首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the recent X-ray crystallographic structural models of photosystem II, Glu354 of the CP43 polypeptide is assigned as a ligand of the O2-evolving Mn4Ca cluster. In this communication, a preliminary characterization of the CP43-Glu354Gln mutant of the cyanobacterium Synechocystis sp. PCC 6803 is presented. The steady-state rate of O2 evolution in the mutant cells is only approximately 20% compared with the wild-type, but the kinetics of O2 release are essentially unchanged and the O2-flash yields show normal period-four oscillations, albeit with lower overall intensity. Purified PSII particles exhibit an essentially normal S2 state multiline electron paramagnetic resonance (EPR) signal, but exhibit a substantially altered S2-minus-S1 Fourier transform infrared (FTIR) difference spectrum. The intensities of the mutant EPR and FTIR difference spectra (above 75% compared with wild-type) are much greater than the O2 signals and suggest that CP43-Glu354Gln PSII reaction centres are heterogeneous, with a minority fraction able to evolve O2 with normal O2 release kinetics and a majority fraction unable to advance beyond the S2 or S3 states. The S2-minus-S1 FTIR difference spectrum of CP43-Glu354Gln PSII particles is altered in both the symmetric and asymmetric carboxylate stretching regions, implying either that CP43-Glu354 is exquisitely sensitive to the increased charge that develops on the Mn4Ca cluster during the S1-->S2 transition or that the CP43-Glu354Gln mutation changes the distribution of Mn(III) and Mn(IV) oxidation states within the Mn4Ca cluster in the S1 and/or S2 states.  相似文献   

2.
Recent FTIR studies have provided evidence that the C-terminal alpha-COO(-) group of the D1 polypeptide at D1-Ala344 is a unidentate ligand of a Mn ion in photosystem II [Chu, H.-A., Hiller, W., and Debus, R. J. (2004) Biochemistry 43, 3152-3166; Kimura, Y., Mizusawa, N., Yamanari, T., Ishii, A., and Ono, T.-A. (2005) J. Biol. Chem. 280, 2078-2083]. However, the FTIR data could not exclude Ca ligation. Furthermore, the recent approximately 3.5 A X-ray crystallographic structural model positions the alpha-COO(-) group of D1-Ala344 near a Ca ion [Ferreira, K. N., Iverson, T. M., Maghlaoui, K., Barber, J., and Iwata, S. (2004) Science 303, 1831-1838]. Therefore, to conclusively establish whether the alpha-COO(-) group of D1-Ala344 ligates Mn or Ca, the symmetric carboxylate stretching mode of the alpha-COO(-) group of D1-Ala344 was identified in the S(2)-minus-S(1) FTIR difference spectrum of PSII particles having Sr substituted for Ca. Cells of the cyanobacterium Synechocystis sp. PCC 6803 were propagated in media having Sr substituted for Ca and containing either l-[1-(13)C]alanine or unlabeled ((12)C) alanine. The S(2)-minus-S(1) FTIR difference spectra of the purified PSII particles show that substituting Sr for Ca alters several carboxylate stretching modes, including some that may correspond to one or more metal ligands, but importantly does not alter the symmetric carboxylate stretching mode of the alpha-COO(-) group of D1-Ala344. In unlabeled PSII particles, this mode appears at approximately 1356 cm(-)(1) in the S(1) state and at either approximately 1337 or approximately 1320 cm(-)(1) in the S(2) state, irrespective of whether the PSII particles contain Ca or Sr. These data are inconsistent with Ca ligation and show, therefore, that the C-terminal alpha-COO(-) group of the D1 polypeptide ligates a Mn ion. These data also show that substituting Ca with the larger Sr ion perturbs other unidentified carboxylate groups, at least one of which may ligate the Mn(4) cluster.  相似文献   

