首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
Entamoeba histolytica, an early branching eukaryote, is the etiologic agent of amebiasis. Calcium plays a pivotal role in the pathogenesis of amebiasis by modulating the cytopathic properties of the parasite. However, the mechanistic role of Ca(2+) and calcium-binding proteins in the pathogenesis of E. histolytica remains poorly understood. We had previously characterized a novel calcium-binding protein (EhCaBP1) from E. histolytica. Here, we report the identification and partial characterization of an isoform of this protein, EhCaBP2. Both EhCaBPs have four canonical EF-hand Ca(2+) binding domains. The two isoforms are encoded by genes of the same size (402 bp). Comparison between the two genes showed an overall identity of 79% at the nucleotide sequence level. This identity dropped to 40% in the 75-nucleotide central linker region between the second and third Ca(2+) binding domains. Both of these genes are single copy, as revealed by Southern hybridization. Analysis of the available E. histolytica genome sequence data suggested that the two genes are non-allelic. Homology-based structural modeling showed that the major differences between the two EhCaBPs lie in the central linker region, normally involved in binding target molecules. A number of studies indicated that EhCaBP1 and EhCaBP2 are functionally different. They bind different sets of E. histolytica proteins in a Ca(2+)-dependent manner. Activation of endogenous kinase was also found to be unique for the two proteins and the Ca(2+) concentration required for their optimal functionality was also different. In addition, a 12-mer peptide was identified from a random peptide library that could differentially bind the two proteins. Our data suggest that EhCaBP2 is a new member of a class of E. histolytica calcium-binding proteins involved in a novel calcium signal transduction pathway.  相似文献   

2.
We present the three-dimensional (3D) solution structure of a calcium-binding protein from Entamoeba histolytica (EhCaBP), an etiologic agent of amoebiasis affecting millions worldwide. EhCaBP is a 14.7 kDa (134 residues) monomeric protein thought to play a role in the pathogenesis of amoebiasis. The 3D structure of Ca(2+)-bound EhCaBP has been derived using multidimensional nuclear magnetic resonance (NMR) spectroscopic techniques. The study reveals the presence of two globular domains connected by a flexible linker region spanning 8 amino acid residues. Each domain consists of a pair of helix-loop-helix motifs similar to the canonical EF-hand motif of calcium-binding proteins. EhCaBP binds to four Ca(2+) with high affinity (two in each domain), and it is structurally related to calmodulin (CaM) and troponin C (TnC) despite its low sequence homology ( approximately 29%) with these proteins. NMR-derived structures of EhCaBP converge within each domain with low RMSDs and angular order-parameters for backbone torsion angles close to 1.0. However, the presence of a highly flexible central linker region results in an ill-defined orientation of the two domains relative to one other. These findings are supported by backbone (15)N relaxation rate measurements and deuterium exchange studies, which reveal low structural order parameters for residues in the central linker region. Earlier, biochemical studies showed that EhCaBP is involved in a novel signal transduction mechanism, distinct from CaM. A possible reason for such a functional diversity is revealed by a detailed comparison of the 3D structure of EhCaBP with that of CaM and TnC. The studies indicate a more open C-terminal domain for EhCaBP with larger water exposed total hydrophobic surface area as compared to CaM and TnC. Further dissimilarities between the structures include the presence of two Gly residues (G63 and G67) in the central linker region of EhCaBP, which seem to impart it a greater flexibility compared to CaM and TnC and also play crucial role in its biological function. Thus, unlike in CaM and TnC, wherein the length and/or composition of the central linker have been found to be crucial for their function, in EhCaBP, both flexibility as well as amino acid composition is required for the function of the protein.  相似文献   

