首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Phytomedicine》2014,21(2):118-122
Curcumin has been reported to inhibit insulin signaling and translocation of GLUT4 to the cell surface in 3T3-L1 adipocytes. We have investigated the effect of curcumin on insulin signaling in primary rat adipocytes. Curcumin (20 μM) inhibited both basal and insulin-stimulated glucose transport (2-deoxyglucose uptake), but had no effect on insulin inhibition of lipolysis. Dose–response experiments demonstrated that curcumin (0–100 μM) inhibited basal and insulin-stimulated glucose transport, but even at the highest concentration tested did not affect lipolysis. Inhibition was equal in cells that had been pre-incubated with curcumin and in cells to which curcumin was added immediately before the glucose transport assay. Similarly, time-course experiments revealed that the inhibitory effect of curcumin was evident at the earliest time point tested (30 s). Thus it is unlikely that inhibition of insulin signaling or of translocation of GLUT4 to the cell surface is involved in the inhibitory effect of curcumin. Curcumin did not affect the stimulatory action of insulin on phosphorylation of Akt at serine 473. We conclude that curcumin is a direct inhibitor of glucose transporters in rat adipocytes.  相似文献   

2.
Phosphatidylinositol 3-kinase activation of Akt signaling is critical to insulin-stimulated glucose transport and GLUT4 translocation. However, the downstream signaling events following Akt activation which mediate glucose transport stimulation remain relatively unknown. Here we identify an Akt consensus phosphorylation motif in the actin-based motor protein myosin 5a and show that insulin stimulation leads to phosphorylation of myosin 5a at serine 1650. This Akt-mediated phosphorylation event enhances the ability of myosin 5a to interact with the actin cytoskeleton. Small interfering RNA-induced inhibition of myosin 5a and expression of dominant-negative myosin 5a attenuate insulin-stimulated glucose transport and GLUT4 translocation. Furthermore, knockdown of Akt2 or expression of dominant-negative Akt (DN-Akt) abolished insulin-stimulated phosphorylation of myosin 5a, inhibited myosin 5a binding to actin, and blocked insulin-stimulated glucose transport. Taken together, these data indicate that myosin 5a is a newly identified direct substrate of Akt2 and, upon insulin stimulation, phosphorylated myosin 5a facilitates anterograde movement of GLUT4 vesicles along actin to the cell surface.  相似文献   

3.
Elevation of plasma lactate levels induces peripheral insulin resistance, but the underlying mechanisms are unclear. We examined whether lactate infusion in rats suppresses glycolysis preceding insulin resistance and whether lactate-induced insulin resistance is accompanied by altered insulin signaling and/or insulin-stimulated glucose transport in skeletal muscle. Hyperinsulinemic euglycemic clamps were conducted for 6 h in conscious, overnight-fasted rats with or without lactate infusion (120 micromol x kg(-1) x min(-1)) during the final 3.5 h. Lactate infusion increased plasma lactate levels about fourfold. The elevation of plasma lactate had rapid effects to suppress insulin-stimulated glycolysis, which clearly preceded its effect to decrease insulin-stimulated glucose uptake. Both submaximal and maximal insulin-stimulated glucose transport decreased 25-30% (P < 0.05) in soleus but not in epitrochlearis muscles of lactate-infused rats. Lactate infusion did not alter insulin's ability to phosphorylate the insulin receptor, the insulin receptor substrate (IRS)-1, or IRS-2 but decreased insulin's ability to stimulate IRS-1- and IRS-2-associated phosphatidylinositol 3-kinase activities and Akt/protein kinase B activity by 47, 75, and 55%, respectively (P < 0.05 for all). In conclusion, elevation of plasma lactate suppressed glycolysis before its effect on insulin-stimulated glucose uptake, consistent with the hypothesis that suppression of glucose metabolism could precede and cause insulin resistance. In addition, lactate-induced insulin resistance was associated with impaired insulin signaling and decreased insulin-stimulated glucose transport in skeletal muscle.  相似文献   

