首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seventeen arginine auxotrophic mutants of Sinorhizobium meliloti Rmd201 were isolated by random transposon Tn5 mutagenesis using Tn5 delivery vector pGS9. Based on intermediate feeding studies, these mutants were designated as argA/argB/argC/argD/argE (ornithine auxotrophs), argF/argI, argG and argH mutants. The ornithine auxotrophs induced ineffective nodules whereas all other arginine auxotrophs induced fully effective nodules on alfalfa plants. In comparison to the parental strain induced nodule, only a few nodule cells infected with rhizobia were seen in the nitrogen fixation zone of the nodule induced by the ornithine auxotroph. TEM studies showed that the bacteroids in the nitrogen fixation zone of ornithine auxotroph induced nodule were mostly spherical or oval unlike the elongated bacteroids in the nitrogen fixation zone of the parental strain induced nodule. These results indicate that ornithine or an intermediate of ornithine biosynthesis, or a chemical factor derived from one of these compounds is required for the normal development of nitrogen fixation zone and transformation of rhizobial bacteria into bacteroids during symbiosis of S. meliloti with alfalfa plants.  相似文献   

2.
3.
The gene encoding Rhizobium meliloti isocitrate dehydrogenase (ICD) was cloned by complementation of an Escherichia coli icd mutant with an R. meliloti genomic library constructed in pUC18. The complementing DNA was located on a 4.4-kb BamHI fragment. It encoded an ICD that had the same mobility as R. meliloti ICD in nondenaturing polyacrylamide gels. In Western immunoblot analysis, antibodies raised against this protein reacted with R. meliloti ICD but not with E. coli ICD. The complementing DNA fragment was mutated with transposon Tn5 and then exchanged for the wild-type allele by recombination by a novel method that employed the Bacillus subtilis levansucrase gene. No ICD activity was found in the two R. meliloti icd::Tn5 mutants isolated, and the mutants were also found to be glutamate auxotrophs. The mutants formed nodules, but they were completely ineffective. Faster-growing pseudorevertants were isolated from cultures of both R. meliloti icd::Tn5 mutants. In addition to lacking all ICD activity, the pseudorevertants also lacked citrate synthase activity. Nodule formation by these mutants was severely affected, and inoculated plants had only callus structures or small spherical structures.  相似文献   

4.
5.
We have physically and genetically characterized 20 symbiotic and 20 auxotrophic mutants of Rhizobium meliloti, the nitrogen-fixing symbiont of alfalfa (Medicago sativa), isolated by transposon Tn5 mutagenesis. A "suicide plasmid" mutagenesis procedure was used to generate TN-5-induced mutants, and both auxotrophic and symbiotic mutants were found at a frequency of 0.3% among strains containing random TN5 insertions. Two classes of symbiotic mutants were isolated: 4 of the 20 formed no nodules at all (Nod-), and 16 formed nodules which failed to fix nitrogen (Fix-). We used a combination of physical and genetic criteria to determine that in most cases the auxotrophic and symbiotic phenotypes could be correlated with the insertion of a single Tn5 elements. Once the Tn5 element was inserted into the R. meliloti genome, the frequency of its transposition to a new site was approximately 10-8 and the frequency of precise excision was less than 10-9. In approximately 25% of the mutant strains, phage Mu DNA sequences, which originated from the suicide plasmid used to generate the Tn5 transpositions, were also found in the R. meliloti genome contiguous with Tn5. These later strains exhibited anomalous conjugation properties, and therefore we could not correlate the symbiotic phenotype with a Tn5 insertion. In general, we found that both physical and genetic tests were required to fully characterize transposon-induced mutations.  相似文献   