3.
Mukherjee S  Mohan PM  Chary KV 《Biochemistry》2007,46(12):3835-3845
Calcium binding proteins carry out various signal transduction processes upon binding to Ca2+. In general, these proteins perform their functions in a high background of Mg2+. Here, we report the role of Mg2+ on a calcium sensor protein from Entamoeba histolytica (EhCaBP), containing four Ca2+-binding sites. Mg2+-bound EhCaBP exists as a monomer with a conformation different from that of the holo- and apo-EhCaBP. NMR and biophysical data on EhCaBP demonstrate that Mg2+ stabilizes the closed conformation of the apo form. In the presence of Mg2+, the partially collapsed apo-EhCaBP gains stability and structural integrity. Mg2+ binds to only 3 out of 4 calcium binding sites in EhCaBP. The Ca2+ binding affinity and cooperativity of the conformational switching from the "closed" to the "open" state is significantly modulated by the presence of Mg2+. This fine-tuning of the Ca2+ concentration to switch its conformation is essential for CaBPs to carry out the signal transduction process efficiently.  相似文献   

4.
Mukherjee S  Kuchroo K  Chary KV 《Biochemistry》2005,44(34):11636-11645
One of the calcium binding proteins from Entamoeba histolytica (EhCaBP) is a 134 amino acid residue long (M(r) approximately 14.9 kDa) double domain EF-hand protein containing four Ca(2+) binding sites. CD and NMR studies reveal that the Ca(2+)-free form (apo-EhCaBP) exists in a partially collapsed form compared to the Ca(2+)-bound (holo) form, which has an ordered structure (PDB ID ). Deuterium exchange studies on the partially structured apo-EhCaBP reveal that the C-terminal domain is better structured than the N-terminal domain. The protein can be reversibly folded and unfolded upon addition of Ca(2+) and EGTA, respectively. Titration shows a slow initial folding of the apo form with increasing Ca(2+) concentration, followed by a highly cooperative folding to its final state at a certain threshold of Ca(2+). Ca(2+) and the EGTA titration taken together show that site II in the N-terminal domain has the highest affinity for Ca(2+) contrary to earlier studies. Further, this study has thrown light on the relative Ca(2+) binding affinity and specificity of each site in the intact protein. A structural model for the partially collapsed form of apo-EhCaBP and its equilibrium folding to its completely folded holo state has been suggested. Large conformational changes seen in transforming from the apo to holo form of EhCaBP suggest that this protein should be functioning as a sensor protein and might have a significant role in host-parasite recognition.  相似文献   

5.
Five members of a novel Ca(2+)-binding protein subfamily (CaBP), with 46-58% sequence similarity to calmodulin (CaM), were identified in the vertebrate retina. Important differences between these Ca(2+)-binding proteins and CaM include alterations within their second EF-hand loop that render these motifs inactive in Ca(2+) coordination and the fact that their central alpha-helixes are extended by one alpha-helical turn. CaBP1 and CaBP2 contain a consensus sequence for N-terminal myristoylation, similar to members of the recoverin subfamily and are fatty acid acylated in vitro. The patterns of expression differ for each of the various members. Expression of CaBP5, for example, is restricted to retinal rod and cone bipolar cells. In contrast, CaBP1 has a more widespread pattern of expression. In the brain, CaBP1 is found in the cerebral cortex and hippocampus, and in the retina this protein is found in cone bipolar and amacrine cells. CaBP1 and CaBP2 are expressed as multiple, alternatively spliced variants, and in heterologous expression systems these forms show different patterns of subcellular localization. In reconstitution assays, CaBPs are able to substitute functionally for CaM. These data suggest that these novel CaBPs are an important component of Ca(2+)-mediated cellular signal transduction in the central nervous system where they may augment or substitute for CaM.  相似文献   

6.
We have studied the displacement of Ca(2+)by the trivalent lanthanide ions (Yb(3+)) in a protozoan (Entamoeba histolytica) Ca(2+)-binding protein (EhCaBP), by NMR and thermodynamics. We have demonstrated, for the first time, how one can use in a combined fashion the utility of NMR and thermodynamics to have an insight to the relative binding specificities/affinity between Ca(2+) and Yb(3+). As revealed by the titration experiments, Yb(3+) displaces Ca(2+) from the four metal binding sites present in EhCaBP in a sequential manner. The study provides a structural origin for such a sequential Ca(2+) displacement by Yb(3+) in EhCaBP.  相似文献   