3.
Debus RJ  Campbell KA  Pham DP  Hays AM  Britt RD 《Biochemistry》2000,39(21):6275-6287
Recent models for water oxidation in photosystem II postulate that the tyrosine Y(Z) radical, Y(Z)(*), abstracts both an electron and a proton from the Mn cluster during one or more steps in the catalytic cycle. This coupling of proton- and electron-transfer events is postulated to provide the necessary driving force for oxidizing the Mn cluster in its higher oxidation states. The formation of Y(Z)(*) requires the deprotonation of Y(Z) by His190 of the D1 polypeptide. For Y(Z)(*) to abstract both an electron and a proton from the Mn cluster, the proton abstracted from Y(Z) must be transferred rapidly from D1-His190 to the lumenal surface via one or more proton-transfer pathways. The proton acceptor for D1-His190 has been proposed to be either Glu189 of the D1 polypeptide or a group positioned by this residue. To further define the role of D1-Glu189, 17 D1-Glu189 mutations were constructed in the cyanobacterium Synechocystis sp. PCC 6803. Several of these mutants are of particular interest because they appear to assemble Mn clusters in 70-80% of reaction centers in vivo, but evolve no O(2). The EPR and electron-transfer properties of PSII particles isolated from the D1-E189Q, D1-E189L, D1-E189D, D1-E189N, D1-E189H, D1-E189G, and D1-E189S mutants were examined. Intact PSII particles isolated from mutants that evolved no O(2) also exhibited no S(1) or S(2) state multiline EPR signals and were unable to advance beyond an altered Y(Z)(*)S(2) state, as shown by the accumulation of narrow "split" EPR signals under multiple turnover conditions. In the D1-E189G and D1-E189S mutants, the quantum yield for oxidizing the S(1) state Mn cluster was very low, corresponding to a > or =1400-fold slowing of the rate of Mn oxidation by Y(Z)(*). In Mn-depleted D1-Glu189 mutant PSII particles, charge recombination between Q(A)(*)(-) and Y(Z)(*) in the mutants was accelerated, showing that the mutations alter the redox properties of Y(Z) in addition to those of the Mn cluster. These results are consistent with D1-Glu189 participating in a network of hydrogen bonds that modulates the properties of both Y(Z) and the Mn cluster and are consistent with proposals that D1-Glu189 positions a group that accepts a proton from D1-His190.  相似文献   

4.
Strickler MA  Hillier W  Debus RJ 《Biochemistry》2006,45(29):8801-8811
In the recent X-ray crystallographic structural models of photosystem II, Glu189 of the D1 polypeptide is assigned as a ligand of the oxygen-evolving Mn(4) cluster. To determine if D1-Glu189 ligates a Mn ion that undergoes oxidation during one or more of the S(0) --> S(1), S(1) --> S(2), and S(2) --> S(3) transitions, the FTIR difference spectra of the individual S-state transitions in D1-E189Q and D1-E189R mutant PSII particles from the cyanobacterium Synechocystis sp. PCC 6803 were compared with those in wild-type PSII particles. Remarkably, the data show that neither mutation significantly alters the mid-frequency regions (1800-1200 cm(-)(1)) of any of the FTIR difference spectra. Importantly, neither mutation eliminates any specific symmetric or asymmetric carboxylate stretching mode that might have been assigned to D1-Glu189. The small spectral alterations that are observed are similar in amplitude to those that are observed in wild-type PSII particles that have been exchanged into FTIR analysis buffer by different methods or those that are observed in D2-H189Q mutant PSII particles (the residue D2-His189 is located >25 A from the Mn(4) cluster and accepts a hydrogen bond from Tyr Y(D)). The absence of significant mutation-induced spectral alterations in the D1-Glu189 mutants shows that the oxidation of the Mn(4) cluster does not alter the frequencies of the carboxylate stretching modes of D1-Glu189 during the S(0) --> S(1), S(1) --> S(2), or S(2) --> S(3) transitions. One explanation of these data is that D1-Glu189 ligates a Mn ion that does not increase its charge or oxidation state during any of these S-state transitions. However, because the same conclusion was reached previously for D1-Asp170, and because the recent X-ray crystallographic structural models assign D1-Asp170 and D1-Glu189 as ligating different Mn ions, this explanation requires that (1) the extra positive charge that develops on the Mn(4) cluster during the S(1) --> S(2) transition be localized on the Mn ion that is ligated by the alpha-COO(-) group of D1-Ala344 and (2) any increase in positive charge that develops on the Mn(4) cluster during the S(0) --> S(1) and S(2) --> S(3) transitions be localized on the one Mn ion that is not ligated by D1-Asp170, D1-Glu189, or D1-Ala344. An alternative explanation of the FTIR data is that D1-Glu189 does not ligate the Mn(4) cluster. This conclusion would be consistent with earlier spectroscopic analyses of D1-Glu189 mutants, but would require that the proximity of D1-Glu189 to manganese in the X-ray crystallographic structural models be an artifact of the radiation-induced reduction of the Mn(4) cluster that occurred during the collection of the X-ray diffraction data.  相似文献   

