首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The intracellular levels of antioxidant and free radical scavenging enzymes are gradually altered during the aging process. An age-dependent increase of oxidative stress occurring throughout the lifetime is hypothesized to be the major cause of aging. The current study examined the effects of L-malate on oxidative stress and antioxidative defenses in the liver and heart of aged rats. Sprague-Dawley male rats were randomly divided into four groups, each group consisting of 6 animals. Group Ia and Group IIa were young and aged control rats. Group Ib and Group IIb were young and aged rats treated with L-malate (210 mg/kg body weight per day). L-malate was orally administrated via intragastric canula for 30 days, then the rats were sacrificed and the liver and heart were removed to determine the oxidant production, lipid peroxidation and antioxidative defenses of young and aged rats. Dietary L-malate reduced the accumulation of reactive oxygen species (ROS) and significantly decreased the level of lipid peroxidation in the liver and heart of the aged rats. Accordingly, L-malate was found to enhance the antioxidative defense system with an increased activity of antioxidant enzymes, such as superoxide dismutase (SOD) and glutathione peroxidase (GPx) and increased glutathione (GSH) levels in the liver of aged rats, a phenomenon not observed in the heart of aged rats. Our data indicate that oxidative stress was reversed and the antioxidative defense system was strengthened by dietary supplementation with L-malate.  相似文献   

2.
Mitochondrial malate dehydrogenase is activated by high concentrations of L-malate. In this paper, several factors affecting this activation on chicken liver enzyme have been investigated. The results obtained show clearly that this phenomenon is an intrinsic property of this enzyme since it does not depend on pH or ionic strength of the reaction medium. However, L-malate activation decreases when NAD+ concentration diminishes (5mM----0.2 mM) in such a way that when NAD+ concentration is 0.2 mM, L-malate does not activate mitochondrial malate dehydrogenase. On the other hand, several activators of this enzymatic system, such as citrate or phosphate, also produce the elimination of this activation by L-malate; in this case, the phenomenon seems be due to a competitive binding to a regulatory site of the different metabolites implied.  相似文献   

3.
Mitochondria are an important intracellular source and target of reactive oxygen species. The life span of a species is thought to be determined, in part, by the rate of mitochondrial damage inflicted by oxygen free radicals during the course of normal cellular metabolism. In the present study, we have investigated the protective effect of squalene supplementation for 15 days and 30 days on energy status and antioxidant defense system in liver mitochondria of 18 young and 18 aged rats. The dietary supplementation of 2% squalene significantly minimized aging associated alterations in mitochondrial energy status by maintaining the activities of TCA cycle enzymes (isocitrate dehydrogenase, α-ketoglutarate dehydrogenase, succinate dehydrogenase and malate dehydrogenase) and respiratory marker enzymes (NADH dehydrogenase and cytochrome-c-oxidase) at higher level in the liver mitochondria of aged rats compared with unsupplemented controls. It exerted an antioxidant effect by inhibiting mitochondrial lipid peroxidation (malondialdehyde) in liver of young and aged rats. Supplementation with squalene also maintained the mitochondrial antioxidant defense system at higher rate by increasing the level of reduced glutathione and the activities of glutathione-dependent antioxidant enzymes (glutathione peroxidase and glutathione-S-transferase) and antiperoxidative enzymes (superoxide dismutase and catalase) in the liver of young and aged rats. The results of this study provide evidence that dietary supplementation with squalene can improve liver mitochondrial function during aging and minimize the age-associated disorders in which reactive oxygen species are a major cause.  相似文献   

