首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Peripheral blood flow can be regulated by specialized vessel segments, the arteriovenous anastomoses. Their wall consists of a relatively thick layer of smooth muscle cells and so-called epithelioid cells. The epithelioid cell is a specialized myogenic cell phenotype expressing nitric oxide synthase. We studied the innervation of the different segments of arteriovenous anastomoses in the rabbit ear using antisera against neuropeptide Y, tyrosine hydroxylase, calcitonin gene-related peptide and substance P, as well as neuron-specific enolase, calbindin D and neurotubulin. The participation was especially examined of neuropeptidergic innervation and a possible morphological connection to the occurrence of epithelioid cells and a paracrine function. The NADPH diaphorase reaction and -smooth muscle actin immunoelectron microscopy served to distinguish epithelioid cells from smooth muscle cells. Using conventional fluorescence microscopy and confocal laser scanning microscopy, we found the most dense innervation pattern of pan-neuronal markers (neurotubulin, neuron-specific enolase), tyrosine hydroxylase-immunor eactive nerve fibres and neuro-peptidergic nerve fibres (neuropeptide Y, calcitonin gene-related peptide, substance P) around the intermediate segment in arteriovenous anastomoses, whereas the venous segment was barely marked. Single nerve fibres penetrated into the medial layer and reached the epithelioid cells. Using immunoelectron microscopy, we found intercellular contacts between epithelioid cells, but not the gap junction protein connexin 43. Here, we report for the first time a correlation of the innervation pattern with epithelioid cell type in arteriovenous anastomoses. Our findings suggest that epithelioid cells of the arteriovenous anastomoses are controlled by a dense network of neuropeptidergic nerve fibres in functional connection to their paracrine role as a nitric oxide producer. © 1998 Chapman & Hall  相似文献   

2.
A monoclonal antibody against histamine has been produced. A histamine–haemocyanin conjugate prepared using 1-ethyl-3-(3-dimethylami nopropyl) carbodiimide as a coupling agent was used for immunizing mice. Immunized mice were sacrificed to prepare monoclonal antibody using a hybridoma technique. On immunospot assay, the hybridoma culture supernatant containing a monoclonal antibody was capable of detecting 50 pmol of histamine. Using this antibody, we examined the cellular localization of histamine-like immunoreactivity in the stomach of normal or -fluoromethylhistidine-treated rats and mice. Immunoreactive cells were abundant in the gastric mucosal layer. These positive cells were often located in the basal half of the fundic gland but were rare in the pyloric gland. The cells, small or medium in size, spindle or cone in shape, were intermingled with immunonegative epithelial cells. In the cytoplasm of the positive cells, granular reaction products were densely deposited. In addition, a few positive cells, identified as mast cells by Toluidine Blue staining, were distributed mainly in the submucosal and muscular layer. The antibody preabsorbed with 10 mm histamine gave no positive immunostaining. For pharmacological study, some rats were injected six times with -fluoromethylhistidine every 8 h. In these rats, positive cells except mast cells were no longer detected. In conclusion, the monoclonal antibody produced appears to be highly specific for histamine. Its application in immunohistochemistry should provide a powerful tool for analysing the roles of histamine in enterochromaffin-like or mast cells in the stomach. © 1998 Chapman & Hall  相似文献   

3.
Although it is well established that haemoglobin can be taken up by kidney tubular epithelium, the exact mechanism of the process has not been elucidated so far. We have undertaken a study to determine whether any specific binding sites for haemoglobin are present on the membranes of renal tubular cells. Paraffin sections of rat kidney cortex were incubated with haemoglobin, and the bound molecules were detected by means of a combined avidin–peroxidase and ImmunoMax method. Haemoglobin binding sites were observed in the apical membrane of distal tubules. Binding occurred for both rat haemoglobin and swine and human haemoglobins, and the proteins could compete with each other. Competition experiments with other proteins showed that the binding is specific for haemoglobin and that the net charge of the protein is not critical for the interaction. We failed to detect the binding sites in proximal tubules, where most of the filtered proteins are reabsorbed. The role of the binding sites in the distal nephron is unclear. Our findings may be essential for the further understanding of the pathomechanism of haemoglobin-induced acute renal failure. © 1998 Chapman & Hall  相似文献   

