首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The mechanism of triple helical collagen unwinding and cleavage by collagenases in the matrix metalloproteinase (MMP) family is complex and remains enigmatic. Recent reports show that triple helicase activity is initiated by the hemopexin C domain of membrane type 1-MMP, whereas catalytically inactive full-length interstitial collagenase (MMP-1) exhibits full triple helicase functionality pointing to active site determinants that are needed to complete the triple helicase mechanism. In MMP-8, the neutrophil collagenase, a conserved Gly at the S(3)' substrate specificity subsite is replaced by Asn(188) that forms a highly unusual cis bond with Tyr(189), a conserved active site residue in the collagenases. Only in MMP-1 is the S(3)' Gly also replaced, and there too a cis configured Glu-Tyr occurs. Thus, this high energy peptide bond coupled to the canonical Tyr may be important in the collagenolytic process. In a systematic mutagenesis investigation of the MMP-8 S(3)' subsite we found that introducing an S(3)' Gly(188) into MMP-8 reduced collagenolytic efficiency by approximately 30% with a corresponding reduction in cleavage of a synthetic peptide fluorescence resonance energy transfer substrate analogue of the alpha2(I) collagen chain cleavage site. The substitution of Asn(188) to Leu, a hydrophobic residue of similar size to the highly polar Asn and designed to retain the cis bond, revealed the importance of hydrogen bonding to bound substrate with both collagenolytic and peptidic activities reduced approximately 3-fold. In contrast, the specificity for type I collagen of the mutant Y189F dropped 3-fold without any significant alteration in general peptidase activity. Therefore, S(3)' and in particular the hydrogen bonding potential of Tyr(189) is a specific molecular determinant for MMP-8 triple helicase activity. The cis bond connection to Asn(188) juxtaposes these two side chains for closely spaced hydrogen bonding with substrate that improves collagenolytic and general catalytic efficiency that could be exploited for new collagenase-specific inhibitor drugs.  相似文献   

2.
Matrix metalloproteinase-2 (MMP-2, gelatinase A) and membrane type (MT)1-MMP (MMP-14) are cooperative dynamic components of a cell surface proteolytic axis involved in regulating the cellular signaling environment and pericellular collagen homeostasis. Although MT1-MMP exhibits type I collagenolytic but poor gelatinolytic activities, MMP-2 is a potent gelatinase with weak type I collagenolytic behavior. Recombinant linker/hemopexin C domain (LCD) of MT1-MMP binds native type I collagen, blocks MT1-MMP collagenolytic activity in trans, and by circular dichroism spectroscopy, induces localized structural perturbation in the collagen. These changes were reflected by enhanced cleavage of the MT1-LCD-bound collagen by the collagenases MMP-1 and MMP-8 but not by trypsin or MMP-7. Thus, the MT1-LCD alone can initiate triple helicase activity. In contrast, the native and denatured collagen binding properties of MMP-2 reside in the fibronectin type II modules, accordingly termed the collagen binding domain (CBD). Recombinant CBD (but not the MMP-2 LCD) also changed the circular dichroism spectra leading to increased MMP-1 and -8 cleavage of native collagen. However, recombinant CBD reduced gelatin and collagen cleavage by MMP-2 in trans as did CBD23, which comprises the second and third fibronectin type II modules, but not the CBD23 mutant W316A/W374A, which neither binds gelatin nor collagen. This indicates that MMP-2 and MT1-MMP bind collagen at a different site than MMP-1 and MMP-8. Thus, MMP-2 utilizes the CBD in cis for collagen binding and triple helicase activity, which compensates for the lack of collagen binding by the MMP-2 LCD. Hence, the MMP family has evolved two distinct mechanisms for collagen triple helicase activity using two structurally distinct domains, with triple helicase activity occurring independent of alpha-chain hydrolysis.  相似文献   