4.
Effect of DL-alpha-lipoic acid on mitochondrial enzymes in aged rats.   总被引:2,自引:0,他引:2  
Mitochondrial dysfunction appears to contribute to some of the loss of function accompanying ageing. Mitochondria from aged tissue use oxygen inefficiently impairing ATP synthesis and results in increased oxidant production. A high flux of oxidants not only damages mitochondria, but other important cell biomolecules as well. In the present investigation, the levels of lipid peroxidation, oxidized glutathione, non-enzymatic antioxidants and the activities of mitochondrial enzymes were measured in liver and kidney mitochondria of young and aged rats before and after lipoic acid supplementation. In both liver and kidney increase in the levels of mitochondrial lipid peroxidation and oxidized glutathione and decrease in the levels of antioxidants and the activities of mitochondrial enzymes were observed in aged rats. DL-alpha-lipoic acid supplemented aged rats showed a decrease in the levels of lipid peroxidation and oxidized glutathione and increase in the levels of reduced glutathione, vitamins C and E and the activities of mitochondrial enzymes like isocitrate dehydrogenase, alpha-ketoglutarate dehydrogenase, succinate dehydrogenase, NADH-dehydrogenase and cytochrome-c-oxidase. Thus, lipoic acid reverses the age-associated decline in endogenous low molecular weight antioxidants and mitochondrial enzymes and, therefore, may lower the increased risk of oxidative damage that occurs during ageing. From our results it can be concluded that lipoic acid supplementation enhances the activities of mitochondrial enzymes and antioxidant status and thereby protects mitochondria from ageing.  相似文献   

5.
6.
1. Hydroxysteroid oxidoreductases have been partially purified from the cytosol fraction (105,000 g supernatant) of liver from a fresh-water turtle (Podocnemis expansa) and a sea-water turtle (Chelonia mydas mydas) by precipitation with ammonium sulphate (AS, 10-80% saturation). 2. The following enzymes were detected (substrates in brackets): 3 alpha-hydroxysteroid oxidoreductase (androsterone), 3 beta-hydroxysteroid oxidoreductase (DHEA) and 17 beta-hydroxysteroid oxidoreductase (testosterone, oestradiol-17 beta). NAD as well as NADP were effective as cofactors. 3. In fresh-water turtle, highest activities of the 3 alpha-enzyme were measured in the 20% AS fraction (cofactor NAD), of the 3 beta-enzyme in the 60% AS fraction (cofactor NAD) and of the 17 beta-enzyme in the 40% AS fraction (cofactor NADP). 4. In sea-water turtle, highest activities were observed for all three enzymes in the 60% AS fraction. 5. Generally, enzyme activities were higher in sea-water turtles than in fresh-water turtles. The most active enzyme in both turtles was found to be the 3 alpha-hydroxysteroid oxidoreductase, followed by the 17 beta- and the 3 beta-hydroxysteroid oxidoreductases.  相似文献   

7.
8.
L-malate, a tricarboxylic acid cycle (TCA) intermediate, plays an important role in transporting NADH from cytosol to mitochondria for energy production and may be involved in the beneficial effects of improving physical stamina. In the present study, we investigated the effects of L-malate on the performance of forced swimming time and blood biochemical parameters related to fatigue - blood urea nitrogen (BUN), glucose (Glc), creatine kinase (CK),total protein (TP) and lactic acid (LA). To investigate the effects of L-malate on the malate-aspartate shuttle and energy metabolism in mice, the activities of enzymes related to the malate-aspartate shuttle were measured. L-malate was orally administered to mice continuously for 30 days using a feeding atraumatic needle. The swimming time was increased by 26.1 % and 28.5 %, respectively, in the 0.210 g/kg and 0.630 g/kg L-malate-treated group compared with the control group. There were no differences in the concentrations of Glc, BUN and TP between the L-malate-treated groups and the control groups. However, the levels of CK were significantly decreased in the L-malate-treated groups. The results predict a potential benefit of L-malate for improving physical stamina and minimizing muscle damage during swimming exercise. The activities of cytosolic and mitochondrial malate dehydrogenase were significantly elevated in the L-malate-treated group compared with the control group. These enzymatic activities may be useful indicators for evaluating changes affecting the malate-aspartate shuttle and energy metabolism in the liver of mice.  相似文献   

9.
Objective:This study aimed to explore optimal conditions of whole-body vibration (WBV) for improving bone properties in aged rats.Methods:Eighty-week-old rats were divided into baseline control (BC), age-matched control (CON) and experimental groups, which underwent WBV (0.5 g) at various frequencies (15, 30, 45, 60 or 90 Hz) or WBV (45 Hz) with various magnitudes (0.3, 0.5, 0.7 or 1.0 g) for 7 weeks. After interventions, femur bone size, bone mechanical strength and circulating bone formation/resorption markers were measured, and trabecular bone microstructure (TBMS) and cortical bone geometry (CBG) of femurs were analyzed by micro-CT.Results:Several TBMS parameters and trabecular bone mineral content were significantly lower in the 15 Hz WBV (0.5 g) group than in the CON group, suggesting damage to trabecular bone. On the other hand, although frequency/magnitude of WBV did not influence any CBG parameters, the 0.7 g and 1.0 g WBV (45 Hz) group showed an increase in tissue mineral density of cortical bone compared with the BC and CON groups, suggesting the possibility of improving cortical bone properties.Conclusion:Based on these findings, it should be noted that WBV conditions are carefully considered when applied to elderly people.  相似文献   