4.
Using fluorescence immunohistochemistry, the distribution of connexin 43 was examined in hyaline cartilage and in the perichondrium of mouse and rat knee joints. In addition, rat chondrocytes were shown to be coupled in dye transfer studies with Lucifer Yellow. Connexin 43 was detected between chondrocytes in the outer layer of knee joint cartilage, between chondrocytes of the growth plate and between fibrocartilage-like cells at tendon and ligament insertions and in the tendons and ligaments proper. However, in the hyaline cartilage of the hind limbs of mature rats, the degree of connexin 43 immunoreactivity was diminished. These data suggest a possible involvement of connexins in cartilage development. © 1998 Chapman & Hall  相似文献   

5.
The uterus is a rich source of eicosanoids synthesized from arachidonic acid metabolism through the cyclo-oxygenase pathway. Two isoforms of cyclo-oxygenase, constitutive (COX-I) and inducible (COX-II) enzyme, have been reported. In the present study, we have immunohistochemically mapped the distribution of both COX-I and COX-II during various physiological states of the rat uterus. Uterine tissue was collected from female rats (a) during different stages of the oestrous cycle, (b) on days 1, 4, 8 and 18 of gestation, (c) after spontaneous delivery and (d) post partum, and fixed in Bouin's fixative. After paraffin wax embedding, 5-m-thick sections were immunohistochemically stained by the ABC technique. Observation of the stained sections under the light microscope revealed that, in non-pregnant rat uterus, both COX-I and COX-II were abundantly expressed in the endometrium, with minimal staining observed in the myometrium. Staining was more prominent in epithelial cells than in stromal cells. The intensity of staining in epithelial cells was highest at pro-oestrus and oestrus and lowest at dioestrus. In pregnant rats, although the expression of both COX-I and COX-II was localized primarily to the endometrium with very little staining in the myometrium on day 1 of gestation, both of these enzymes were also apparent in myometrial cells by day 4 of gestation. The staining intensity of endometrial and myometrial cells increased further with the progression of gestation, being maximal at the time of spontaneous delivery. During the post-partum period, however, the staining intensity for both of the enzymes in endometrium and myometrium was decreased. Thus, our studies show that the expression of cyclo-oxygenases in various uterine cells vary with the oestrous cycle and with pregnancy. Furthermore, prominent increases in the expression of cyclo-oxygenases in the myometrium during pregnancy and parturition imply that the cyclo-oxygenase system in the myometrium may play a major role in modulating uterine contractility during pregnancy and labour. © 1998 Chapman & Hall  相似文献   

6.
We have studied the effect of transforming growth factor beta 1 (TGF-beta 1) on vascular smooth muscle cell (SMC) mitogenesis and expression of thrombospondin and other growth related genes. We found that TGF-beta 1 treatment of vascular SMC induced a prolonged increase in steady-state mRNA levels of thrombospondin as well as alpha 1 (IV) collagen. The increase began at approximately 2 h, peaked by 24 h, and remained considerably elevated 48 h after growth factor addition. There was a corresponding increase in thrombospondin protein as well as increased expression of several other secreted polypeptides. The increase in thrombospondin contrasted sharply with that observed for platelet-derived growth factor (PDGF) which induced a rapid and transient increase in thrombospondin mRNA level. Although TGF-beta 1 was able to directly enhance expression of thrombospondin as well as the growth-related genes c-fos and c-myc, and induced c-fos expression with identical kinetics as PDGF, it was unable to elicit [3H]thymidine incorporation into DNA in three independent smooth muscle cell strains. However, TGF-beta 1 was able to strongly increase the mitogenic response of SMC to PDGF. Addition of both TGF-beta 1 and PDGF to SMC also caused a synergistic increase in the expression of thrombospondin as well as c-myc. Interestingly, in one other smooth muscle cell strain, a weak and delayed mitogenic response to TGF-beta 1 alone was observed. Our results strongly suggest that induction of thrombospondin expression by TGF-beta 1 and by PDGF occurs by distinct mechanisms. In addition, that TGF-beta 1 can enhance PDGF-induced mitogenesis may be due to the ability of TGF-beta 1 to directly induce the expression of thrombospondin, c-fos, c-myc, and the PDGF beta-receptor.  相似文献   