5.
A Fourier transform infrared (FTIR) difference spectrum of the oxygen-evolving Mn cluster upon the S(1)-to-S(2) transition was obtained with Ca(2+)-depleted photosystem II (PSII) membranes to investigate the structural relevance of Ca(2+) to the Mn cluster. Previously, Noguchi et al. [Biochim. Biophys. Acta 1228 (1995) 189] observed drastic changes in the carboxylate stretching region of the S(2)/S(1) FTIR spectrum upon Ca(2+) depletion, whereas Kimura and co-workers [Biochemistry 40 (2001) 14061; ibid. 41 (2002) 5844] later claimed that these changes were not ascribed to Ca(2+) depletion itself but caused by the interaction of EDTA to the Mn cluster and/or binding of K(+) at the Ca(2+) site. In the present study, the preparation of the Ca(2+)-depleted PSII sample and its FTIR measurement were performed in the absence of EDTA and K(+). The obtained S(2)/S(1) spectrum exhibited the loss of carboxylate bands at 1587/1562 and 1364/1403 cm(-1) and diminished amide I intensities, which were identical to the previous observations in the presence of EDTA and K(+). This result indicates that the drastic FTIR changes are a pure effect of Ca(2+) depletion, and provides solid evidence for the general view that Ca(2+) is strongly coupled with the Mn cluster.  相似文献   

6.
Chu HA  Feng YW  Wang CM  Chiang KA  Ke SC 《Biochemistry》2004,43(34):10877-10885
Light-induced Fourier transform infrared difference spectroscopy has been applied to studies of ammonia effects on the oxygen-evolving complex (OEC) of photosystem II (PSII). We found that NH(3) induced characteristic spectral changes in the region of the symmetric carboxylate stretching modes (1450-1300 cm(-1)) of the S(2)Q(A)(-)/S(1)Q(A) FTIR difference spectra of PSII. The S(2) state carboxylate mode at 1365 cm(-1) in the S(2)Q(A)(-)/S(1)Q(A) spectrum of the controlled samples was very likely upshifted to 1379 cm(-1) in that of NH(3)-treated samples; however, the frequency of the corresponding S(1) carboxylate mode at 1402 cm(-1) in the same spectrum was not significantly affected. These two carboxylate modes have been assigned to a Mn-ligating carboxylate whose coordination mode changes from bridging or chelating to unidentate ligation during the S(1) to S(2) transition [Noguchi, T., Ono, T., and Inoue, Y. (1995) Biochim. Biophys. Acta 1228, 189-200; Kimura, Y., and Ono, T.-A. (2001) Biochemistry 40, 14061-14068]. Therefore, our results show that NH(3) induced significant structural changes of the OEC in the S(2) state. In addition, our results also indicated that the NH(3)-induced spectral changes of the S(2)Q(A)(-)/S(1)Q(A) spectrum of PSII are dependent on the temperature of the FTIR measurement. Among the temperatures we measured, the strongest effect was seen at 250 K, a lesser effect was seen at 225 K, and little or no effect was seen at 200 K. Furthermore, our results also showed that the NH(3) effects on the S(2)Q(A)(-)/S(1)Q(A) spectrum of PSII are dependent on the concentrations of NH(4)Cl. The NH(3)-induced upshift of the 1365 cm(-1) mode is apparent at 5 mM NH(4)Cl and is completely saturated at 100 mM NH(4)Cl concentration. Finally, we found that CH(3)NH(2) has a small but clear effect on the spectral change of the S(2)Q(A)(-)/S(1)Q(A) FTIR difference spectrum of PSII. The effects of amines on the S(2)Q(A)(-)/S(1)Q(A) FTIR difference spectra (NH(3) > CH(3)NH(2) > AEPD and Tris) are inverse proportional to their size (Tris approximately AEPD > CH(3)NH(2) > NH(3)). Therefore, our results showed that the effects of amines on the S(2)Q(A)(-)/S(1)Q(A) spectrum of PSII are sterically selective for small amines. On the basis of the correlations between the conditions (dependences on the excitation temperature and NH(3) concentration and the steric requirement for the amine effects) that give rise to the NH(3)-induced upshift of the 1365 cm(-)(1) mode in the S(2)Q(A)(-)/S(1)Q(A) spectrum of PSII and the conditions that give rise to the altered S(2) state multiline EPR signal, we propose that the NH(3)-induced upshift of the 1365 cm(-1) mode is caused by the binding of NH(3) to the site on the Mn cluster that gives rise to the altered S(2) state multiline EPR signal. In addition, we found no significant NH(3)-induced change in the S(2)Q(A)(-)/S(1)Q(A) FTIR difference spectrum at 200 K. Under this condition, the OEC gives rise to the NH(3)-stabilized g = 4.1 EPR signal and a suppressed g = 2 multiline EPR signal. Our results suggest that the structural difference of the OEC between the normal g = 2 multiline form and the NH(3)-stabilized g = 4.1 form is small.  相似文献   