10.
Liver tumors, ranging from benign nodules to carcinomas, developed spontaneously in 115 (87%) of 132 germfree Wistar rats beyond the age of 30 months. In addition, the rats developed a high incidence of benign adenomas of endocrine glands and of the breasts.  相似文献   

11.
The effects of ferulic acid on L-malate oxidation in mitochondria isolated from soybean (Glycine max L.) seedlings were investigated. Oxygen uptake and the products of L-malate oxidation were measured under two conditions: pH 6.8 and 7.8. At acidic pH, the activity of the NAD+-linked malic enzyme (L-malate:NAD+oxidoreductase [decarboxylating] EC 1.1.1.39) was favoured, whereas at alkaline pH a predominance of the L-malate dehydrogenase activity (L-malate:NAD+oxidoreductase EC 1.1.1.37) was apparent. Ferulic acid inhibited basal and coupled respiration during L-malate oxidation either at acidic or alkaline pH, reducing also the amounts of pyruvate or oxaloacetate produced. The results suggest that the site of ferulic acid action is situated at some step that precedes the respiratory chain. An interference with the L-malate entry into the mitochondria could be an explanation for the effects of ferulic acid, but the possibility of a direct inhibition of both enzymes involved in L-malate oxidation cannot be ruled out. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
《Free radical research》2013,47(9):1140-1149
Abstract

This study explored major systems of reactive oxygen species (ROS) production and their consequences on oxidative stress, mitochondriogenesis and muscle metabolism in aged rats, and evaluated the efficiency of 30-day oral supplementation with a moderate dose of a red grape polyphenol extract (RGPE) on these parameters. In the liver of aged rats, NADPH oxidase activity was increased and mitochondrial respiratory chain complex activities were altered, while xanthine oxidase activity remained unchanged. In muscles, only mitochondrial activity was modified with aging. The oral intake of RGPE decreased liver NADPH oxidase activity in the aged rats without affecting global oxidative stress, suggesting that NADPH oxidase was probably not the dominant detrimental source of production of O2·? in the liver. Interestingly, RGPE supplementation increased mitochondrial biogenesis and improved antioxidant status in the gastrocnemius of aged rats, while it had no significant effect in soleus. RGPE supplementation also decreased age-dependent autophagy in gastrocnemius of aged rats. These results extended existing findings on the beneficial effects of RGPE on mitochondriogenesis and muscle metabolism in aged rats.  相似文献   

13.
This study explored major systems of reactive oxygen species (ROS) production and their consequences on oxidative stress, mitochondriogenesis and muscle metabolism in aged rats, and evaluated the efficiency of 30-day oral supplementation with a moderate dose of a red grape polyphenol extract (RGPE) on these parameters. In the liver of aged rats, NADPH oxidase activity was increased and mitochondrial respiratory chain complex activities were altered, while xanthine oxidase activity remained unchanged. In muscles, only mitochondrial activity was modified with aging. The oral intake of RGPE decreased liver NADPH oxidase activity in the aged rats without affecting global oxidative stress, suggesting that NADPH oxidase was probably not the dominant detrimental source of production of O(2)·(-) in the liver. Interestingly, RGPE supplementation increased mitochondrial biogenesis and improved antioxidant status in the gastrocnemius of aged rats, while it had no significant effect in soleus. RGPE supplementation also decreased age-dependent autophagy in gastrocnemius of aged rats. These results extended existing findings on the beneficial effects of RGPE on mitochondriogenesis and muscle metabolism in aged rats.  相似文献   