3.
Up-regulation of the collagenolytic membrane type-1 matrix metalloproteinase (MT1-MMP) leads to increased MMP2 (gelatinase A) activation and MT1-MMP autolysis. The autocatalytic degradation product is a cell surface 44-kDa fragment of MT1-MMP (Gly(285)-Val(582)) in which the ectodomain consists of only the linker, hemopexin C domain and the stalk segment found before the transmembrane sequence. In the collagenases, hemopexin C domain exosites bind native collagen, which is required for triple helicase activity during collagen cleavage. Here we investigated the collagen binding properties and the role of the hemopexin C domain of MT1-MMP and of the 44-kDa MT1-MMP ectodomain in collagenolysis. Recombinant proteins, MT1-LCD (Gly(285)-Cys(508)), consisting of the linker and the hemopexin C domain, and MT1-CD (Gly(315)-Cys(508)), which consists of the hemopexin C domain only, were found to bind native type I collagen but not gelatin. Functionally, MT1-LCD inhibited collagen-induced MMP2 activation in fibroblasts, suggesting that interactions between collagen and endogenous MT1-MMP directly stimulate the cellular activation of pro-MMP2. MT1-LCD, but not MT1-CD, also blocked the cleavage of native type I collagen by MT1-MMP in vitro, indicating an important role for the MT1-MMP linker region in triple helicase activity. Similarly, soluble MT1-LCD, but not MT1-CD or peptide analogs of the MT1-MMP linker, reduced the invasion of type I collagen matrices by MDA-MB-231 cells as did the expression of recombinant 44-kDa MT1-MMP on the cell surface. Together, these studies demonstrate that generation of the 44-kDa MT1-MMP autolysis product regulates collagenolytic activity and subsequent invasive potential, suggesting a novel feedback mechanism for the control of pericellular proteolysis.  相似文献   

4.
Membrane type-1 matrix metalloproteinase (MT1-MMP) drives cell invasion through three-dimensional (3-D) extracellular matrix (ECM) barriers dominated by type I collagen or fibrin. Based largely on analyses of its impact on cell function under two-dimensional culture conditions, MT1-MMP is categorized as a multifunctional molecule with 1) a structurally distinct, N-terminal catalytic domain; 2) a C-terminal hemopexin domain that regulates substrate recognition as well as conformation; and 3) a type I transmembrane domain whose cytosolic tail controls protease trafficking and signaling cascades. The MT1-MMP domains that subserve cell trafficking through 3-D ECM barriers in vitro or in vivo, however, remain largely undefined. Herein, we demonstrate that collagen-invasive activity is not confined strictly to the catalytic, hemopexin, transmembrane, or cytosolic domain sequences of MT1-MMP. Indeed, even a secreted collagenase supports invasion when tethered to the cell surface in the absence of the MT1-MMP hemopexin, transmembrane, and cytosolic tail domains. By contrast, the ability of MT1-MMP to support fibrin-invasive activity diverges from collagenolytic potential, and alternatively, it requires the specific participation of MT-MMP catalytic and hemopexin domains. Hence, the tissue-invasive properties of MT1-MMP are unexpectedly embedded within distinct, but parsimonious, sequences that serve to tether the requisite matrix-degradative activity to the surface of migrating cells.  相似文献   

5.
Matrix metalloproteinases and collagen catabolism   总被引:5,自引:0,他引:5  
The matrix metalloproteinase (MMP)/matrixin family has been implicated in both normal tissue remodeling and a variety of diseases associated with abnormal turnover of extracellular matrix components. The mechanism by which MMPs catabolize collagen (collagenolysis) is still largely unknown. Substrate flexibility, MMP active sites, and MMP exosites all contribute to collagen degradation. It has recently been demonstrated that the ability to cleave a triple helix (triple-helical peptidase activity) can be distinguished from the ability to cleave collagen (collagenolytic activity). This suggests that the ability to cleave a triple helix is not the limiting factor for collagenolytic activity-the ability to properly orient and potentially destabilize collagen is. For the MMP family, the catalytic domain can unwind and cleave a triple-helical structure, while the C-terminal hemopexin-like domain appears to be responsible for properly orienting collagen and destabilizing it to some degree. It is also possible that exosites within the catalytic and/or C-terminal hemopexin-like domain may exclude some MMPs from cleaving collagen. Overall, it appears that many proteases of distinct mechanisms possess triple-helical peptidase activity, and that convergent evolution led to a few proteases possessing collagenolytic activity. Proper orientation and distortion of the triple helix may be the key factor for collagenolysis.  相似文献   