7.
Isotope-edited FTIR difference spectroscopy was employed to determine if the C-terminal alpha-COO(-) group of the D1 polypeptide ligates the (Mn)(4) cluster in photosystem II (PSII) and, if so, if it ligates the Mn ion that undergoes an oxidation during the S(1) --> S(2) transition. Wild-type and mutant cells of the cyanobacterium Synechocystis sp. PCC 6803 were propagated photoautotrophically in the presence of L-[1-(13)C]alanine or unlabeled ((12)C) L-alanine. In wild-type cells, both the C-terminal alpha-COO(-) group of the D1 polypeptide at D1-Ala344 and all alanine-derived peptide carbonyl groups will be labeled. In D1-A344G and D1-A344S mutant cells, the C-terminal alpha-COO(-) group of the D1 polypeptide will not be labeled because this group is no longer provided by alanine. The resultant S(2)-minus-S(1) FTIR difference spectra of purified wild-type and mutant PSII particles showed that one symmetric carboxylate stretching mode that is altered during the S(1) --> S(2) transition is sensitive to L-[1-(13)C]alanine-labeling in wild-type PSII particles but not in D1-A344G and D1-A344S PSII particles. Because the only carboxylate group that can be labeled in the wild-type PSII particles but not in the mutant PSII particles is the C-terminal alpha-COO(-) group of the D1 polypeptide, we assign the L-[1-(13)C]alanine-sensitive symmetric carboxylate stretching mode to the alpha-COO(-) group of D1-Ala344. In unlabeled wild-type PSII particles, this mode appears at approximately 1356 cm(-1) in the S(1) state and at approximately 1339 or approximately 1320 cm(-1) in the S(2) state. These frequencies are consistent with unidentate ligation of the (Mn)(4) cluster by the alpha-COO(-) group of D1-Ala344 in both the S(1) and S(2) states. The apparent 17-36 cm(-1) downshift in frequency in response to the S(1) --> S(2) transition is consistent with the alpha-COO(-) group of D1-Ala344 ligating a Mn ion whose charge increases during the S(1) --> S(2) transition. Accordingly, we propose that the alpha-COO(-) group of D1-Ala344 ligates the Mn ion that undergoes an oxidation during the S(1) --> S(2) transition. Control experiments were conducted with Mn-depleted wild-type PSII particles. These experiments showed that tyrosine Y(D) may be structurally coupled to the carbonyl oxygen of an alanine-derived peptide carbonyl group.  相似文献   

8.
Suzuki H  Taguchi Y  Sugiura M  Boussac A  Noguchi T 《Biochemistry》2006,45(45):13454-13464
A Ca(2+) ion is an indispensable element in the oxygen-evolving Mn cluster in photosystem II (PSII). To investigate the structural relevance of Ca(2+) to the Mn cluster, the effects of Sr(2+) substitution for Ca(2+) on the structures and reactions of ligands to the Mn cluster during the S-state cycle were investigated using flash-induced Fourier transform infrared (FTIR) difference spectroscopy. FTIR difference spectra representing the four S-state transitions, S(1) --> S(2), S(2) --> S(3), S(3) --> S(0), and S(0) --> S(1), were recorded by applying four consecutive flashes either to PSII core complexes from Thermosynechococcus elongatus or to PSII-enriched membranes from spinach. The spectra were also recorded using biosynthetically Sr(2+)-substituted PSII core complexes from T. elongatus and biochemically Sr(2+)-substituted PSII membranes from spinach. Several common spectral changes upon Sr(2+) substitution were observed in the COO(-) stretching region of the flash-induced spectra for both preparations, which were best expressed in Ca(2+)-minus-Sr(2+) double difference spectra. The significant intensity changes in the symmetric COO(-) peaks at approximately 1364 and approximately 1418 cm(-)(1) at the first flash were reversed as opposite intensity changes at the third flash, and the slight shift of the approximately 1446 cm(-)(1) peak at the second flash corresponded to the similar but opposite shift at the fourth flash. Analyses of these changes suggest that there are at least three carboxylate ligands whose structures are significantly perturbed by Ca(2+)/Sr(2+) exchange. They are (1) the carboxylate ligand having a bridging or unidentate structure in the S(2) and S(3) states and perturbed in the S(1) --> S(2) and S(3) --> S(0) transitions, (2) that with a chelating or bridging structure in the S(1) and S(0) states and perturbed also in the S(1) --> S(2) and S(3) --> S(0) transitions, and (3) that with a chelating structure in the S(3) and S(0) states and changes in the S(2) --> S(3) and S(0) --> S(1) transitions. Taking into account the recent FTIR studies using site-directed mutagenesis and/or isotope substitution [Chu et al. (2004) Biochemistry 43, 3152-3116; Kimura et al. (2005) J. Biol. Chem. 280, 2078-2083; Strickler et al. (2006) Biochemistry 45, 8801-8811], it was concluded that these carboxylate groups do not originate from either D1-Ala344 (C-terminus) or D1-Glu189, which are located near the Ca(2+) ion in the X-ray crystallographic model of the Mn cluster. It was thus proposed that if the X-ray model is correct, the above carboxylate groups sensitive to Sr(2+) substitution are ligands to the Mn ions strongly coupled to the Ca(2+) ion rather than direct ligands to Ca(2+).  相似文献   