7.
8.
Cultured rat bladder smooth muscle cells (SMC) were grown oncollagen-coated silicone membranes and subjected to continuous cyclesof stretch-relaxation. Semiquantitative RT-PCR analysis revealed atime-dependent increase in heparin-binding epidermal growth factor(EGF)-like growth factor (HB-EGF) mRNA levels after stretch, withmaximal levels appearing after 4 h. Immunostaining for proHB-EGFrevealed higher levels of HB-EGF protein in the stretched than in thenonstretched SMC. The ANG II receptor type 1 antagonist losartanmarkedly suppressed stretch-activated HB-EGF expression. ANG II levelswere 3.3-fold higher in the stretch- than in thenon-stretch-conditioned media. Stretch stimulation of bladder SMC thathad been transiently transfected with an HB-EGF promoter-luciferaseexpression construct resulted in an 11-fold increase in reporteractivity. Mechanical stretch induced a 4.7-fold increase in tritiatedthymidine incorporation rate, and this was reduced by 25% in thepresence of losartan. We conclude that mechanical stretch activatesHB-EGF gene expression in bladder SMC and that this is mediated in partby autocrine ANG II secretion.

  相似文献   

9.
Knockout of transforming growth factor (TGF)-1 or components of its signaling pathway leads to embryonic death in mice due to impaired yolk sac vascular development before significant smooth muscle cell (SMC) maturation occurs. Thus the role of TGF-1 in SMC development remains unclear. Embryonic stem cell (ESC)-derived embryoid bodies (EBs) recapitulate many of the events of early embryonic development and represent a more physiological context in which to study SMC development than most other in vitro systems. The present studies showed induction of the SMC-selective genes smooth muscle -actin (SMA), SM22, myocardin, smoothelin-B, and smooth muscle myosin heavy chain (SMMHC) within a mouse ESC-EB model system. Significantly, SM2, the SMMHC isoform associated with fully differentiated SMCs, was expressed. Importantly, the results showed that aggregates of SMMHC-expressing cells exhibited visible contractile activity, suggesting that all regulatory pathways essential for development of contractile SMCs were functional in this in vitro model system. Inhibition of endogenous TGF- with an adenovirus expressing a soluble truncated TGF- type II receptor attenuated the increase in SMC-selective gene expression in the ESC-EBs, as did an antibody specific for TGF-1. Of interest, the results of small interfering (si)RNA experiments provided evidence for differential TGF--Smad signaling for an early vs. late SMC marker gene in that SMA promoter activity was dependent on both Smad2 and Smad3 whereas SMMHC activity was Smad2 dependent. These results are the first to provide direct evidence that TGF-1 signaling through Smad2 and Smad3 plays an important role in the development of SMCs from totipotential ESCs. embryoid body; Smad  相似文献   

10.
11.
12.
Adult human skin fibroblasts were used as a model to study the effects of transforming growth factor beta (TGF beta) on the secreted plasminogen activator (PA) activity of cultured cells. TGF beta, at nanogram concentrations, enhanced the secretion of pro-PA from two fibroblast strains in a time- and dose-dependent manner. The induced enzymatic activity was inhibited by anti-urokinase antibodies and it co-migrated with purified urokinase in polyacrylamide gels. The secretion of PA activity was abolished when cycloheximide (0.1 microgram/ml) was added to the cultures. The activity was thus dependent on protein synthesis rather than just on direct activation of a plasminogen proactivator. TGF beta had only a slight mitogenic effect on the test cells. Epidermal growth factor (EGF), platelet-derived growth factor (PDGF) and insulin were ineffective alone in inducing PA. Insulin, on the contrary, had an inhibitory effect on the TGF beta-induced PA activity. In addition to its effects on the secretion of PA, TGF beta enhanced the production of a proteinase inhibitor by these cells. The results suggest a role for TGF beta in the regulation of PA activity and pericellular proteolysis in fibroblastic cells.  相似文献   

