hemoglobin A, but to a lesser extant than cobalt hemoglobin A. The EPR spectrum of oxy cobalt hemoglobin Zürich is less sensitive to the replacement of the buffer system from H2O to 2H2O, indicating that the hydrogen bond between the distal amino acid residue and the bound oxygen is not formed in the abnormal beta subunits. The deoxy EPR spectrum of cobalt hemoglobin Zürich is similar to that of deoxy cobalt hemoglobin A, suggesting that the deoxy cobalt hemoglobin Zürich is predominantly in the deoxy quaternary structure (T state).  相似文献   

12.
The aromatic region of the proton NMR spectrum of human adult hemoglobin (HbA) contains resonances from at least 11 titratable histidine residues. Assignments for five beta chain histidines have previously been proposed. In order to further characterize the aromatic spectra of HbA we studied 11 histidine-substituted and -perturbed hemoglobin variants in oxy and deoxy states and at different pH values by 400 MHz NMR spectroscopy. We propose assignments for the resonances corresponding to the C2 protons of His alpha 20, His alpha 72, His alpha 112, and His beta 77 in oxy and deoxy spectra and of His beta 97 and His beta 117 in deoxy spectra. Our assignments for His beta 2 and His beta 117 in the oxy state agree with those previously reported for the CO form, but in the deoxy state our spectra suggest a different assignment. Studies with Hb variants in which a histidine is perturbed by a neighboring substitution suggest additional assignments for His alpha 50 and His alpha 89 and demonstrate a strong dependence of the imidazole ring pK on hydrogen bond interactions and on the net charge of neighboring residues. Some of the newly proposed assignments of histidine resonances are used to discuss specific intermolecular interactions implicating His alpha 20, His beta 77, and His beta 117 in deoxy HbS polymers.  相似文献   

13.
The anti-sickling agent BW12C [Beddell, Goodford, Kneen, White, Wilkinson & Wootton (1984) Br. J. Pharmacol. 82, 397-407] was designed to left-shift the oxygen saturation curve of haemoglobin (HbA) by preferential binding to the oxy conformation at a single site between the terminal amino groups of the alpha-chains through Schiff's base formation, ionic and hydrophobic interactions. In the present work, Schiff's base linkages formed with [14C]BW12C were reduced with NaBH4 and the alpha- and beta-globin chains separated. Under oxy conditions at a molar ratio of 2:1, the covalently bound BW12C is localized almost exclusively on a single alpha-chain; tryptic digestion confirms the terminal amino group (alpha 1-valine) as the reaction site, in accord with the design hypothesis. However, about half the labelled BW12C is released on tetramer disruption, suggesting the presence of additional non-covalent binding. Under deoxy conditions, alpha- and beta-chains are labelled approximately equally, and at higher molar ratios additional binding in both oxy and deoxy conditions is seen. Isoelectric-focusing studies under oxy conditions show a complex pattern of modified bands for both HbA and HbA1c (blocked beta-terminal amino groups) but no modification for HbA carbamylated at both alpha- and beta-terminal amino groups or at the alpha-chains only, again confirming the alpha-terminal amino region as the main interaction site. Equilibrium dialysis measurements under oxy conditions indicate two strong binding sites with a binding constant of less than 10(-6) M and a number of weaker binding sites. The present data thus confirm that BW12C binds at the intended locus but reveal additional non-covalent binding at an undefined site, and weaker binding through Schiff's base formation with other amino groups.  相似文献   