9.
Hou LH  Wu CM  Huang HH  Chu HA 《Biochemistry》2011,50(43):9248-9254
NH(3) is a structural analogue of substrate H(2)O and an inhibitor to the water oxidation reaction in photosystem II. To test whether or not NH(3) is able to replace substrate water molecules on the oxygen-evolving complex in photosystem II, we studied the effects of NH(3) on the high-frequency region (3750-3550 cm(-1)) of the S(2)Q(A)(-)/S(1)Q(A) FTIR difference spectra (pH 7.5 at 250 K), where OH stretch modes of weak hydrogen-bonded active water molecules occur. Our results showed that NH(3) did not replace the active water molecule on the oxygen-evolving complex that gave rise to the S(1) mode at ~3586 cm(-1) and the S(2) mode at ~3613 cm(-1) in the S(2)Q(A)(-)/S(1)Q(A) FTIR difference spectrum of PSII. In addition, our mid-frequency FTIR results showed a clear difference between pH 6.5 and 7.5 on the concentration dependence of the NH(4)Cl-induced upshift of the S(2) state carboxylate mode at 1365 cm(-1) in the S(2)Q(A)(-)/S(1)Q(A) spectra of NH(4)Cl-treated PSII samples. Our results provided strong evidence that NH(3) induced this upshift in the spectra of NH(4)Cl-treated PSII samples at 250 K. Moreover, our low-frequency FTIR results showed that the Mn-O-Mn cluster vibrational mode at 606 cm(-1) in the S(2)Q(A)(-)/S(1)Q(A) spectrum of the NaCl control PSII sample was diminished in those samples treated with NH(4)Cl. Our results suggest that NH(3) induced a significant alteration on the core structure of the Mn(4)CaO(5) cluster in PSII. The implication of our findings on the structure of the NH(3)-binding site on the OEC in PSII will be discussed.  相似文献   

10.
On the basis of mutagenesis and X-ray crystallographic studies, Asp170 of the D1 polypeptide is widely believed to ligate the (Mn)4 cluster that is located at the catalytic site of water oxidation in photosystem II. Recent proposals for the mechanism of water oxidation postulate that D1-Asp170 ligates a Mn ion that undergoes oxidation during one or more of the S0 --> S1, S1 --> S2, and S2 --> S3 transitions. To test these hypotheses, we have compared the FTIR difference spectra of the individual S state transitions in wild-type* PSII particles from the cyanobacterium Synechocystis sp. PCC 6803 with those in D1-D170H mutant PSII particles. Remarkably, our data show that the D1-D170H mutation does not significantly alter the mid-frequency regions (1800-1000 cm(-1)) of any of the FTIR difference spectra. Therefore, we conclude that the oxidation of the (Mn)4 cluster does not alter the frequencies of the carboxylate stretching modes of D1-Asp170 during the S0 --> S1, S1 --> S2, or S2 --> S3 transitions. The simplest explanation for these data is that the Mn ion that is ligated by D1-Asp170 does not increase its charge or oxidation state during any of these S state transitions. These data have profound implications for the mechanism of water oxidation. Either (1) the oxidation of the Mn ion that is ligated by D1-Asp170 occurs only during the transitory S3 --> S4 transition and serves as the critical step in the ultimate formation of the O-O bond or (2) the oxidation increments and O2 formation chemistry that occur during the catalytic cycle involve only the remaining Mn3Ca portion of the Mn4Ca cluster. Our data also show that, if the increased positive charge on the (Mn)4 cluster that is produced during the S1 --> S2 transition is delocalized over the (Mn)4 cluster, it is not delocalized onto the Mn ion that is ligated by D1-Asp170.  相似文献   