6.
Ten aromatic amino acid auxotrophs of Sinorhizobium meliloti (previously called Rhizobium meliloti) Rmd201 were generated by random mutagenesis with transposon Tn5 and their symbiotic properties were studied. Normal symbiotic activity, as indicated by morphological features, was observed in the tryptophan synthase mutants and the lone tyrosine mutant. The trpE and aro mutants fixed trace amounts of nitrogen whereas the phe mutant was completely ineffective in nitrogen fixation. Histology of the nodules induced by trpE and aro mutants exhibited striking similarities. Each of these nodules contained an extended infection zone and a poorly developed nitrogen fixation zone. Transmission electron microscopic studies revealed that the bacteroids in the extended infection zone of these nodules did not show maturation tendency. A leaky mutant, which has a mutation in trpC, trpD, or trpF gene, was partially effective in nitrogen fixation. The histology of the nodules induced by this strain was like that of the nodules induced by the parental strain but the inoculated plants were stunted. These studies demonstrated the involvement of anthranilic acid and at least one more intermediate of tryptophan biosynthetic pathway in bacteroidal maturation and nitrogen fixation in S. meliloti. The alfalfa plant host seems to provide tryptophan and tyrosine but not phenylalanine to bacteroids in nodules.  相似文献   

7.
We have identified a set of Tn5-generated mutants of Rhizobium meliloti on the basis of their failure to form a fluorescent halo under UV light when grown on agar medium containing Calcofluor. These mutations define a new genetic locus we have termed exoH. Alfalfa seedlings inoculated with exoH mutants form ineffective nodules that do not contain intracellular bacteria or bacteroids. Root hair curling is significantly delayed and infection threads abort in the nodule cortex. Analyses of exopolysaccharide secreted by exoH mutants have shown that it is identical to the Calcofluor-binding exopolysaccharide secreted by the exoH+ parental strain except for the fact that it completely lacks the succinyl modification. In vitro translation of total RNA isolated from nodules induced by an exoH mutant has shown that only one of the plant-encoded nodulins is induced, as compared with the 17 nodulins induced by wild-type strains. These observations suggest that succinylation of the bacterial polysaccharide is important for its role(s) in nodule invasion and possibly nodule development.  相似文献   

8.
Transposon Tn5-induced C4-dicarboxylate transport mutants of Rhizobium meliloti 2011 which could be complemented by cosmid pRmSC121 were subdivided into two classes. Class I mutants (RMS37 and RMS938) were defective in symbiotic C4-dicarboxylate transport and in nitrogen fixation. They were mutated in the structural gene dctA, which codes for the C4-dicarboxylate carrier. Class II mutants (RMS11, RMS16, RMS17, RMS24, and RMS31) expressed reduced activity in symbiotic C4-dicarboxylate transport and in nitrogen fixation. These mutants were mutated in regulatory dct genes which do not play an essential role in the symbiotic state. Thin sections of alfalfa nodules induced by the wild type and class I and class II mutants were analyzed by light microscopy. Class mutants induced typical Fix- nodules, showing a large senescent zone, whereas nodules induced by class II mutants only differed in an enhanced content of starch granules compared with wild-type nodules. Class I mutants could be complemented by a 2.1-kilobase SalI-HindIII subfragment of cosmid pRmSC121. DNA sequencing of this fragment resulted in the identification of an open reading frame, which was designated dctA because Tn5 insertion sites of the class I mutants mapped within this coding region. The dctA gene was preceded by a nif consensus promoter and an upstream NifA-binding element. Upstream of the dctA promoter, the 5' end of the R. meliloti dctB gene could be localized. The amino acid sequence of the N-terminal part of the R. meliloti DctB protein shared 49% homology with the corresponding part of the R. leguminosarum DctB protein. The DctA protein consisted of 441 or 453 amino acids due to two possible ATG start codons, with calculated molecular masses of 46.1 and 47.6 kilodaltons, respectively. The hydrophobicity plot suggests that DctA is a membrane protein with several membrane passages. The amino acid sequences of the R. meliloti and the R. leguminosarum DctA proteins were highly conserved (82%).  相似文献   