14.
CC individuals, homozygous for the expression of beta(C)-globin, and SC individuals expressing both beta(S) and beta(C)-globins, are known to form intraerythrocytic oxy hemoglobin tetragonal crystals with pathophysiologies specific to the phenotype. To date, the question remains as to why HbC forms in vivo crystals in the oxy state and not in the deoxy state. Our first approach is to study HbC crystallization in vitro, under non-physiological conditions. We present here a comparison of deoxy and oxy HbC crystal formation induced under conditions of concentrated phosphate buffer (2g% Hb, 1. 8M potassium phosphate buffer) and viewed by differential interference contrast microscopy. Oxy HbC formed isotropic amorphous aggregates with subsequent tetragonal crystal formation. Also observed, but less numerous, were twisted, macro-ribbons that appeared to evolve into crystals. Deoxy HbC also formed aggregates and twisted macro-ribbon forms similar to those seen in the oxy liganded state. However, in contrast to oxy HbC, deoxy HbC favored the formation of a greater morphologic variety of aggregates including polymeric unbranched fibers in radial arrays with dense centers, with infrequent crystal formation in close spatial relation to both the radial arrays and macroribbons. Unlike the oxy (R-state) tetragonal crystal, deoxy HbC formed flat, hexagonal crystals. These results suggest: (1) the Lys substitution at beta6 evokes a crystallization process dependent upon ligand state conformation [i. e., the R (oxy) or T (deoxy) allosteric conformation]; and (2) the oxy ligand state is thermodynamically driven to a limited number of aggregation pathways with a high propensity to form the tetragonal crystal structure. This is in contrast to the deoxy form of HbC that energetically equally favors multiple pathways of aggregation, not all of which might culminate in crystal formation.  相似文献   

15.
This paper reports the properties of human hemoglobin covalently bound to Sepharose 4B both in 'high-affinity' and 'low-affinity' conformations. The results suggest that the coupling reaction is strongly affected by the conformational changes linked to oxygenation of the protein. The rate and the extent of the reaction are different for the oxy and deoxyderivatives, probably due to the change in reactivity of the amino groups in the liganded and unliganded tetramer. The data on the equilibrium which is established between matrix-bound and soluble subunits, measured by the 'subunit-exchange chromatography', indicate that the system displays a minimal heterogeneity when hemoglobin is coupled to the gel in the deoxy state at intermediate protein concentration and pH 8. Maxtrix-bound hemoglobin is characterized by a higher oxygen affinity and by decreased homotropic and heterotropic interactions with respect to hemoglobin in solution, but the changes depend strongly on the conditions used in the coupling procedure.  相似文献   

16.
Human hemoglobin containing cobalt protoporphyrin IX or cobalt hemoglobin has been separated into two functionally active alpha and beta subunits using a new method of subunit separation, in which the -SH groups of the isolated subunits were successfully regenerated by treatment with dithiothreitol in the presence of catalase. Oxygen equilibria of the isolated subunit chains were examined over a wide range of temperature using Imai's polarographic method (Imai, K., Morimoto, H., Kotani, M., Watari, H., and Kuroda, M. (1970) Biochim. Biophys. Acta 200, 189-196). Kinetic properties of their reversible oxygenation were investigated by the temperature jump relaxation method at 16 degrees. Electron paramagnetic resonance characteristics of the molecules in both deoxy and oxy states were studies at 77K. The oxygen affinity of the individual regenerated chains was higher than that of the tetrameric cobalt hemoglobin and was independent of pH. The enthalpy changes of the oxygenation have been determined as -13.8 kcal/mol and -16.8 kcal/mol for the alpha and beta chains, respectively. The rates of oxygenation were similar to those reported for iron hemoglobin chains, whereas those of deoxygenation were about 10(2) times larger. The effects of metal substitution on oxygenation properties of the isolated chains were correlated with the results obtained previously on cobalt hemoglobin and cobalt myoglobin. The EPR spectrum of the oxy alpha chain showed a distinctly narrowed hyperfine structure in comparison with that of the oxy beta chain, indicating that the environment around the paramagnetic center (the bound oxygen) is different between these chains. In the deoxy form, EPR spectra of alpha and beta chains were indistinguishable. These observations suggest that one of the inequivalences between alpha and beta chains might exist near the distal histidine group.  相似文献   