11.
The active site for water oxidation in photosystem II (PSII) consists of a Mn4Ca cluster close to a redox-active tyrosine residue (TyrZ). The enzyme cycles through five sequential oxidation states (S0 to S4) in the water oxidation process. Earlier electron paramagnetic resonance (EPR) work showed that metalloradical states, probably arising from the Mn4 cluster interacting with TyrZ., can be trapped by illumination of the S0, S1 and S2 states at cryogenic temperatures. The EPR signals reported were attributed to S0TyrZ., S1TyrZ. and S2TyrZ., respectively. The equivalent states were examined here by EPR in PSII isolated from Thermosynechococcus elongatus with either Sr or Ca associated with the Mn4 cluster. In order to avoid spectral contributions from the second tyrosyl radical, TyrD., PSII was used in which Tyr160 of D2 was replaced by phenylalanine. We report that the metalloradical signals attributed to TyrZ. interacting with the Mn cluster in S0, S1, S2 and also probably the S3 states are all affected by the presence of Sr. Ca/Sr exchange also affects the non-haem iron which is situated approximately 44 A units away from the Ca site. This could relate to the earlier reported modulation of the potential of QA by the occupancy of the Ca site. It is also shown that in the S3 state both visible and near-infrared light are able to induce a similar Mn photochemistry.  相似文献   

12.
Lee CI  Lakshmi KV  Brudvig GW 《Biochemistry》2007,46(11):3211-3223
Photosynthetic oxygen evolution in photosystem II (PSII) takes place in the oxygen-evolving complex (OEC) that is comprised of a tetranuclear manganese cluster (Mn4), a redox-active tyrosine residue (YZ), and Ca2+ and Cl- cofactors. The OEC is successively oxidized by the absorption of 4 quanta of light that results in the oxidation of water and the release of O2. Ca2+ is an essential cofactor in the water-oxidation reaction, as its depletion causes the loss of the oxygen-evolution activity in PSII. In recent X-ray crystal structures, Ca2+ has been revealed to be associated with the Mn4 cluster of PSII. Although several mechanisms have been proposed for the water-oxidation reaction of PSII, the role of Ca2+ in oxygen evolution remains unclear. In this study, we probe the role of Ca2+ in oxygen evolution by monitoring the S1 to S2 state transition in PSII membranes and PSII core complexes upon inhibition of oxygen evolution by Dy3+, Cu2+, and Cd2+ ions. By using a cation-exchange procedure in which Ca2+ is not removed prior to addition of the studied cations, we achieve a high degree of reversible inhibition of PSII membranes and PSII core complexes by Dy3+, Cu2+, and Cd2+ ions. EPR spectroscopy is used to quantitate the number of bound Dy3+ and Cu2+ ions per PSII center and to determine the proximity of Dy3+ to other paramagnetic centers in PSII. We observe, for the first time, the S2 state multiline electron paramagnetic resonance (EPR) signal in Dy3+- and Cd2+-inhibited PSII and conclude that the Ca2+ cofactor is not specifically required for the S1 to S2 state transition of PSII. This observation provides direct support for the proposal that Ca2+ plays a structural role in the early S-state transitions, which can be fulfilled by other cations of similar ionic radius, and that the functional role of Ca2+ to activate water in the O-O bond-forming reaction that occurs in the final step of the S state cycle can only be fulfilled by Ca2+ and Sr2+, which have similar Lewis acidities.  相似文献   

13.
In the recent X-ray crystallographic structural models of photosystem II, Asp342 of the D1 polypeptide is assigned as a ligand of the oxygen-evolving Mn4 cluster. To determine if D1-Asp342 ligates a Mn ion that undergoes oxidation during one or more of the S0 --> S1, S1 --> S2, and S2 --> S3 transitions, the FTIR difference spectra of the individual S state transitions in D1-D342N mutant PSII particles from the cyanobacterium Synechocystis sp. PCC 6803 were compared with those in wild-type PSII particles. Remarkably, the data show that the mid-frequency (1800-1200 cm-1) FTIR difference spectra of wild-type and D1-D342N PSII particles are essentially identical. Importantly, the mutation alters none of the carboxylate vibrational modes that are present in the wild-type spectra. The absence of significant mutation-induced spectral alterations in D1-D342N PSII particles shows that the oxidation of the Mn4 cluster does not alter the frequencies of the carboxylate stretching modes of D1-Asp342 during the S0 --> S1, S1 --> S2, or S2 --> S3 transitions. One explanation of these data is that D1-Asp342 ligates a Mn ion that does not increase its charge or oxidation state during any of these S state transitions. However, because the same conclusion was reached previously for D1-Asp170, and because the recent X-ray crystallographic structural models assign D1-Asp170 and D1-Asp342 as ligating different Mn ions, this explanation requires that (1) the extra positive charge that develops on the Mn4 cluster during the S1 --> S2 transition be localized on the Mn ion that is ligated by the alpha-COO- group of D1-Ala344 and (2) any increase in positive charge that develops on the Mn4 cluster during the S0 --> S1 and S2 --> S3 transitions be localized on the one Mn ion that is not ligated by D1-Asp170, D1-Asp342, or D1-Ala344. In separate experiments that were conducted with l-[1-13C]alanine, we found no evidence that D1-Asp342 ligates the same Mn ion that is ligated by the alpha-COO- group of D1-Ala344.  相似文献   