4.
5.
The precise mechanisms underlying insulin-stimulated glucose transport still require investigation. Here we assessed the effect of SB203580, an inhibitor of the p38 MAP kinase family, on insulin-stimulated glucose transport in 3T3-L1 adipocytes and L6 myotubes. We found that SB203580, but not its inactive analogue (SB202474), prevented insulin-stimulated glucose transport in both cell types with an IC50 similar to that for inhibition of p38 MAP kinase (0.6 microM). Basal glucose uptake was not affected. Moreover, SB203580 added only during the transport assay did not inhibit basal or insulin-stimulated transport. SB203580 did not inhibit insulin-stimulated translocation of the glucose transporters GLUT1 or GLUT4 in 3T3-L1 adipocytes as assessed by immunoblotting of subcellular fractions or by immunofluorescence of membrane lawns. L6 muscle cells expressing GLUT4 tagged on an extracellular domain with a Myc epitope (GLUT4myc) were used to assess the functional insertion of GLUT4 into the plasma membrane. SB203580 did not affect the insulin-induced gain in GLUT4myc exposure at the cell surface but largely reduced the stimulation of glucose uptake. SB203580 had no effect on insulin-dependent insulin receptor substrate-1 phosphorylation, association of the p85 subunit of phosphatidylinositol 3-kinase with insulin receptor substrate-1, nor on phosphatidylinositol 3-kinase, Akt1, Akt2, or Akt3 activities in 3T3-L1 adipocytes. In conclusion, in the presence of SB203580, insulin caused normal translocation and cell surface membrane insertion of glucose transporters without stimulating glucose transport. We propose that insulin stimulates two independent signals contributing to stimulation of glucose transport: phosphatidylinositol 3-kinase leads to glucose transporter translocation and a pathway involving p38 MAP kinase leads to activation of the recruited glucose transporter at the membrane.  相似文献   

6.
Accumulating evidence indicates an important role for serine phosphorylation of IRS-1 in the regulation of insulin action. Recent studies suggest that Rho-kinase (ROK) is a mediator of insulin signaling, via interaction with IRS-1. Here we show that insulin stimulation of glucose transport is impaired when ROK is chemically or biologically inhibited in cultured adipocytes and myotubes and in isolated soleus muscle ex vivo. Inactivation of ROK also reduces insulin-stimulated IRS-1 tyrosine phosphorylation and PI3K activity. Moreover, inhibition of ROK activity in mice causes insulin resistance by reducing insulin-stimulated glucose uptake in skeletal muscle in vivo. Mass spectrometry analysis identifies IRS-1 Ser632/635 as substrates of ROK in vitro, and mutation of these sites inhibits insulin signaling. These results strongly suggest that ROK regulates insulin-stimulated glucose transport in vitro and in vivo. Thus, ROK is an important regulator of insulin signaling and glucose metabolism.  相似文献   

7.
In 3T3-L1 adipocytes, insulin activates three major signaling cascades, the phosphoinositide 3-kinase (PI3K) pathway, the Cbl pathway, and the mitogen-activated protein kinase (MAPK) pathway. Although PI3K and Cbl mediate insulin-stimulated glucose uptake by promoting the translocation of the insulin-responsive glucose transporter (GLUT4) to the plasma membrane, the MAPK pathway does not have an established role in insulin-stimulated glucose uptake. We demonstrate in this report that PI3K inhibitors also inhibit the MAPK pathway. To investigate the role of the MAPK pathway separately from that of the PI3K pathway in insulin-stimulated glucose uptake, we used two specific inhibitors of MAPK kinase (MEK) activity, PD-98059 and U-0126, which reduced insulin-stimulated glucose uptake by approximately 33 and 50%, respectively. Neither MEK inhibitor affected the activation of Akt or PKCzeta/lambda, downstream signaling molecules in the PI3K pathway. Inhibition of MEK with U-0126 did not prevent GLUT4 from translocating to the plasma membrane, nor did it inhibit the subsequent docking and fusion of GLUT4-myc with the plasma membrane. MEK inhibitors affected glucose transport mediated by GLUT4 but not GLUT1. Importantly, the presence of MEK inhibitors only at the time of the transport assay markedly impaired both insulin-stimulated glucose uptake and MAPK signaling. Conversely, removal of MEK inhibitors before the transport assay restored glucose uptake and MAPK signaling. Collectively, our studies suggest a possible role for MEK in the activation of GLUT4.  相似文献   