6.
We describe a simple method for real-time monitoring of matrix metalloproteinase-9 (MMP-9) collagenolytic activity for native triple helical collagen IV with a surface plasmon resonance (SPR) biosensor. The proteolytic activity of MMP-9 is measured as a decrease in the SPR signal resulting from the cleavage of collagen IV immobilized on the sensor surface. The kinetic parameters of full-length MMP-9 and its catalytic domain—catalytic constant (kcat), association rate constant (ka), and dissociation rate constant (kd)—were estimated by the SPR method. The presence of sodium chloride and a nonionic detergent Brij-35 in a reaction solution led to the lower collagenolytic activity of MMP-9, whereas they suppressed the nonspecific interaction between MMP-9 and a cysteamine-modified chip. The comparison of kinetic parameters between MMP-9 and its catalytic domain revealed that the association constant of MMP-9 is much larger than that of the catalytic domain, suggesting that the interplay among hemopexin-like domain, fibronectin type II repeats motif, and linker region (O-glycosylated domain) plays an important role in recognizing collagen IV.  相似文献   

7.
The function of ancillary domains and modules attached to the catalytic domain of mutidomain proteases, such as the matrix metalloproteinases (MMPs), are not well understood. The importance of discrete MMP substrate binding sites termed exosites on domains located outside the catalytic domain was first demonstrated for native collagenolysis. The essential role of hemopexin carboxyl-domain exosites in the cleavage of noncollagenous substrates such as chemokines has also been recently revealed. This article updates a previous review of the role of substrate recognition by MMP exosites in both preparing complex substrates, such as collagen, for cleavage and for tethering noncollagenous substrates to MMPs for more efficient proteolysis. Exosite domain interaction and movements—“molecular tectonics”—that are required for native collagen triple helicase activity are discussed. The potential role of collagen binding in regulating MMP-2 (gelatinase A) activation at the cell surface reveals unexpected consequences of substrate interactions that can lead to collagen cleavage and regulation of the activation and activity of downstream proteinases necessary to complete the collagenolytic cascade.  相似文献   

8.
Degradation of fibrillar collagens is important in many physiological and pathological events. These collagens are resistant to most proteases due to the tightly packed triple-helical structure, but are readily cleaved at a specific site by collagenases, selected members of the matrix metalloproteinases (MMPs). To investigate the structural requirements for collagenolysis, varying numbers of GXY triplets from human type III collagen around the collagenase cleavage site were inserted between two triple helix domains of the Scl2 bacterial collagen protein. The original bacterial CL domain was not cleaved by MMP-1 (collagenase 1) or MMP-13 (collagenase 3). The minimum type III sequence necessary for cleavage by the two collagenases was 5 GXY triplets, including 4 residues before and 11 residues after the cleavage site (P4-P11'). Cleavage of these chimeric substrates was not achieved by the catalytic domain of MMP-1 or MMP-13, nor by full-length MMP-3. Kinetic analysis of the chimeras indicated that the rate of cleavage by MMP-1 of the chimera containing six triplets (P7-P11') of collagen III was similar to that of native collagen III. The collagenase-susceptible chimeras were cleaved very slowly by trypsin, a property also seen for native collagen III, supporting a local structural relaxation of the triple helix near the collagenase cleavage site. The recombinant bacterial-human collagen system characterized here is a good model to investigate the specificity and mechanism of action of collagenases.  相似文献   