9.
Twenty one cysteine and 13 methionine auxotrophs of Sinorhizobium meliloti Rmd201 were obtained by random mutagenesis with transposon Tn5. The cysteine auxotrophs were sulfite reductase mutants and each of these auxotrophs had a mutation in cysI/cysJ gene. The methionine auxotrophs were metA/metZ, metE and metF mutants. One hundred per cent co-transfer of Tn5-induced kanamycin resistance and auxotrophy from each Tn5-induced auxotrophic mutant indicated that each mutant cell most likely had a single Tn5 insertion. However, the presence of more than one Tn5 insertions in the auxotrophs used in our study cannot be ruled out. All cysteine and methionine auxotrophs induced nodules on alfalfa plants. The nodules induced by cysteine auxotrophs were fully effective like those of the parental strain-induced nodules, whereas the nodules induced by methionine auxotrophs were completely ineffective. The supplementation of methionine to the plant nutrient medium completely restored symbiotic effectiveness to the methionine auxotrophs. These results indicated that the alfalfa host provides cysteine but not methionine to rhizobia during symbiosis. Histological studies showed that the defective symbiosis of methionine auxotrophs with alfalfa plants was due to reduced number of infected nodule cells and incomplete transformation of bacteroids.  相似文献   

10.
11.
Five exopolysaccharide-deficient mutants were isolated after rhizobial strain 107 was subjected to transposon Tn5 mutagenesis. The amount of EPS produced by the mutants was dramatically decreased to between 3% and 6% of wild-type level. All mutants carried a singel copy of Tn5. Two mutants (NA3 and NA10) were complemented by the R. meliloti exoA gene and the functionally equivalent exoD gene of Rhizobium sp. strain NGR234. Two other mutants (NA7 and NA8) were complemented by the R. meliloti exoB gene and the functionally equivalent NGR234 exoC gene. The remaining mutant (NA11) was not complemented by any exo genes of R. meliloti or Rhizobium NGR234. All mutants induced normal nitrogen-fixing nodules on Astragalus sinicus, an indeterminate nodulating host.  相似文献   

12.
DNA fragments containing either the nifD or nifH promoter and 5' structural gene sequences from Bradyrhizobium japonicum I110 were fused in frame to the lacZ gene. Stable integration of these nif promoter-lacZ fusions by homologous double reciprocal crossover into a symbiotically nonessential region of the B. japonicum chromosome provided an easy assay for the effects of potential nif regulatory mutants. The level of beta-galactosidase activity expressed from these two nif promoter-lacZ fusions was assayed in bacteroids of B. japonicum I110 wild type and Fix mutants generated by transposon Tn5 mutagenesis and identified in the accompanying paper. No nif-positive regulatory mutants were identified from among an array of Fix- mutants in which Tn5 was inserted 9 kilobase pairs upstream of the nifDK operon and within the 18-kilobase-pair region separating the nifDK and nifH operons. This result indicates that there are no genes in these regions involved in the regulation of nitrogenase structural gene expression. Interestingly, the level of beta-galactosidase activity expressed from the nifH promoter was twice that expressed from the nifD promoter, suggesting that the normal cellular level of the nifH gene product in bacteroids is in a 2:1 ratio with the nifD gene product instead of in the 1:1 stoichiometry of the nitrogenase enzyme complex.  相似文献   

13.
Earlier, we showed that Rhizobium meliloti nodM codes for glucosamine synthase and that nodM and nodN mutants produce strongly reduced root hair deformation activity and display delayed nodulation of Medicago sativa (Baev et al., Mol. Gen. Genet. 228:113-124, 1991). Here, we demonstrate that nodM and nodN genes from Rhizobium leguminosarum biovar viciae restore the root hair deformation activity of exudates of the corresponding R. meliloti mutant strains. Partial restoration of the nodulation phenotypes of these two strains was also observed. In nodulation assays, galactosamine and N-acetylglucosamine could substitute for glucosamine in the suppression of the R. meliloti nodM mutation, although N-acetylglucosamine was less efficient. We observed that in nodules induced by nodM mutants, the bacteroids did not show complete development or were deteriorated, resulting in decreased nitrogen fixation and, consequently, lower dry weights of the plants. This mutant phenotype could also be suppressed by exogenously supplied glucosamine, N-acetylglucosamine, and galactosamine and to a lesser extent by glucosamine-6-phosphate, indicating that the nodM mutant bacteroids are limited for glucosamine. In addition, by using derivatives of the wild type and a nodM mutant in which the nod genes are expressed at a high constitutive level, it was shown that the nodM mutant produces significantly fewer Nod factors than the wild-type strain but that their chemical structures are unchanged. However, the relative amounts of analogs of the cognate Nod signals were elevated, and this may explain the observed host range effects of the nodM mutation. Our data indicate that both the nodM and nodN genes of the two species have common functions and confirm that NodM is a glucosamine synthase with the biochemical role of providing sufficient amounts of the sugar moiety for the synthesis of the glucosamine oligosaccharide signal molecules.  相似文献   