8.
Glycogen synthase kinase-3 (GSK3) has been implicated in the multifactorial etiology of skeletal muscle insulin resistance in animal models and in human type 2 diabetic subjects. However, the potential molecular mechanisms involved are not yet fully understood. Therefore, we determined if selective GSK3 inhibition in vitro leads to an improvement in insulin action on glucose transport activity in isolated skeletal muscle of insulin-resistant, prediabetic obese Zucker rats and if these effects of GSK3 inhibition are associated with enhanced insulin signaling. Type I soleus and type IIb epitrochlearis muscles from female obese Zucker rats were incubated in the absence or presence of a selective, small organic GSK3 inhibitor (1 microM CT118637, Ki < 10 nM for GSK3alpha and GSK3beta). Maximal insulin stimulation (5 mU/ml) of glucose transport activity, glycogen synthase activity, and selected insulin-signaling factors [tyrosine phosphorylation of insulin receptor (IR) and IRS-1, IRS-1 associated with p85 subunit of phosphatidylinositol 3-kinase, and serine phosphorylation of Akt and GSK3] were assessed. GSK3 inhibition enhanced (P <0.05) basal glycogen synthase activity and insulin-stimulated glucose transport in obese epitrochlearis (81 and 24%) and soleus (108 and 20%) muscles. GSK3 inhibition did not modify insulin-stimulated tyrosine phosphorylation of IR beta-subunit in either muscle type. However, in obese soleus, GSK3 inhibition enhanced (all P < 0.05) insulin-stimulated IRS-1 tyrosine phosphorylation (45%), IRS-1-associated p85 (72%), Akt1/2 serine phosphorylation (30%), and GSK3beta serine phosphorylation (39%). Substantially smaller GSK3 inhibitor-mediated enhancements of insulin action on these insulin signaling factors were observed in obese epitrochlearis. These results indicate that selective GSK3 inhibition enhances insulin action in insulin-resistant skeletal muscle of the prediabetic obese Zucker rat, at least in part by relieving the deleterious effects of GSK3 action on post-IR insulin signaling. These effects of GSK3 inhibition on insulin action are greater in type I muscle than in type IIb muscle from these insulin-resistant animals.  相似文献   

9.
10.
Caffeine decreases insulin sensitivity and insulin-stimulated glucose transport in skeletal muscle; however, the precise mechanism responsible for this deleterious effect is not understood fully. We investigated the effects of incubation with caffeine on insulin signaling in rat epitrochlearis muscle. Caffeine (≥1 mM, ≥15 min) suppressed insulin-stimulated insulin receptor substrate (IRS)-1 Tyr(612) phosphorylation in a dose- and time-dependent manner. These responses were associated with inhibition of the insulin-stimulated phosphorylation of phosphatidylinositol 3-kinase (PI3K) Tyr(458), Akt Ser(473), and glycogen synthase kinase-3β Ser(9) and with inhibition of insulin-stimulated 3-O-methyl-d-glucose (3MG) transport but not with inhibition of the phosphorylation of insulin receptor-β Tyr(1158/62/63). Furthermore, caffeine enhanced phosphorylation of IRS-1 Ser(307) and an IRS-1 Ser(307) kinase, inhibitor-κB kinase (IKK)-α/β Ser(176/180). Blockade of IKK/IRS-1 Ser(307) by caffeic acid ameliorated the caffeine-induced downregulation of IRS-1 Tyr(612) phosphorylation and 3MG transport. Caffeine also increased the phosphorylation of IRS-1 Ser(789) and an IRS-1 Ser(789) kinase, 5'-AMP-activated protein kinase (AMPK). However, inhibition of IRS-1 Ser(789) and AMPK phosphorylation by dantrolene did not rescue the caffeine-induced downregulation of IRS-1 Tyr(612) phosphorylation or 3MG transport. In addition, caffeine suppressed the phosphorylation of insulin-stimulated IRS-1 Ser(636/639) and upstream kinases, including the mammalian target of rapamycin and p70S6 kinase. Intravenous injection of caffeine at a physiological dose (5 mg/kg) in rats inhibited the phosphorylation of insulin-stimulated IRS-1 Tyr(612) and Akt Ser(473) in epitrochlearis muscle. Our results indicate that caffeine inhibits insulin signaling partly through the IKK/IRS-1 Ser(307) pathway, via a Ca(2+)- and AMPK-independent mechanism in skeletal muscle.  相似文献   