9.
Degradation of type I collagen by collagenases is an important part of extracellular remodeling. To understand the role of the hinge region of fibroblast collagenase in its collagenolytic activity, we individually substituted the 10 conserved amino acid residues at positions 264, 266, 268, 296, 272, 277, 284, 289, 307, and 313 in this region of the enzyme by their corresponding residues in MMP-3, a noncollagenolytic matrix metalloproteinase. The general proteolytic and triple helicase activities of all of the enzymes were determined, and their abilities to bind to type I collagen were assessed. Among the mutants, only G272D mutant enzyme exhibited a significant change in type I collagenolysis. The alteration of the Gly(272) to Asp reduced the collagenolytic activity of the enzyme to 13% without affecting its general proteolytic activity, substrate specificity, or the collagen binding ability. The catalytic efficiency of the G272D mutant for the triple helical peptide substrate [C(6)-(GP- Hyp)(4)GPL(Mca)GPQGLRGQL(DPN)GVR(GP-HYP)(4)-NH(2)](3) and the peptide substrate Mca-PLGL(Dpa)AR-NH(2) and its dissociation constant for the triple helical collagen were similar to that of the wild type enzyme, indicating that the presence of this residue in fibroblast collagenase is particularly important for the efficient cleavage of type I collagen. Gly(272) is evidently responsible for the hinge-bending motion that is essential for allowing the COOH-terminal domain to present the collagen to the active site.  相似文献   

10.
Matrix metalloproteinase-1 (MMP-1) is an instigator of collagenolysis, the catabolism of triple helical collagen. Previous studies have implicated its hemopexin (HPX) domain in binding and possibly destabilizing the collagen substrate in preparation for hydrolysis of the polypeptide backbone by the catalytic (CAT) domain. Here, we use biophysical methods to study the complex formed between the MMP-1 HPX domain and a synthetic triple helical peptide (THP) that encompasses the MMP-1 cleavage site of the collagen α1(I) chain. The two components interact with 1:1 stoichiometry and micromolar affinity via a binding site within blades 1 and 2 of the four-bladed HPX domain propeller. Subsequent site-directed mutagenesis and assay implicates blade 1 residues Phe(301), Val(319), and Asp(338) in collagen binding. Intriguingly, Phe(301) is partially masked by the CAT domain in the crystal structure of full-length MMP-1 implying that transient separation of the domains is important in collagen recognition. However, mutation of this residue in the intact enzyme disrupts the CAT-HPX interface resulting in a drastic decrease in binding activity. Thus, a balanced equilibrium between these compact and dislocated states may be an essential feature of MMP-1 collagenase activity.  相似文献   

11.
The important and distinct contribution that membrane type 2 (MT2)-matrix metalloproteinase (MMP) makes to physiological and pathological processes is now being recognized. This contribution may be mediated in part through MMP-2 activation by MT2-MMP. Using Timp2-/- cells, we previously demonstrated that MT2-MMP activates MMP-2 to the fully active form in a pathway that is TIMP-2-independent but MMP-2 hemopexin carboxyl (C) domain-dependent. In this study cells expressing MT2-MMP as well as chimera proteins in which the C-terminal half of MT2-MMP and MT1-MMP were exchanged showed that the MT2-MMP catalytic domain has a higher propensity than that of MT1-MMP to initiate cleavage of the MMP-2 prodomain in the absence of TIMP-2. Although we demonstrate that MT2-MMP is a weak collagenase, this first activation cleavage was enhanced by growing the cells in type I collagen gels. The second activation cleavage to generate fully active MMP-2 was specifically enhanced by a soluble factor expressed by Timp2-/- cells and was MT2-MMP hemopexin C domain-dependent; however, the RGD sequence within this domain was not involved. Interestingly, in the presence of TIMP-2, a MT2-MMP.MMP-2 trimolecular complex formed, but activation was not enhanced. Similarly, TIMP-3 did not promote MT2-MMP-mediated MMP-2 activation but inhibited activation at higher concentrations. This study demonstrates the influence that both the catalytic and hemopexin C domains of MT2-MMP exert in determining TIMP independence in MMP-2 activation. In tissues or pathologies characterized by low TIMP-2 expression, this pathway may represent an alternative means of rapidly generating low levels of active MMP-2.  相似文献   