14.
15.
The Mn4Ca complex that is involved in water oxidation in PSII is affected by near-infrared (NIR) light in certain redox states and these phenomena can be monitored by electron paramagnetic resonance (EPR) at low temperature. Here we report the action spectra of the NIR effects in the S2 and S3 states in PSII from plants and the thermophilic cyanobacterium Thermosynechococcus elongatus. The action spectra obtained are very similar in both S states, indicating the presence of the same photoactive form of the Mn4Ca complex in both states. Since the chemical nature of the photoactive species is not known, an unequivocal interpretation of this result cannot be made; however, it appears to be more easily reconciled with the view that the redox state of the Mn4Ca cluster does not change from the S2 to the S3 transition, at least in those centers sensitive to NIR light. The temperature dependence of the NIR effect and the action spectra for S2 indicate the presence of structural heterogeneity in the Mn4Ca cluster.  相似文献   

16.
Electron paramagnetic resonance (EPR) measurements were performed on photosystem II (PSII) membranes that were treated with 2 M NaCl to release the 17- and 23-kilodalton (kDa) polypeptides. By using 75 microM 3-(3,4-dichlorophenyl)-1,1-dimethylurea to limit the photosystem II samples to one stable charge separation in the temperature range of 77-273 K, we have quantitated the EPR signals of the several electron donors and acceptors of photosystem II. It was found that removal of the 17- and 23-kDa polypeptides caused low potential cytochrome b559 to become fully oxidized during the course of dark adaptation. Following illumination at 77-130 K, one chlorophyll molecule per reaction center was oxidized. Between 130 and 200 K, both a chlorophyll molecule and the S1 state were photooxidized and, together, accounted for one oxidation per reaction center. Above 200 K, the chlorophyll radical was unstable. Oxidation of the S1 state gave rise to the S2-state multiline EPR signal, which arises from the Mn site of the O2-evolving center. The yield of the S2-state multiline EPR signal in NaCl-washed PSII membranes was as high as 93% of the control, untreated PSII membranes, provided that both Ca2+ and Cl- were bound. Furthermore, the 55Mn nuclear hyperfine structure of the S2-state multiline EPR signal was unaltered upon depletion of the 17- and 23-kDa polypeptides. In NaCl-washed PSII samples where Ca2+ and/or Cl- were removed, however, the intensity of the S2-state multiline EPR signal decreased in parallel with the fraction of PSII lacking bound Ca2+ and Cl-.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Su JH  Havelius KG  Ho FM  Han G  Mamedov F  Styring S 《Biochemistry》2007,46(37):10703-10712
The interaction EPR split signals from photosystem II (PSII) have been reported from the S0, S1, and S3 states. The signals are induced by illumination at cryogenic temperatures and are proposed to reflect the magnetic interaction between YZ* and the Mn4Ca cluster. We have investigated the formation spectra of these split EPR signals induced in PSII enriched membranes at 5 K using monochromatic laser light from 400 to 900 nm. We found that the formation spectra of the split S0, split S1, and split S3 EPR signals were quite similar, but not identical, between 400 and 690 nm, with maximum formation at 550 nm. The major deviations were found between 440 and 480 nm and between 580 and 680 nm. In the regions around 460 and 680 nm the amplitudes of the formation spectra were 25-50% of that at 550 nm. A similar formation spectrum was found for the S2-state multiline EPR signal induced at 0 degrees C. In general, the formation spectra of these signals in the visible region resemble the reciprocal of the absorption spectra of our PSII membranes. This reflects the high chlorophyll concentration necessary for the EPR measurements which mask the spectral properties of other absorbing species. No split signal formation was found by the application of infrared laser illumination between 730 and 900 nm from PSII in the S0 and S1 states. However, when such illumination was applied to PSII membranes poised in the S3 state, formation of the split S3 EPR signal was observed with maximum formation at 740 nm. The quantum yield was much less than in the visible region, but the application of intensive illumination at 830 nm resulted in accumulation of the signal to an amplitude comparable to that obtained with illumination with visible light. The split S3 EPR signal induced by NIR light was much more stable at 5 K (no observable decay within 60 min) than the split S3 signal induced by visible light (50% of the signal decayed within 30 min). The split S3 signals induced by each of these light regimes showed the same EPR spectral features and microwave power saturation properties, indicating that illumination of PSII in the S3 state by visible light or by NIR light produces a similar configuration of YZ* and the Mn4Ca cluster.  相似文献   