11.
In isosmotic conditions, insulin stimulation of PI 3-K/Akt and p38 MAPK pathways in skeletal muscle inhibits Na(+)-K(+)-2Cl(-) cotransporter (NKCC) activity induced by the ERK1,2 MAPK pathway. Whether these signaling cascades contribute to NKCC regulation during osmotic challenge is unknown. Increasing osmolarity by 20 mosM with either glucose or mannitol induced NKCC-mediated (86)Rb uptake and water transport into rat soleus and plantaris skeletal muscle in vitro. This NKCC activity restored intracellular water. In contrast to mannitol, hyperosmolar glucose increased ERK1,2 and p38 MAPK phosphorylation. Glucose, but not mannitol, impaired insulin-stimulated phosphorylation of Akt and p38 MAPK in the plantaris and soleus muscles, respectively. Hyperosmolarity-induced NKCC activation was insensitive to insulin action and pharmacological inhibition of ERK1,2 and p38 MAPK pathways. Paradoxically, cAMP-producing agents, which stimulate NKCC activity in isosmotic conditions, suppressed hyperosmolar glucose- and mannitol-induced NKCC activity and prevented restoration of muscle cell volume in hyperosmotic media. These results indicate that NKCC activity helps restore muscle cell volume during hyperglycemia. Moreover, hyperosmolarity activates NKCC regulatory pathways that are insensitive to insulin inhibition.  相似文献   

12.
The small GTPase Rac1 plays a pivotal role in insulin-stimulated glucose uptake in skeletal muscle, which is mediated by GLUT4 translocation to the plasma membrane. However, regulatory mechanisms for Rac1 and its role in the signaling pathway composed of phosphoinositide 3-kinase and the serine/threonine kinase Akt remain obscure. Here, we investigate the role of Akt in the regulation of Rac1 in myocytes. Insulin-induced, but not constitutively activated Rac1-induced, GLUT4 translocation was suppressed by Akt inhibitor IV. Insulin-induced Rac1 activation, on the other hand, was completely inhibited by this inhibitor. Constitutively activated phosphoinositide 3-kinase induced Rac1 activation and GLUT4 translocation. This GLUT4 translocation was almost completely suppressed by Rac1 knockdown. Furthermore, constitutively activated phosphoinositide 3-kinase-induced, but not constitutively activated Rac1-induced, GLUT4 translocation was suppressed by Akt2 knockdown. Finally, insulin-induced Rac1 activation was indeed inhibited by Akt2 knockdown. Together, these results reveal a novel regulatory mechanism involving Akt2 for insulin-dependent Rac1 activation.  相似文献   