12.
Matrix metalloproteinase (MMP)-12 (or metalloelastase) efficiently hydrolyzed the gelatinase-selective alpha1(V)436-447 fluorescent triple helical peptide (THP) when the substrate was submicromolar. The sequence of this THP was derived from collagen V, a component of collagen I fibrils. The hemopexin domains of MMP-12 and -9 each increased k(cat)/K(m) toward this substrate by decreasing K(m), just as the hemopexin domain of MMP-1 enhances its triple helical peptidase activity. Non-fluorescent alpha1(V) THP subtly perturbed amide NMR chemical shifts of MMP-12 not only in the active site cleft but also at remote sites of the beta-sheet and adjoining loops. The alpha1(V) THP protected MMP-12 from the NMR line broadening effects of Gd .EDTA in the active site cleft and more dramatically in the V-B loop next to the primed subsites. Mutagenesis of the exosite in the V-B loop at Thr-205 and His-206 that vary among MMP sequences established that this site supports the high specific activity toward alpha1(V) fluorescent THP without affecting general MMP activity. Surprisingly the alpha1(V) THP also protected novel surfaces in the S-shaped metal-binding loop and beta-strands III and V that together form a pocket on the remote side of the zinc binding site. The patterns of protection suggest bending of the triple helical peptide partly around the catalytic domain to reach novel exosites. Partial unwinding or underwinding of the triple helix could accompany this to facilitate its hydrolysis.  相似文献   

13.
In view of the essential role of the hemopexin domain of the traditional interstitial collagenases, MMP-1, -8, -13 and MT1-MMP (MMP-14), in determining specific collagen cleavage we have studied the function of this domain in MMP-2, relative to that of the fibronectin-like domain that promotes gelatinolysis. Although the fibronectin-like domain promotes avid binding to collagen, our data demonstrate that the catalytic and hemopexin domains of MMP-2 are sufficient to effect the critical step in cleavage of rat type I collagen into 3/4 and 1/4 fragments. The mechanism of MMP-2 cleavage of collagen proceeds in two phases, the first resembling that of the interstitial collagenases, followed by gelatinolysis, promoted by the fibronectin-like domain.  相似文献   

14.
Remodeling of collagen by matrix metalloproteinases (MMPs) is crucial to tissue homeostasis and repair. MMP-13 is a collagenase with a substrate preference for collagen II over collagens I and III. It recognizes a specific, well-known site in the tropocollagen molecule where its binding locally perturbs the triple helix, allowing the catalytic domain of the active enzyme to cleave the collagen α chains sequentially, at Gly775–Leu776 in collagen II. However, the specific residues upon which collagen recognition depends within and surrounding this locus have not been systematically mapped. Using our triple-helical peptide Collagen Toolkit libraries in solid-phase binding assays, we found that MMP-13 shows little affinity for Collagen Toolkit III, but binds selectively to two triple-helical peptides of Toolkit II. We have identified the residues required for the adhesion of both proMMP-13 and MMP-13 to one of these, Toolkit peptide II-44, which contains the canonical collagenase cleavage site. MMP-13 was unable to bind to a linear peptide of the same sequence as II-44. We also discovered a second binding site near the N terminus of collagen II (starting at helix residue 127) in Toolkit peptide II-8. The pattern of binding of the free hemopexin domain of MMP-13 was similar to that of the full-length enzyme, but the free catalytic subunit bound none of our peptides. The susceptibility of Toolkit peptides to proteolysis in solution was independent of the very specific recognition of immobilized peptides by MMP-13; the enzyme proved able to cleave a range of dissolved collagen peptides.  相似文献   

15.

Background

MMP-13, a zinc dependent protease which catalyses the cleavage of type II collagen, is expressed in osteoarthritis (OA) and rheumatoid arthritis (RA) patients, but not in normal adult tissues. Therefore, the protease has been intensively studied as a target for the inhibition of progression of OA and RA. Recent reports suggest that selective inhibition of MMP-13 may be achieved by targeting the hemopexin (Hpx) domain of the protease, which is critical for substrate specificity. In this study, we applied a cheminformatics-based drug design approach for the identification and characterization of inhibitors targeting the amino acid residues characteristic to Hpx domain of MMP-13; these inhibitors may potentially be employed in the treatment of OA and RA.