13.
In attempts to determine the mechanism of proliferation of arterial smooth muscle cells (SMC) in intimal atheromatous lesions, autocrine secretion of growth factors by SMC has recently received much attention. Here we report a new growth factor named smooth muscle cell derived growth factor (SDGF). Cultured rabbit medial SMC secreted SDGF for 1 week during their incubation in serum-free media only after at least 4 passages. SDGF differed from platelet derived growth factor (PDGF) physicochemically, immunologically, and biologically. The properties of SDGF also seemed different from those of other known growth factors that stimulate the proliferation of mesenchymal cells.  相似文献   

14.
The transforming growth factor beta (TGFbeta) plays an important role in cell growth and differentiation. However, the intracellular signaling pathways through which TGFbeta inhibits skeletal myogenesis remain largely undefined. By measuring GTP-loading of Rho GTPases and the organization of the F-actin cytoskeleton and the plasma membrane, we analyzed the effect of TGFbeta addition on the activity of three GTPases, Rac1, Cdc42Hs and RhoA. We report that TGFbeta activates Rac1 and Cdc42Hs in skeletal muscle cells, two GTPases previously described to inhibit skeletal muscle cell differentiation whereas it inactivates RhoA, a positive regulator of myogenesis. We further show that TGFbeta activates the C-jun N-terminal kinases (JNK) pathway in myoblastic cells through Rac1 and Cdc42Hs GTPases. We propose that the activation of Rho family proteins Rac1 and Cdc42Hs which subsequently regulate JNK activity participates in the inhibition of myogenesis by TGFbeta.  相似文献   

15.
Bladder and vascular smooth muscle cells cultured from four rat strains (WKY, SHR, WKHA, WKHT) differing in rates of nerve growth factor (NGF) production were used to determine whether a relationship exists between intracellular calcium and NGF secretion. Basal cytosolic calcium was related to basal NGF secretion rates in bladder and vascular smooth muscle cells from all four strains with the exception of WKHT bladder muscle cells. Thrombin is a calcium-mobilizing agent and increases NGF production from vascular but not bladder smooth muscle cells. Strain differences were found in the magnitude of the calcium peak induced by thrombin in vascular smooth muscle cells, but these differences did not correlate with NGF secretion. Thrombin caused a calcium response in bladder smooth muscle cells without influencing NGF production. Quenching the calcium transient with a calcium chelator had no effect on thrombin-inducted NGF secretion rates in vascular smooth muscle cells. Thus, basal intracellular calcium may establish a set point for NGF secretion from smooth muscle. In addition, transient elevations in cytosolic calcium were unrelated to the induction of NGF output.  相似文献   

16.
The expression of platelet-derived growth factor (PDGF) receptors in porcine uterus and human skin in situ, was compared with that of cultured primary cells isolated from the same tissues. PDGF receptor expression was examined by monoclonal antibodies specific for the B type PDGF receptor and by RNA/RNA in situ hybridization with a probe constructed from a cDNA clone encoding the B type PDGF receptor. In porcine uterus tissue both mRNA and the protein product for the PDGF receptor were detected in the endometrium; the myometrium, in contrast, contained much lower amounts. Moreover, freshly isolated myometrial cells were devoid of PDGF receptors. However, after 1 d in culture receptors appeared, and after 2 wk of culturing essentially all of the myometrial cells stained positively with the anti-PDGF receptor antibodies and contained PDGF receptor mRNA. Similarly, B type PDGF receptors were not detected in normal human skin, but fibroblast-like cells from explant cultures of human skin possessed PDGF receptors. When determined by immunoblotting, porcine uterus myometrial membranes contained approximately 20% of the PDGF receptor antigen compared with the amount found in endometrial membranes. In addition, PDGF stimulated the phosphorylation of a 175-kD component, most likely representing autophosphorylation of the B type PDGF receptor in endometrial membranes, whereas only a marginal phosphorylation was seen in myometrial membranes. Taken together, these results demonstrate that PDGF receptor expression varies in normal tissues and that fibroblasts and smooth muscle cells do not uniformly express the receptor in situ. Furthermore, fibroblasts and smooth muscle cells that are released from tissues are induced to express PDGF receptors in response to cell culturing. The data suggest that, in addition to the availability of the ligand, PDGF-mediated cell growth in vivo is dependent on factors regulating expression of the receptor.  相似文献   