7.
EhCaBP1, a calcium-binding protein of the parasite Entamoeba histolytica, is known to participate in cellular processes involving actin filaments. This may be due to its direct interaction with actin. In order to understand the kinetics of EhCaBP1 in such processes, its movement was studied in living cells expressing GFP-EhCaBP1. The results showed that EhCaBP1 accumulated at phagocytic cups and pseudopods transiently. The time taken for appearance and disappearance of EhCaBP1 was found to be around 12 s. Site-directed mutagenesis was used to generate an EhCaBP1 mutant with reduced Ca(2+)- and G-actin binding ability without any defect in its ability to bind F-actin. The overexpression of this mutant EhCaBP1 in the E. histolytica trophozoites resulted in the impairment of erythrophagocytosis, uptake of bacterial cells, killing of target cells but not fluid-phase pinocytosis. However, the mutant protein was still found to transiently localize with F-actin at the phagocytic cups and pseudopods. The mutant protein displayed reduced ability to activate endogenous kinase(s) suggesting that phagosome formation may require Ca(2+)-EhCaBP1 transducing downstream signalling but initiation of phagocytosis may be independent of its intrinsic ability to bind Ca(2+). The results suggest a dynamic association of EhCaBP1 with F-actin-mediated processes.  相似文献   

8.
Examination of the role of Ca(2+)-binding proteins (CaBPs) in mammalian retinal neurons has yielded new insights into the function of these proteins in normal and pathological states. In the last 8 years, studies on guanylate cyclase (GC) regulation by three GC-activating proteins (GCAP1-3) led to several breakthroughs, among them the recent biochemical analysis of GCAP1(Y99) mutants associated with autosomal dominant cone dystrophy. Perturbation of Ca(2+) homeostasis controlled by mutant GCAP1 in photoreceptor cells may result ultimately in degeneration of these cells. Here, detailed analysis of biochemical properties of GCAP1(P50L), which causes a milder form of autosomal dominant cone dystrophy than constitutive active Y99C mutation, showed that the P50L mutation resulted in a decrease of Ca(2+)-binding, without changes in the GC activity profile of the mutant GCAP1. In contrast to this biochemically well-defined regulatory mechanism that involves GCAPs, understanding of other processes in the retina that are regulated by Ca(2+) is at a rudimentary stage. Recently, we have identified five homologous genes encoding CaBPs that are expressed in the mammalian retina. Several members of this subfamily are also present in other tissues. In contrast to GCAPs, the function of this subfamily of calmodulin (CaM)-like CaBPs is poorly understood. CaBPs are closely related to CaM and in biochemical assays CaBPs substitute for CaM in stimulation of CaM-dependent kinase II, and calcineurin, a protein phosphatase. These results suggest that CaM-like CaBPs have evolved into diverse subfamilies that control fundamental processes in cells where they are expressed.  相似文献   

9.
Regulation of protein dephosphorylation by cytoplasmic Ca(2+) levels and calmodulin (CaM) is well established and considered to be mediated solely by calcineurin. Yet, recent identification of protein phosphatases with EF-hand domains (PPEF/rdgC) point to the existence of another group of Ca(2+)-dependent protein phosphatases. We have recently hypothesised that PPEF/rdgC phosphatases might possess CaM-binding sites of the IQ-type in their N-terminal domains. We now employed yeast two-hybrid system and surface plasmon resonance (SPR) to test this hypothesis. We found that entire human PPEF2 interacts with CaM in the in vivo tests and that its N-terminal domain binds to CaM in a Ca(2+)-dependent manner with nanomolar affinity in vitro. The fragments corresponding to the second exons of PPEF1 and PPEF2, containing the IQ motifs, are sufficient for specific Ca(2+)-dependent interaction with CaM both in vivo and in vitro. These findings demonstrate the existence of mammalian CaM-binding protein Ser/Thr phosphatases distinct from calcineurin and suggest that the activity of PPEF phosphatases may be controlled by Ca(2+) in a dual way: via C-terminal Ca(2+)-binding domain and via interaction of the N-terminal domain with CaM.  相似文献   