Methodology/Principal Findings

Sequence-based mutual information analysis revealed five characteristic (completely conserved and unique), putative functional residues of the Hpx domain of MMP-13 (these residues hereafter are referred to as HCR-13pf). Binding of a ligand to as many of the HCR-13pf is postulated to result in an increased selective inhibition of the Hpx domain of MMP-13. Through the in silico structure-based high-throughput virtual screening (HTVS) method of Glide, against a large public library of 16908 molecules from Maybridge, PubChem and Binding, we identified 25 ligands that interact with at least one of the HCR-13pf. Assessment of cross-reactivity of the 25 ligands with MMP-1 and MMP-8, members of the collagenase family as MMP-13, returned seven lead molecules that did not bind to any one of the putative functional residues of Hpx domain of MMP-1 and any of the catalytic active site residues of MMP-1 and -8, suggesting that the ligands are not likely to interact with the functional or catalytic residues of other MMPs. Further, in silico analysis of physicochemical and pharmacokinetic parameters based on Lipinski''s rule of five and ADMET (absorption, distribution, metabolism, excretion and toxicity) respectively, suggested potential utility of the compounds as drug leads.

Conclusions/Significance

We have identified seven distinct drug-like molecules binding to the HCR-13pf of MMP-13 with no observable cross-reactivity to MMP-1 and MMP-8. These molecules are potential selective inhibitors of MMP-13 that can be experimentally validated and their backbone structural scaffold could serve as building blocks in designing drug-like molecules for OA, RA and other inflammatory disorders. The systematic cheminformatics-based drug design approach applied herein can be used for rational search of other public/commercial combinatorial libraries for more potent molecules, capable of selectively inhibiting the collagenolytic activity of MMP-13.  相似文献   

16.
The extracellular matrix is a dynamic environment that constantly undergoes remodelling and degradation during vital physiological processes such as angiogenesis, wound healing, and development. Unbalanced extracellular matrix breakdown is associated with many diseases such as arthritis, cancer and fibrosis. Interstitial collagen is degraded by matrix metalloproteinases with collagenolytic activity by MMP-1, MMP-8 and MMP-13, collectively known as the collagenases. Matrix metalloproteinase 1 (MMP-1) plays a pivotal role in degradation of interstitial collagen types I, II, and III. Here, we report the crystal structure of the active form of human MMP-1 at 2.67 A resolution. This is the first MMP-1 structure that is free of inhibitor and a water molecule essential for peptide hydrolysis is observed coordinated with the active site zinc. Comparing this structure with the human proMMP-1 shows significant structural differences, mainly in the relative orientation of the hemopexin domain, between the pro form and active form of the human enzyme.  相似文献   

17.
An innovative approach to enhance the selectivity of matrix metalloproteinase (MMP) inhibitors comprises targeting these inhibitors to catalytically required substrate binding sites (exosites) that are located outside the catalytic cleft. In MMP-2, positioning of collagen substrate molecules occurs via a unique fibronectin-like domain (CBD) that contains three distinct modular collagen binding sites. To characterize the contributions of these exosites to gelatinolysis by MMP-2, seven MMP-2 variants were generated with single, or concurrent double and triple alanine substitutions in the three fibronectin type II modules of the CBD. Circular dichroism spectroscopy verified that recombinant MMP-2 wild-type (WT) and variants had the same fold. Moreover, the MMP-2 WT and variants had the same activity on a short FRET peptide substrate that is hydrolyzed independently of CBD binding. Among single-point variants, substitution in the module 3 binding site had greatest impact on the affinity of MMP-2 for gelatin. Simultaneous substitutions in two or three CBD modules further reduced gelatin binding. The rates of gelatinolysis of MMP-2 variants were reduced by 20–40% following single-point substitutions, by 60–75% after double-point modifications, and by > 90% for triple-point variants. Intriguingly, the three CBD modules contributed differentially to cleavage of dissociated α-1(I) and α-2(I) collagen chains. Importantly, kinetic analyses (kcat/Km) revealed that catalysis of a triple-helical FRET peptide substrate by MMP-2 relied primarily on the module 3 binding site. Thus, we have identified three collagen binding site residues that are essential for gelatinolysis and constitute promising targets for selective inhibition of MMP-2.  相似文献   