13.
Plasma glucose and ketone concentrations are much higher in birds than in humans and birds exhibit resistance to insulin-mediated glucose uptake into muscle. Therefore, birds may offer a model in which to examine the effects of high plasma glucose and free fatty acid (FFA) concentrations on substrate preference. The present study examined the uptake of radiolabeled oleic acid (OA; C18:1) and radiolabeled glucose by skeletal muscle isolated from the forewing of English sparrows (Passer domesticus). In dose–response studies, unlabeled glucose and OA (20 mM each) inhibited the uptake of their respective radiolabeled counterparts. To examine the effects of glucose on OA uptake, muscles were incubated for 60 min in a buffer containing 20 mM glucose with the addition of radiolabeled OA. This level of glucose significantly decreased radiolabeled OA uptake by 36%. Using the same methodology, 20 mM OA significantly decreased radiolabeled glucose transport by 49%. Comparing control values for glucose (0.952 ± 0.04 μM/mg muscle) and OA uptake (2.20 ± 0.29 μM/mg muscle), it is evident that OA is preferentially taken up by avian skeletal muscle. As FFAs provide a greater amount of energy per mole (146 ATP/OA) than carbohydrates (36 ATP/glucose), storing and utilizing fats may be more energy-efficient for birds. As studies in mammals have shown that FFAs may impair glucose uptake pathways, it is suspected that high FFA uptake by avian skeletal muscle may induce their notably lower glucose transport.  相似文献   

14.
Insulin plays a central role in the regulation of glucose homeostasis in part by stimulating glucose uptake and glycogen synthesis. The serine/threonine protein kinase Akt has been proposed to mediate insulin signaling in several processes. However, it is unclear whether Akt is involved in insulin-stimulated glucose uptake and which isoforms of Akt are responsible for each insulin action. We confirmed that expression of a constitutively active Akt, using an adenoviral expression vector, promoted translocation of glucose transporter 4 (GLUT4) to plasma membrane, 2-deoxyglucose (2-DG) uptake, and glycogen synthesis in both Chinese hamster ovary cells and 3T3-L1 adipocytes. Inhibition of Akt either by adenoviral expression of a dominant negative Akt or by the introduction of synthetic 21-mer short interference RNA against Akt markedly reduced insulin-stimulated GLUT4 translocation, 2-DG uptake, and glycogen synthesis. Experiments with isoform-specific short interference RNA revealed that Akt2, and Akt1 to a lesser extent, has an essential role in insulin-stimulated GLUT4 translocation and 2-DG uptake in both cell lines, whereas Akt1 and Akt2 contribute equally to insulin-stimulated glycogen synthesis. These data suggest a prerequisite role of Akt in insulin-stimulated glucose uptake and distinct functions among Akt isoforms.  相似文献   

15.
Neuregulin-1, a growth factor that potentiates myogenesis induces glucose transport through translocation of glucose transporters, in an additive manner to insulin, in muscle cells. In this study, we examined the signaling pathway required for a recombinant active neuregulin-1 isoform (rhHeregulin-beta(1), 177-244, HRG) to stimulate glucose uptake in L6E9 myotubes. The stimulatory effect of HRG required binding to ErbB3 in L6E9 myotubes. PI3K activity is required for HRG action in both muscle cells and tissue. In L6E9 myotubes, HRG stimulated PKBalpha, PKBgamma, and PKCzeta activities. TPCK, an inhibitor of PDK1, abolished both HRG- and insulin-induced glucose transport. To assess whether PKB was necessary for the effects of HRG on glucose uptake, cells were infected with adenoviruses encoding dominant negative mutants of PKBalpha. Dominant negative PKB reduced PKB activity and insulin-stimulated glucose transport but not HRG-induced glucose transport. In contrast, transduction of L6E9 myotubes with adenoviruses encoding a dominant negative kinase-inactive PKCzeta abolished both HRG- and insulin-stimulated glucose uptake. In soleus muscle, HRG induced PKCzeta, but not PKB phosphorylation. HRG also stimulated the activity of p70S6K, p38MAPK, and p42/p44MAPK and inhibition of p42/p44MAPK partially repressed HRG action on glucose uptake. HRG did not affect AMPKalpha(1) or AMPKalpha(2) activities. In all, HRG stimulated glucose transport in muscle cells by activation of a pathway that requires PI3K, PDK1, and PKCzeta, but not PKB, and that shows cross-talk with the MAPK pathway. The PI3K, PDK1, and PKCzeta pathway can be considered as an alternative mechanism, independent of insulin, to induce glucose uptake.  相似文献   