10.
Kumar S  Padhan N  Alam N  Gourinath S 《Proteins》2007,68(4):990-998
Calcium plays a pivotal role in the pathogenesis of amoebiasis, a major disease caused by Entamoeba histolytica. Several EF-hand containing calcium-binding proteins (CaBPs) have been identified from E. histolytica. Even though these proteins have very high sequence similarity, they bind to different target proteins in a Ca2+ dependent manner, leading to different functional pathways (Yadava et al., Mol Biochem Parasito 1997;84:69-82; Chakrabarty et al., J Biol Chem 2004;279:12898-12908) The crystal structure of the Entamoeba histolytica calcium binding protein-1 (EhCaBP1) has been determined at 2.4 A resolution. The crystals were grown using MPD as precipitant and they belong to P6(3) space group with unit cell parameters of a = 95.25 A, b = 95.25 A, c = 64.99 A. Only two out of the four expected EF hand motifs could be modeled into the electron density map and the final model refined to R factor of 25.6% and Free_R of 28%. Unlike CaM, the first two EF hand motifs in EhCaBP1 are connected by a long helix and form a dumbbell shaped structure. Owing to domain swapping oligomerization three EhCaBP1 molecules interact in a head to tail manner to form a triangular trimer. This arrangement allows the EF-hand motif of one molecule to interact with that of an adjacent molecule to form a two EF-hand domain similar to that seen in the N-terminal domain of the NMR structure of CaBP1, calmodulin and troponin C. The oligomeric state of EhCaBP1 results in reduced flexibility between domains and may be responsible for the more limited set of targets recognized by EhCaBP1.  相似文献   

11.
Weljie AM  Gagné SM  Vogel HJ 《Biochemistry》2004,43(48):15131-15140
Ca(2+)-dependent protein kinases (CDPKs) are vital Ca(2+)-signaling proteins in plants and protists which have both a kinase domain and a self-contained calcium regulatory calmodulin-like domain (CLD). Despite being very similar to CaM (>40% identity) and sharing the same fold, recent biochemical and structural evidence suggests that the behavior of CLD is distinct from its namesake, calmodulin. In this study, NMR spectroscopy is employed to examine the structure and backbone dynamics of a 168 amino acid Ca(2+)-saturated construct of the CLD (NtH-CLD) in which almost the entire C-terminal domain is exchange broadened and not visible in the NMR spectra. Structural characterization of the N-terminal domain indicates that the first Ca(2+)-binding loop is significantly more open than in a recently reported structure of the CLD complexed with a putative intramolecular binding region (JD) in the CDPK. Backbone dynamics suggest that parts of the third helix exhibit unusually high mobility, and significant exchange, consistent with previous findings that this helix interacts with the C-terminal domain. Dynamics data also show that the "tether" region, consisting of the first 11 amino acids of CLD, is highly mobile and these residues exhibit distinctive beta-type secondary structure, which may help to position the JD and CLD. Finally, the unusual global dynamic behavior of the protein is rationalized on the basis of possible interdomain rearrangements and the highly variable environments of the C- and N-terminal domains.  相似文献   

12.
Inositol 1,4,5-trisphosphate receptors (InsP(3)Rs) were recently demonstrated to be activated independently of InsP(3) by a family of calmodulin (CaM)-like neuronal Ca(2+)-binding proteins (CaBPs). We investigated the interaction of both naturally occurring long and short CaBP1 isoforms with InsP(3)Rs, and their functional effects on InsP(3)R-evoked Ca(2+) signals. Using several experimental paradigms, including transient expression in COS cells, acute injection of recombinant protein into Xenopus oocytes and (45)Ca(2+) flux from permeabilised COS cells, we demonstrated that CaBPs decrease the sensitivity of InsP(3)-induced Ca(2+) release (IICR). In addition, we found a Ca(2+)-independent interaction between CaBP1 and the NH(2)-terminal 159 amino acids of the type 1 InsP(3)R. This interaction resulted in decreased InsP(3) binding to the receptor reminiscent of that observed for CaM. Unlike CaM, however, CaBPs do not inhibit ryanodine receptors, have a higher affinity for InsP(3)Rs and more potently inhibited IICR. We also show that phosphorylation of CaBP1 at a casein kinase 2 consensus site regulates its inhibition of IICR. Our data suggest that CaBPs are endogenous regulators of InsP(3)Rs tuning the sensitivity of cells to InsP(3).  相似文献   