17.
Transforming growth factor beta1 (TGF-beta1) signaling is compromised in many tumors, thereby allowing the tumor to escape the growth-inhibitory and proapoptotic activities of the cytokine. Human adenoviruses interfere with a number of cellular pathways involved in cell cycle regulation and apoptosis, initially placing the cell in a "tumor-like" state by forcing quiescent cells into the cell cycle and also inhibiting apoptosis. We report that adenovirus-infected cells resemble tumor cells in that TGF-beta1 signaling is inhibited. The levels of TGF-beta1 receptor II (TbetaRII) in adenovirus-infected cells were decreased, and this decrease was mapped, by using virus mutants, to the E1A gene and to amino acids 2 to 36 and the C-terminal binding protein binding site in the E1A protein. The decrease in the TbetaRII protein was accompanied by a decrease in TbetaRII mRNA. The decrease in TbetaRII protein levels in adenovirus-infected cells was greater than the decrease in TbetaRII mRNA, suggesting that downregulation of the TbetaRII protein may occur through more than one mechanism. Surprisingly in this context, the half-lives of the TbetaRII protein in infected and uninfected cells were similar. TGF-beta1 signaling was compromised in cells infected with wild-type adenovirus, as measured with 3TP-lux, a TGF-beta-sensitive reporter plasmid expressing luciferase. Adenovirus mutants deficient in TbetaRII downregulation did not inhibit TGF-beta1 signaling. TGF-beta1 pretreatment reduced the relative abundance of adenovirus structural proteins in infected cells, an effect that was potentiated when cells were infected with mutants incapable of modulating the TGF-beta signaling pathway. These results raise the possibility that inhibition of TGF-beta signaling by E1A is a means by which adenovirus counters the antiviral defenses of the host.  相似文献   

18.
19.
20.
We have explored the hypothesis that hypertrophy of vascular smooth muscle cells may be regulated, in part, by growth inhibitory factors that alter the pattern of the growth response to serum mitogens by characterizing the effects of the potent growth inhibitor, transforming growth factor-beta (TGF-beta), on both hyperplastic and hypertrophic growth of cultured rat aortic smooth muscle cells. TGF-beta inhibited serum-induced proliferation of rat aortic smooth muscle cells (ED50 = 2 pM); this is consistent with previously reported observations in bovine aortic smooth muscle cells (Assoian et al. 1982. J. Biol. Chem. 258:7155-7160). Growth inhibition was due in part to a greater than twofold increase in the cell cycle transit time in cells that continued to proliferate in the presence of TGF-beta. TGF-beta concurrently induced cellular hypertrophy as assessed by flow cytometric analysis of cellular protein content (47% increase) and forward angle light scatter (32-50% increase), an index of cell size. In addition to being time and concentration dependent, this hypertrophy was reversible. Simultaneous flow cytometric evaluation of forward angle light scatter and cellular DNA content demonstrated that TGF-beta-induced hypertrophy was not dependent on withdrawal of cells from the cell cycle nor was it dependent on growth arrest of cells at a particular point in the cell cycle in that both cycling cells in the G2 phase of the cell cycle and those in G1 were hypertrophied with respect to the corresponding cells in vehicle-treated controls. Chronic treatment with TGF-beta (100 pM, 9 d) was associated with accumulation of cells in the G2 phase of the cell cycle in the virtual absence of cells in S phase, whereas subsequent removal of TGF-beta from these cultures was associated with the appearance of a significant fraction of cycling cells with greater than 4c DNA content, consistent with development of tetraploidy. Results of these studies support a role for TGF-beta in the control of smooth muscle cell growth and suggest that at least one mechanism whereby hypertrophy and hyperploidy may occur in this, as well as other cell types, is by alterations in the response to serum mitogens by potent growth inhibitors such as TGF-beta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号