16.
Increased cellular exposure to oxidants may contribute to the development of insulin resistance and type 2 diabetes. Skeletal muscle is the primary site of insulin-dependent glucose disposal in the body; however, the effects of oxidative stress on insulin signaling and glucose transport activity in mammalian skeletal muscle are not well understood. We therefore studied the effects of a low-level in vitro oxidant stress (30–40 μM H2O2) on basal and insulin-stimulated (5 mU/ml) glucose transport activity and insulin signaling at 2, 4, and 6 h in isolated rat soleus muscle. H2O2 increased basal glucose transport activity at 2 and 4 h, but not at 6 h. This low-level oxidant stress significantly impaired insulin-stimulated glucose transport activity at all time points, and was associated with inhibition of insulin-stimulated phosphorylation of Akt Ser473 and GSK-3β Ser9. In the presence of insulin, H2O2 decreased total protein expression of IRS-1 at 6 h and IRS-2 at 4 and 6 h. Phosphorylation of p38 MAPK Thr180/Tyr182 was transiently increased by H2O2 in the presence and absence of insulin at 2 and 4 h, but not at 6 h. Selective inhibition of p38 MAPK with A304000 partially rescued the H2O2-induced reduction in insulin-stimulated glucose transport activity. These results indicate that direct in vitro exposure of isolated mammalian skeletal muscle to a low-level oxidant stress impairs distal insulin signaling and insulin-stimulated glucose transport activity, at least in part, due to a p38 MAPK-dependent mechanism.  相似文献   

17.
Rexinoids and thiazolidinediones (TZDs) are two classes of nuclear receptor ligands that induce insulin sensitization in diabetic rodents. TZDs are peroxisome proliferator-activated receptor gamma (PPARgamma) activators, whereas rexinoids are selective ligands for the retinoid X receptors (RXRs). Activation of both the insulin receptor substrates (IRSs)/Akt and the c-Cbl-associated protein (CAP)/c-Cbl pathways are important in regulating insulin-stimulated glucose transport. We have compared the effects of a rexinoid (LG268) and a TZD (rosiglitazone) on these two signal pathways in skeletal muscle of diabetic (db/db) mice. The results we have obtained show that treatment of db/db mice with either LG268 or rosiglitazone for 2 weeks results in a significant increase in insulin-stimulated glucose transport activity in skeletal muscle. Treatment with LG268 increases insulin-stimulated IRS-1 tyrosine phosphorylation and Akt phosphorylation in skeletal muscle without affecting the activity of the CAP/c-Cbl pathway. In contrast, rosiglitazone increases the levels of CAP expression and insulin-stimulated c-Cbl phosphorylation without affecting the IRS-1/Akt pathway. The effects of LG268 on the IRS-1/Akt pathway were associated with a decrease in the level of IRS-1 Ser(307) phosphorylation. Taken together, these data suggest that rexinoids improve insulin sensitivity via changes in skeletal muscle metabolism that are distinct from those induced by TZDs. Rexinoids represent a novel class of insulin sensitizers with potential applications in the treatment of insulin resistance.  相似文献   