13.
Calmodulin (CaM) is a Ca(2+)-binding protein that functions as a ubiquitous Ca(2+)-signaling molecule, through conformational changes from the "closed" apo conformation to the "open" Ca(2+)-bound conformation. Mg(2+) also binds to CaM and stabilizes its folded structure, but the NMR signals are broadened by slow conformational fluctuations. Using the E104D/E140D mutant, designed to decrease the signal broadening in the presence of Mg(2+) with minimal perturbations of the overall structure, the solution structure of the Mg(2+)-bound form of the CaM C-terminal domain was determined by multidimensional NMR spectroscopy. The Mg(2+)-induced conformational change mainly occurred in EF hand IV, while EF-hand III retained the apo structure. The helix G and helix H sides of the binding sequence undergo conformational changes needed for the Mg(2+) coordination, and thus the helices tilt slightly. The aromatic rings on helix H move to form a new cluster of aromatic rings in the hydrophobic core. Although helix G tilts slightly to the open orientation, the closed conformation is maintained. The fact that the Mg(2+)-induced conformational changes in EF-hand IV and the hydrophobic core are also seen upon Ca(2+) binding suggests that the Ca(2+)-induced conformational changes can be divided into two categories, those specific to Ca(2+) and those common to Ca(2+) and Mg(2+).  相似文献   

14.
In all eukaryotic cells, and particularly in neurons, Ca(2+) ions are important second messengers in a variety of cellular signaling pathways. In the retina, Ca(2+) modulation plays a crucial function in the development of the visual system's neuronal connectivity and a regulatory role in the conversion of the light signal received by photoreceptors into an electrical signal transmitted to the brain. Therefore, the study of retinal Ca(2+)-binding proteins, which frequently mediate Ca(2+) signaling, has given rise to the important discovery of two subfamilies of these proteins, neuronal Ca(2+)-binding proteins (NCBPs) and calcium-binding proteins (CaBPs), that display similarities to calmodulin (CaM). These and other Ca(2+)-binding proteins are integral components of cellular events controlled by Ca(2+). Some members of these subfamilies also play a vital role in signal transduction outside of the retina. The expansion of the CaM-like protein family reveals diversification among Ca(2+)-binding proteins that evolved on the basis of the classic molecule, CaM. A large number of NCBP and CaBP subfamily members would benefit from their potentially specialized role in Ca(2+)-dependent cellular processes. Pinpointing the role of these proteins will be a challenging task for further research.  相似文献   

15.
16.
The protein-coding region of an intronless human calmodulin-like gene [Koller, M., & Strehler, E. E. (1988) FEBS Lett. 239, 121-128] has been inserted into a pKK233-2 expression vector, and the 148-residue, M(r) = 16,800 human protein was purified to apparent homogeneity by phenyl-Sepharose affinity chromatography from cultures of Escherichia coli JM105 transformed with the recombinant vector. Several milligrams of the purified protein were obtained from 1 L of bacterial culture. A number of properties of human CLP were compared to those of bacterially expressed human calmodulin (CaM) and of bovine brain CaM. CLP showed a characteristic Ca(2+)-dependent electrophoretic mobility shift on SDS-polyacrylamide gels, although the magnitude of this shift was smaller than that observed with CaM. CLP was able to activate the 3',5'-cyclic nucleotide phosphodiesterase to the same Vmax as normal CaM, albeit with a 7-fold higher Kact. In contrast, the erythrocyte plasma membrane Ca(2+)-ATPase could only be stimulated to 62% of its maximal CaM-dependent activity by CLP. CLP was found to contain four Ca(2+)-binding sites with a mean affinity constant of 10(5) M-1, a value about 10-fold lower than that for CaM under comparable conditions. The highly tissue-specifically-expressed CLP represents a novel human Ca(2+)-binding protein showing characteristics of a CaM isoform.  相似文献   