18.
Hydroxylamine at low concentrations causes a two-flash delay in the first maximum flash yield of oxygen evolved from spinach photosystem II (PSII) subchloroplast membranes that have been excited by a series of saturating flashes of light. Untreated PSII membrane preparations exhibit a multiline EPR signal assigned to a manganese cluster and associated with the S2 state when illuminated at 195 K, or at 273 K in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). We used the extent of suppression of the multiline EPR signal observed in samples illuminated at 195 K to determine the fraction of PSII reaction centers set back to a hydroxylamine-induced S0-like state, which we designate S0*. The manganese K-edge X-ray absorption edges for dark-adapted PSII preparations with or without hydroxylamine are virtually identical. This indicates that, despite its high binding affinity to the oxygen-evolving complex (OEC) in the dark, hydroxylamine does not reduce chemically the manganese cluster within the OEC in the dark. After a single turnover of PSII, a shift to lower energy is observed in the inflection of the Mn K-edge of the manganese cluster. We conclude that, in the presence of hydroxylamine, illumination causes a reduction of the OEC, resulting in a state resembling S0. This lower Mn K-edge energy of S0*, relative to the edge of S1, implies the storage and stabilization of an oxidative equivalent within the manganese cluster during the S0----S1 state transition. An analysis of the extended X-ray absorption fine structure (EXAFS) of the S0* state indicates that a significant structural rearrangement occurs between the S0* and S1 states. The X-ray absorption edge position and the structure of the manganese cluster in the S0* state are indicative of a heterogeneous mixture of formal valences of manganese including one Mn(II) which is not present in the S1 state.  相似文献   

19.
Chu HA  Debus RJ  Babcock GT 《Biochemistry》2001,40(7):2312-2316
We report both mid-frequency (1800-1200 cm(-)(1)) and low-frequency (670-350 cm(-)(1)) S(2)/S(1) FTIR difference spectra of photosystem II (PSII) particles isolated from wild-type and D1-D170H mutant cells of the cyanobacterium Synechocystis sp. PCC 6803. Both mid- and low-frequency S(2)/S(1) spectra of the Synechocystis wild-type PSII particles closely resemble those from spinach PSII samples, which confirms an earlier result by Noguchi and co-workers [Noguchi, T., Inoue, Y., and Tang, X.-S. (1997) Biochemistry 36, 14705-14711] and indicates that the coordination environment of the oxygen evolving complex (OEC) in Synechocystis is very similar to that in spinach. We also found that there is no appreciable difference between the mid-frequency S(2)/S(1) spectra of wild-type and of D1-D170H mutant PSII particles, from which we conclude that D1-Asp170 does not undergo a significant structural change during the S(1) to S(2) transition. This result also suggests that, if D1-Asp170 ligates Mn, it does not ligate the Mn ion that is oxidized during the S(1) to S(2) state transition. Finally, we found that a mode at 606 cm(-)(1) in the low-frequency wild-type S(2)/S(1) spectrum shifts to 612 cm(-)(1) in the D1-D170H mutant spectrum. Because this 606 cm(-)(1) mode has been previously assigned to an Mn-O-Mn cluster mode of the OEC [Chu, H.-A., Sackett, H., and Babcock, G. T. (2000) Biochemistry 39, 14371-14376], we conclude that D1-Asp170 is structurally coupled to the Mn-O-Mn cluster structure that gives rise to this band. Our results suggest that D1-Asp170 either directly ligates Mn or Ca(2+) or participates in a hydrogen bond to the Mn(4)Ca(2+) cluster. Our results demonstrate that combining FTIR difference spectroscopy with site-directed mutagenesis has the potential to provide insights into structural changes in Mn and Ca(2+) coordination environments in the different S states of the OEC.  相似文献   

20.
From a chemical point of view methanol is one of the closest analogues of water. Consistent with this idea EPR spectroscopy studies have shown that methanol binds at-or at least very close to-the Mn(4)O(x)Ca cluster of photosystem II (PSII). In contrast, Clark-type oxygen rate measurements demonstrate that the O(2) evolving activity of PSII is surprisingly unaffected by methanol concentrations of up to 10%. Here we study for the first time in detail the effect of methanol on photosynthetic water-splitting by employing a Joliot-type bare platinum electrode. We demonstrate a linear dependence of the miss parameter for S( i ) state advancement on the methanol concentrations in the range of 0-10% (v/v). This finding is consistent with the idea that methanol binds in PSII with similar affinity as water to one or both substrate binding sites at the Mn(4)O(x)Ca cluster. The possibility is discussed that the two substrate water molecules bind at different stages of the cycle, one during the S(4) --> S(0) and the other during the S(2) --> S(3) transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号