14.
To identify bacterial genes involved in symbiotic nodule development, ineffective nodules of alfalfa (Medicago sativa) induced by 64 different Fix-mutants of Rhizobium meliloti were characterized by assaying for symbiotic gene expression and by morphological studies. The expression of leghemoglobin and nodulin-25 genes from alfalfa and of the nifHD genes from R. meliloti were monitored by hybridizing the appropriate DNA probes to RNA samples prepared from nodules. The mutants were accordingly divided into three groups. In group I none of the genes were expressed, in group II only the plant genes were expressed and in group III all three genes were transcribed. Light and electron microscopical analysis of nodules revealed that nodule development was halted at different stages in nodules induced by different group I mutants. In most cases nodules were empty lacking infection threads and bacteroids or nodules contained infection threads and a few released bacteroids. In nodules induced by a third mutant class bacteria were released into the host cells, however the formation of the peribacteroid membrane was not normal. On this basis we suggest that peribacteroid membrane formation precedes leghemoglobin and nodulin-25 induction, moreover, after induction of nodulation by the nod genes at least two communication steps between the bacteria and the host plants are necessary for the development of the mature nodule. By complementing each mutant of group I with a genomic R. meliloti library made in pLAFRl, four new fix loci were identified, indicating that several bacterial genes are involved in late nodule development.  相似文献   

15.
Analyses of Rhizobium meliloti trp auxotrophs suggest that anthranilate biosynthesis by the R. meliloti trpE(G) gene product is necessary during nodule development for establishment of an effective symbiosis. trpE(G) mutants, as well as mutants blocked earlier along this pathway in aromatic amino acid biosynthesis, form nodules on alfalfa that have novel defects. In contrast, R. meliloti trp mutants blocked later in the tryptophan-biosynthetic pathway form normal, pink, nitrogen-fixing nodules. trpE(G) mutants form two types of elongated, defective nodules containing unusually extended invasion zones on alfalfa. One type contains bacteroids in its base and is capable of nitrogen fixation, while the other lacks bacteroids and cannot fix nitrogen. The trpE(G) gene is expressed in normal nodules. Models are discussed to account for these observations, including one in which anthranilate is postulated to act as an in planta siderophore.  相似文献   

16.
The occurrence in Azospirillum brasilense of genes that code for exopolysaccharide (EPS) synthesis was investigated through complementation studies of Rhizobium meliloti Exo- mutants. These mutants are deficient in the synthesis of the major acidic EPS of Rhizobium species and form empty, non-nitrogen-fixing root nodules on alfalfa (J. A. Leigh, E. R. Signer, and G. C. Walker, Proc. Natl. Acad. Sci. USA 82:6231-6235, 1985). We demonstrated that the exoC mutation of R. meliloti could be corrected for EPS production by several cosmid clones of a clone bank of A. brasilense ATCC 29145. However, the EPS produced differed in structure from the wild-type R. meliloti EPS, and the symbiotic deficiency of the exoC mutation was not reversed by any of these cosmid clones. The exoB mutation could be corrected not only for EPS production but also for the ability to form nitrogen-fixing nodules on alfalfa by one particular cosmid clone of A. brasilense. Tn5 insertions in the cloned DNA were isolated and used to construct Azospirillum mutants with mutations in the corresponding loci by marker exchange. It was found that these mutants failed to produce the wild-type high-molecular-weight EPS, but instead produced EPSs of lower molecular weight.  相似文献   