17.
Ca(2+)-binding protein-1 (CaBP1) and calmodulin (CaM) are highly related Ca(2+)-binding proteins that directly interact with, and yet differentially regulate, voltage-gated Ca(2+) channels. Whereas CaM enhances inactivation of Ca(2+) currents through Ca(v)1.2 (L-type) Ca(2+) channels, CaBP1 completely prevents this process. How CaBP1 and CaM mediate such opposing effects on Ca(v)1.2 inactivation is unknown. Here, we identified molecular determinants in the alpha(1)-subunit of Ca(v)1.2 (alpha(1)1.2) that distinguish the effects of CaBP1 and CaM on inactivation. Although both proteins bind to a well characterized IQ-domain in the cytoplasmic C-terminal domain of alpha(1)1.2, mutations of the IQ-domain that significantly weakened CaM and CaBP1 binding abolished the functional effects of CaM, but not CaBP1. Pulldown binding assays revealed Ca(2+)-independent binding of CaBP1 to the N-terminal domain (NT) of alpha(1)1.2, which was in contrast to Ca(2+)-dependent binding of CaM to this region. Deletion of the NT abolished the effects of CaBP1 in prolonging Ca(v)1.2 Ca(2+) currents, but spared Ca(2+)-dependent inactivation due to CaM. We conclude that the NT and IQ-domains of alpha(1)1.2 mediate functionally distinct interactions with CaBP1 and CaM that promote conformational alterations that either stabilize or inhibit inactivation of Ca(v)1.2.  相似文献   

18.
Presynaptic group III metabotropic glutamate receptors (mGluRs) and Ca(2+) channels are the main neuronal activity-dependent regulators of synaptic vesicle release, and they use common molecules in their signaling cascades. Among these, calmodulin (CaM) and the related EF-hand Ca(2+)-binding proteins are of particular importance as sensors of presynaptic Ca(2+), and a multiple of them are indeed utilized in the signaling of Ca(2+) channels. However, despite its conserved structure, CaM is the only known EF-hand Ca(2+)-binding protein for signaling by presynaptic group III mGluRs. Because the mGluRs and Ca(2+) channels reciprocally regulate each other and functionally converge on the regulation of synaptic vesicle release, the mGluRs would be expected to utilize more EF-hand Ca(2+)-binding proteins in their signaling. Here I show that calcium-binding protein 1 (CaBP1) bound to presynaptic group III mGluRs competitively with CaM in a Ca(2+)-dependent manner and that this binding was blocked by protein kinase C (PKC)-mediated phosphorylation of these receptors. As previously shown for CaM, these results indicate the importance of CaBP1 in signal cross talk at presynaptic group III mGluRs, which includes many molecules such as cAMP, Ca(2+), PKC, G protein, and Munc18-1. However, because the functional diversity of EF-hand calcium-binding proteins is extraordinary, as exemplified by the regulation of Ca(2+) channels, CaBP1 would provide a distinct way by which presynaptic group III mGluRs fine-tune synaptic transmission.  相似文献   

19.
Protein phosphorylation is one of the major mechanisms by which eukaryotic cells transduce extracellular signals into intracellular responses. Calcium/calmodulin (Ca(2+)/CaM)-dependent protein phosphorylation has been implicated in various cellular processes, yet little is known about Ca(2+)/CaM-dependent protein kinases (CaMKs) in plants. From an Arabidopsis expression library screen using a horseradish peroxidase-conjugated soybean calmodulin isoform (SCaM-1) as a probe, we isolated a full-length cDNA clone that encodes AtCK (Arabidopsis thaliana calcium/calmodulin-dependent protein kinase). The predicted structure of AtCK contains a serine/threonine protein kinase catalytic domain followed by a putative calmodulin-binding domain and a putative Ca(2+)-binding domain. Recombinant AtCK was expressed in E. coli and bound to calmodulin in a Ca(2+)-dependent manner. The ability of CaM to bind to AtCK was confirmed by gel mobility shift and competition assays. AtCK exhibited its highest levels of autophosphorylation in the presence of 3 mM Mn(2+). The phosphorylation of myelin basic protein (MBP) by AtCK was enhanced when AtCK was under the control of calcium-bound CaM, as previously observed for other Ca(2+)/CaM-dependent protein kinases. In contrast to maize and tobacco CCaMKs (calcium and Ca(2+)/CaM-dependent protein kinase), increasing the concentration of calmodulin to more than 3 microgram suppressed the phosphorylation activity of AtCK. Taken together our results indicate that AtCK is a novel Arabidopsis Ca(2+)/CaM-dependent protein kinase which is presumably involved in CaM-mediated signaling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号