14.
Rates of ADP stimulated respiration for various substrates were determined in mitochondria isolated from the livers of female Sprague-Dawley rats following 8 weeks of treatment with daily swimming, ethanol consumption, or both. All rats were fed an American Institute of Nutrition (AIN) type liquid diet with the ethanol treated rats receiving 35% of the calories as ethanol. Chronic exposure to ethanol depressed both state 3 respiration with glutamate as a substrate and cytochrome oxidase activity. Respiratory control ratios and P:O ratios, however, were unaffected by the ethanol exposure. Exercise alone had no effect on hepatic mitochondrial function. There were also no significant alterations in oxidative function of hepatic mitochondria from rats which were endurance-trained by swimming while receiving the ethanol diet. This lack of alteration in mitochondrial function was in spite of the fact that these rats consumed an identical amount of ethanol as those which incurred mitochondrial dysfunction. These results indicate that regular exercise has the potential to attenuate the ethanol induced decline in hepatic mitochondria.  相似文献   

15.
In order to study some aspects of the steroid hormone balance in old age the following organ functions of young and senescent male and female animals were investigated: 1) The capacity of testicular (45, 68-75 and 900 day-old animals) and ovarian tissue homogenates (29, 45, 66 and 900 day-old animals) to metabolically transform the sex hormone precursor, progesterone. 2) The capacity of liver slices (60-90 and 900 day-old animals) to generate a sex-specific metabolite pattern during incubation with testosterone. 3) The activities of some enzymes of steroid metabolism, which normally show sex differences in liver cell fractions (60-90 and 900 day-old animals). The testicular capacity of senescent animals to synthesize 17 alpha-hydroxyprogesterone, androstenedione and testosterone (main pathway of androgen biosynthesis) is drastically reduced compared to that of young adult rats; the reduction also extends to the production of highly polar C19O3- and C21O3-steroids. In contrast to these deficiencies, conversion of progesterone to 20 alpha-dihydroprogesterone increases in old age, whereas the generation of 5 alpha-hydrogenated compounds from testosterone and androstenedione remains unchanged. If the group of adolescent 45 day-old animals is also taken into consideration, then the biosynthetic sequence from progesterone to testosterone exhibits a biphasic developmental course. Production rates rise from low levels only to fall back to lower rates of synthesis in old age. In no age group can the production of oestrogens in measurable quantities be detected. However, 5 alpha-hydrogenated C19O2-steroid metabolites are detected, albeit only in prepuberal animals. After puberty only progesterone, 20 alpha-dihydroprogesterone and the 5 alpha-pregnane derivatives of these two steroids can be demonstrated. The pattern of the respective metabolites undergoes an age-dependent metabolite-specific development ending (900 day-old animals) with minimal yields of products (less than 21% of progesterone is converted). The production of hydroxylated metabolites (highly polar C21O3-steroid fraction) decreases very early in life (between day 29 and 45) to values indistinguishable from those of old animals. The sexually highly differentiated metabolite pattern of hepatic testosterone metabolism typical of young adult animals (60-90 day-old) is not prominent in old age. Both sexes exhibit a retarded testosterone turnover due to a decrease in the hydroxylating activity (males being more affected than females) and a deficiency of 5 alpha-hydrogenation (females only).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
17.
18.
The effects of altered thyroid state on the antioxidant defense system in the liver of differently aged rats were examined. Male rats aged 15, 45 and 75 days were treated with L-thyroxine, T(4) (40 microg/100 g body mass, s.c., one dose per day) for 14 days (finally aged 30, 60 and 90 days, respectively). The following antioxidant defense enzymes were measured: superoxide dismutases (both copper zinc, CuZn-SOD and manganese containing, Mn-SOD), catalase (CAT), glutathione peroxidase (GSH-Px), glutathione-S-transferase (GST), glutathione reductase (GR), as well as the content of low molecular mass antioxidant glutathione (GSH). The effect of T(4) on antioxidant defense system in the liver differs with respect to age. T(4) treatment decreased CAT and GST activities, as well as the content of GSH in animals aged 60 and 90 days. The same treatment elevated GR activity in rats at 30 days of age, this phenomenon was not observed in older animals. The different response of immature rats to thyroxine compared to older animals could be attributed to the differences in thyroxine metabolism and the developmental pattern. Direct effect of T(4) on mature rats can be considered as a part of its overall catabolic action.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号