17.
A protein was identified which was made by wild-type strains of Rhizobium leguminosarum but not by nodulation-deficient derivatives which had deletions of their symbiotic plasmids. The protein, which had a subunit molecular weight of ca. 24,000 ( 24K ), was found to be present in large amounts within bacteria that had been reisolated from the surface of inoculated pea roots but was not detected in bacteroids isolated from nodules. The protein could also be induced during growth of R. leguminosarum on nutrient medium and was purified from the cytoplasmic fraction of broken cells. Antiserum raised against the purified protein was used to screen transposon-induced mutants of R. leguminosarum, and four independent mutants were isolated which lacked the protein. The sites of the Tn5 insertions were found to map between the nitrogenase and nodulation genes on symbiotic plasmid pRL1JI , ca. 5 kilobases from the nitrogenase genes and 13 kilobases from the nodulation genes. Genetic determinants for the 24K protein were found to be closely linked to plasmid-borne nodulation genes for all strains of R. leguminosarum tested. However, the mutants which lacked the 24K protein still formed normal nitrogen-fixing nodules on peas, and the function of the protein is unknown.  相似文献   

18.
Alfalfa plants co-inoculated with Rhizobium meliloti nodulation (Nod-) and infection mutants deficient in exopolysaccharide production (Inf-EPS-) formed mixed infected nodules that were capable of fixing atmospheric nitrogen. The formation of infected nodules was dependent on close contact between the inoculation partners. When the partners were separated by a filter, empty Fix- nodules were formed, suggesting that infection thread formation in alfalfa is dependent on signals from the nodulation and infection genes. In mixed infected nodules, both nodulation and infection mutants colonized the plant cells and differentiated into bacteroids. The formation of bacteroids was not dependent on cell-to-cell contact between the mutants. Immunogold/silver staining revealed that the ratio of the two mutants varied considerably in colonized plant cells following mixed inoculation. The introduction of an additional nif/fix mutation into one of the inoculation partners did not abolish nitrogen fixation in mixed infected nodules. The expression of nif D::lacZ fusions additionally demonstrated that mutations in the nodulation and infection genes did not prevent the nif genes from being expressed in the mutant bacteroids.  相似文献   

19.
The transport of succinate was studied in bacteroids of an effective, streptomycin-resistant strain (GF160) of Rhizobium leguminosarum. High levels of succinate transport occurred, and the kinetics, specificity, and sensitivity to metabolic inhibitors were similar to those previously described for free-living cells. The symbiotic properties of two transposon (Tn5)-mediated C4-dicarboxylate transport mutants (strains GF31 and GF252) were determined. Strain GF31 formed ineffective nodules, and bacteroids from these nodules showed no succinate transport activity. Strain GF252 formed partially effective nodules, and bacteroids from these nodules showed about 50% of the succinate transport activity of the parent bacteroids. Another dicarboxylic acid transport mutant (Dct-), strain GFS5, isolated after N-methyl-N'-nitro-N-nitrosoguanidine mutagenesis, formed ineffective nodules. The ability to form ineffective nodules in strains GF31 and GFS5 was shown to correlate with the Dct- phenotype. The data indicate that the presence of a functional C4-dicarboxylic acid transport system is essential for N2 fixation to occur in pea nodules.  相似文献   

20.
Bacteroid differentiation was examined in developing and mature alfalfa nodules elicited by wild-type or Fix- mutant strains of Rhizobium meliloti. Ultrastructural studies of wild-type nodules distinguished five steps in bacteroid differentiation (types 1 to 5), each being restricted to a well-defined histological region of the nodule. Correlative studies between nodule development, bacteroid differentiation, and acetylene reduction showed that nitrogenase activity was always associated with the differentiation of the distal zone III of the nodule. In this region, the invaded cells were filled with heterogeneous type 4 bacteroids, the cytoplasm of which displayed an alternation of areas enriched with ribosomes or with DNA fibrils. Cytological studies of complementary halves of transversally sectioned mature nodules confirmed that type 4 bacteroids were always observed in the half of the nodule expressing nitrogenase activity, while the presence of type 5 bacteroids could never be correlated with acetylene reduction. Bacteria with a transposon Tn5 insertion in pSym fix genes elicited the development of Fix- nodules in which bacteroids could not develop into the last two ultrastructural types. The use of mutant strains deleted of DNA fragments bearing functional reiterated pSym fix genes and complemented with recombinant plasmids, each carrying one of these fragments, strengthened the correlation between the occurrence of type 4 bacteroids and acetylene reduction. A new nomenclature is proposed to distinguish the histological areas in alfalfa nodules which account for and are correlated with the multiple stages of bacteroid development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号