18.
Insulin resistance and Type 2 diabetes are marked by an aberrant response in the insulin signaling network. The phosphoinositide-dependent serine/threonine kinase, Akt2, plays a key role in insulin signaling and glucose uptake, most notably within skeletal muscle. Protein-protein interaction regulates the functional consequence of Akt2 and in turn, Akt2’s role in glucose uptake. However, only few insulin-responsive Akt2 interaction partners have been identified in skeletal muscle cells. In the present work, rat L6 myoblasts, a widely used insulin sensitive skeletal muscle cell line, were used to examine endogenous, insulin-stimulated Akt2 protein interaction partners. Akt2 co-immunoprecipitation was coupled with 1D-SDS-PAGE and fractions were analyzed by HPLC-ESI-MS/MS to reveal Akt2 protein-protein interactions. The pull-down assay displayed specificity for the Akt2 isoform; Akt1 and Akt3 unique peptides were not detected. A total of 49 were detected with a significantly increased (47) or decreased (2) association with Akt2 following insulin administration (n = 4; p<0.05). Multiple pathways were identified for the novel Akt2 interaction partners, such as the EIF2 and ubiquitination pathways. These data suggest that multiple new endogenous proteins may associate with Akt2 under basal as well as insulin-stimulated conditions, providing further insight into the insulin signaling network. Data are available via ProteomeXchange with identifier PXD002557.  相似文献   

19.
Akt kinases are important mediators of the insulin signal, and some Akt substrates are directly involved in glucose homeostasis. Recently, Girdin has been described as an Akt substrate that is expressed ubiquitously in mammals. Cells overexpressing Girdin show an enhanced Akt activity. However, not much is known about Girdin's role in insulin signaling. We therefore analyzed the role of Girdin in primary human myotubes and found a correlation between Girdin expression and insulin sensitivity of the muscle biopsy donors, as measured by a hyperinsulinemic–euglycemic clamp. To understand this finding on a cellular level, we then investigated the function of Girdin in C2C12 mouse myoblasts. Girdin knock-down reduced Akt and insulin receptor substrate-1 phosphorylation. In contrast, stable overexpression of Girdin in C2C12 cells strikingly increased insulin sensitivity through a massive upregulation of the insulin receptor and enhanced tyrosine phosphorylation of insulin receptor substrate-1. Furthermore, Akt and c-Abl kinases were constitutively activated. To investigate medium-term insulin responses we measured glucose incorporation into glycogen. The Girdin overexpressing cells showed a high basal glycogen synthesis that peaked already at 1 nM insulin. Taken together, we characterized Girdin as a new and major regulator of the insulin signal in myoblasts and skeletal muscle.  相似文献   

20.
Oxidative stress is characterized as an imbalance between the cellular production of oxidants and the cellular antioxidant defenses and contributes to the development of numerous cardiovascular and metabolic disorders, including hypertension and insulin resistance. The effects of prolonged oxidant stress in vitro on the insulin-dependent glucose transport system in mammalian skeletal muscle are not well understood. This study examined the in vitro effects of low-level oxidant stress (60–90 μM, H2O2) for 4 h on insulin-stimulated (5 mU/ml) glucose transport activity (2-deoxyglucose uptake) and on protein expression of critical insulin signaling factors (insulin receptor (IR), IR substrates IRS-1 and IRS-2, phosphatidylinositol 3-kinase, Akt, and glycogen synthase kinase-3 (GSK-3)) in isolated soleus muscle of lean Zucker rats. This oxidant stress exposure caused significant (50%, p < 0.05) decreases in insulin-stimulated glucose transport activity that were associated with selective loss of IRS-1 (59%) and IRS-2 (33%) proteins, increased (64%) relative IRS-1 Ser307 phosphorylation, and decreased phosphorylation of Akt Ser473 (50%) and GSK-3β Ser9 (43%). Moreover, enhanced (37%) phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK) was observed. Selective inhibition of p38 MAPK (10 μM A304000) prevented a significant portion (29%) of the oxidant stress-induced loss of IRS-1 (but not IRS-2) protein and allowed partial recovery of the impaired insulin-stimulated glucose transport activity. These results indicate that in vitro oxidative stress in mammalian skeletal muscle leads to substantial insulin resistance of distal insulin signaling and glucose transport activity, associated with a selective loss of IRS-1 protein, in part due to a p38 MAPK-dependent mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号