17.
The oxy and deoxy forms of hemoglobin display major differences in H-exchange behavior. Hydrogen-tritium exchange experiments on hemoglobin were performed in the low-resolution mode to observe the dependence of these differences on pH (Bohr effect), organic phosphates, and salt. Unlike a prior report, increasing pH was found to decrease the oxy-deoxy difference monotonically, in general accordance with the alkaline Bohr effect. A prior report that the H-exchange difference between oxy- and deoxyhemoglobin vanishes at pH 9, and thus appears to reflect the Bohr effect alone, was found to be due to the borate buffer used, which at high pH tends to abolish the oxy-deoxy difference in a limited region of the H-exchange curve. Effects on hemoglobin H exchange due to organic phosphates parallel the differential binding of these agents (inositol hexaphosphate more than diphosphoglycerate, deoxy more than oxy, at low pH more than at high pH). Added salt slows H exchange of deoxyhemoglobin and has no effect on the oxy form. These results display the sensitivity of simple H-exchange measurements for finding and characterizing effects on structure and dynamics that may occur anywhere in the protein and help to define conditions for higher resolution approaches that can localize the changes observed.  相似文献   

18.
Monomethoxypolyoxyethylene (Mw = 5000) was covalently linked to human hemoglobin via an amide bond formed between amino groups of the protein and a carboxylic group introduced onto the polymer. The conjugates thus obtained have a molecular size corresponding to that of a globular protein with a molecular weight of about 190 000. Their oxygen-binding properties depend upon the initial conformation of the hemoglobin and reaction pH: hemoglobin modified in the deoxy state exhibited a lower oxygen affinity than that modified in the oxy state, and the lower the reaction pH, the lower the oxygen affinity of polymer-linked hemoglobin. However, the affinity of modified hemoglobin is always higher than that of native hemoglobin. On the other hand, when deoxyHb was complexed with organic phosphates during the condensation reaction, the resulting conjugates exhibited oxygen-binding characteristics quite similar to those of native hemoglobin, i.e., the same oxygen affinity, modified cooperativity and the same alkaline Bohr effect. Finally, in order to decrease the oxygen affinity of hemoglobin conjugates, the polymer was coupled to deoxy hemoglobin previously covalently modified with pyridoxal phosphate. The oxygen affinity of such conjugates was in fact as low as that of the initial pyridoxylated hemoglobin.  相似文献   

19.
The dielectric constants of sickle cell hemoglobin were determined before and after gelation. The dielectric properties of oxy and deoxy sickle cell hemoglobin in solution are nearly identical to those of oxy and deoxy hemoglobin A. Only in the gel state did deoxy sickle cell hemoglobin display dielectric behavior different from that in solution. Upon gelation of deoxy sickle cell hemoglobin, the dielectric constant showed a marked decrease, and the relaxation frequency shifted towards higher frequencies. This result suggests that dielectric constant measurement can be used for the investigation of the kinetics of polymerization of sickle cell hemoglobin molecules. Despite the marked decrease in the dielectric constant, deoxy sickle cell hemoglobin still showed a well-defined dielectric dispersion even in the gel state. This indicates that individual molecules have considerable freedom of rotation in gels. It was observed that the dielectric properties of gelled deoxy sickle cell hemoglobin were affected by electrical fields at the level of 10 to 20 V/cm. This observation suggests that electrical fields of moderate strengths are able to perturb the gel structure if the system is near the transition region. The non-linear electrical behavior of gelled sickle cell hemoglobin will be discussed further in subsequent papers.  相似文献   

20.
The crystal structure of human hemoglobin crosslinked between the Lysbeta82 residues has been determined at 2.30 A resolution. The crosslinking reaction was performed under oxy conditions using bis(3, 5-dibromosalicyl) fumarate; the modified hemoglobin has increased oxygen affinity and lacks cooperativity. Since the crystallization occurred under deoxy conditions, the resulting structure displays conformational characteristics of both the (oxy) R and the (deoxy) T-states. beta82XLHbA does not fully reach its T-state conformation due to the presence of the crosslink. The R-state-like characteristics of deoxy beta82XLHbA include the position of the distal Hisbeta63 (E7) residue, indicating a possible reason for the high oxygen affinity of this derivative. Other areas of the molecule, particularly those thought to be important in the allosteric transition, such as Tyrbeta145 (HC2) and the switch region involving Proalpha(1)44 (CD2), Thralpha(1)41 (C6) and Hisbeta(2)97 (FG4), are in intermediate positions between the R and T-states. Thus, the structure may represent a stabilized intermediate in the allosteric transition of hemoglobin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号