18.
Pericellular degradation of interstitial collagens is a crucial event for cells to migrate through the dense connective tissue matrices, where collagens exist as insoluble fibers. A key proteinase that participates in this process is considered to be membrane-type 1 matrix metalloproteinase (MT1-MMP or MMP-14), but little is known about the mechanism by which it cleaves the insoluble collagen. Here we report that homodimerization of MT1-MMP through its hemopexin (Hpx) domain is essential for cleaving type I collagen fibers at the cell surface. When dimerization was blocked by coexpressing either a membrane-bound or a soluble form of the Hpx domain, cell surface collagenolytic activity was inhibited in a dose-dependent manner. When MMP-13, a soluble collagenase active as a monomer in solution, was expressed as a membrane-anchored form on the cell surface, homodimerization was also required to cleave collagen. Our results introduce a new concept in that pericellular collagenolysis is regulated by correct molecular assembly of the membrane-anchored collagenase, thereby governing the directionality of the cell to migrate in tissue.  相似文献   

19.
Because of their important function, matrix metalloproteinases (MMPs) are promising drug targets in multiple diseases, including malignancies. The structure of MMPs includes a catalytic domain, a hinge, and a hemopexin domain (PEX), which are followed by a transmembrane and cytoplasmic tail domains or by a glycosylphosphatidylinositol linker in membrane-type MMPs (MT-MMPs). TIMPs-1, -2, -3, and -4 are potent natural regulators of the MMP activity. These are the inhibitory N-terminal and the non-inhibitory C-terminal structural domains in TIMPs. Based on our structural modeling, we hypothesized that steric clashes exist between the non-inhibitory C-terminal domain of TIMPs and the PEX of MMPs. Conversely, a certain mobility of the PEX relative to the catalytic domain is required to avoid these obstacles. Because of its exceedingly poor association constant and, in contrast with TIMP-2, TIMP-1 is inefficient against MT1-MMP. We specifically selected an MT1-MMP·TIMP-1 pair to test our hypothesis, because any improvement of the inhibitory potency would be readily recorded. We characterized the domain-swapped MT1-MMP chimeras in which the PEX of MMP-2 (that forms a complex with TIMP-2) and of MMP-9 (that forms a complex with TIMP-1) replaced the original PEX in the MT1-MMP structure. In contrast with the wild-type MT1-MMP, the diverse proteolytic activities of the swapped-PEX chimeras were then inhibited by both TIMP-1 and TIMP-2. Overall, our studies suggest that the structural parameters of both domains of TIMPs have to be taken into account for their re-engineering to harness the therapeutic in vivo potential of the novel TIMP-based MMP antagonists with constrained selectivity.  相似文献   

20.
In injured skin, collagenase-1 (matrix metalloproteinase-1 (MMP-1)) is induced in migrating keratinocytes. This site-specific expression is regulated by binding of the alpha(2)beta(1) integrin with dermal type I collagen, and the catalytic activity of MMP-1 is required for keratinocyte migration. Because of this functional association among substrate/ligand, receptor, and proteinase, we assessed whether the integrin also directs the compartmentalization of MMP-1 to its matrix target. Indeed, pro-MMP-1 co-localized to sites of alpha(2)beta(1) contacts in migrating keratinocytes. Furthermore, pro-MMP-1 co-immunoprecipitated with alpha(2)beta(1) from keratinocytes, and alpha(2)beta(1) co-immunoprecipitated with pro-MMP-1. No other MMPs bound alpha(2)beta(1), and no other integrins interacted with MMP-1. Pro-MMP-1 also provided a substrate for alpha(2)beta(1)-dependent adhesion of platelets. Complex formation on keratinocytes was most efficient on native type I collagen and reduced or ablated on denatured or cleaved collagen. Competition studies suggested that the alpha(2) I domain interacts with the linker and hemopexin domains of pro-MMP-1, not with the pro-domain. These data indicate that the interaction of pro-MMP-1 with alpha(2)beta(1) confines this proteinase to points of cell contact with collagen and that the ternary complex of integrin, enzyme, and substrate function together to drive and regulate keratinocyte migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号