首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A complex trisaccharide β-d-GalpNAcA-(1 → 4)-β-d-GlcpNAc-(1 → 4)-d-ManpNAc (3) was prepared in a good yield (35%) in a transglycosylation reaction catalyzed by β-N-acetylhexosaminidase from Talaromyces flavus using p-nitrophenyl 2-acetamido-2-deoxy-β-d-galacto-hexodialdo-1,5-pyranoside (1) as a donor followed by the in situ oxidation of the aldehyde functionality by NaClO2. The disaccharide β-d-GlcpNAc-(1 → 4)-d-ManpNAc (2) was used as galactosyl acceptor. A disaccharide β-d-GalpNAcA-(1 → 4)-d-GlcpNAc (4; 39%) originated as a by-product in the reaction. Oligosaccharides comprising a carboxy moiety at C-6 are shown to be very efficient ligands to natural killer cell activation receptors, particularly to human receptor CD69. Thus, oxidized trisaccharide 3 is the best-known oligosaccharidic ligand to this receptor, with IC50 = 2.5 × 10−9 M. The presented method of introducing a β-d-GalpNAcA moiety into carbohydrate structures is versatile and can be applied in the synthesis of other complex oligosaccharides.  相似文献   

2.
Phytochemical analysis of Solanum nigrum has resulted in the isolation of two novel disaccharides. Their structures were determined as ethyl β-d-thevetopyranosyl-(1→4)-β-d-oleandropyranoside (1) and ethyl β-d-thevetopyranosyl-(1→4)-α-d-oleandropyranoside (2), respectively, by chemical and spectroscopic methods.  相似文献   

3.
Amylosucrase (ASase, EC 2.4.1.4) is a member of family 13 of the glycoside hydrolases that catalyze the synthesis of an α-(1→4)-linked glucan polymer from sucrose instead of an expensive activated sugar, such as ADP- or UDP-glucose. Transglycosylation reactions mediated by the ASases of Deinococcus geothermalis (DGAS) and Neisseria polysaccharea (NPAS) were applied to the synthesis of salicin glycosides with sucrose serving as the glucopyranosyl donor and salicin as the acceptor molecule. Two salicin glycoside transfer products were detected by TLC and HPLC analyses. The synthesis of salicin glycosides was very efficient with NPAS with a yield of over 90%. In contrast, DGAS specifically synthesized only one salicin transglycosylation product. The transglycosylation products were identified as α-d-glucopyranosyl-(1→4)-salicin (glucosyl salicin) and α-d-glucopyranosyl-(1→4)-α-d-glucopyranosyl-(1→4)-salicin (maltosyl salicin) by NMR analysis. The ratio between donor and acceptor had a significant effect on the type of product that resulted from the transglycosylation reaction. With more acceptors present in the reaction, more glucosyl salicin and less maltosyl salicin were synthesized.  相似文献   

4.
The crude polysaccharide was obtained from Gynostemma pentaphyllum Makino by water extraction followed by ethanol precipitation. The polysaccharide was successively purified by chromatography on DEAE-52 and SephadexG-150 column, and three polysaccharide fractions were obtained and termed GPP1-a, GPP2-b, and GPP3-a, respectively. The administration with GPP1-a markedly prolonged exhaustive exercise time of the mice. Structural features of GPP1-a were investigated by a combination of instrumental and chemical analyses, including atomic force microscope (AFM), scanning electron microscope (SEM), partial acid hydrolysis, periodate oxidation, Smith degradation, methylation analysis, gas chromatography–mass spectrometry (GC–MS) analysis and NMR spectroscopy. The results indicate that GPP1-a has a backbone of (1 → 4)-linked α-d-Glucose residues, which occasionally branches at O-6. The branches are mainly composed of (1 → 6)-linked α-d-Glucose, (1 → 3)-linked β-d-Galactose and (1 → 6)-linked α-d-Galactose residues, and terminated with β-d-Galactose residues and β-l-Arabinose residues.  相似文献   

5.
The flagellin of Pseudomonas syringae pv. tabaci is a glycoprotein that contains O-linked oligosaccharides composed of rhamnosyl and 4,6-dideoxy-4-(3-hydroxybutanamido)-2-O-methylglucosyl residues. These O-linked glycans are released by hydrazinolysis and then labeled at their reducing ends with 2-aminopyridine (PA). A PA-labeled trisaccharide and a PA-labeled tetrasaccharide are isolated by normal-phase high-performance liquid chromatography. These oligosaccharides are structurally characterized using mass spectrometry and NMR spectroscopy. Our data show that P. syringae pv. tabaci flagellin is glycosylated with a tetrasaccharide, 4,6-dideoxy-4-(3-hydroxybutanamido)-2-O-methyl-Glcp-(1→3)-α-l-Rhap-(1→2)-α-l-Rhap-(1→2)-α-l-Rha-(1→, as well a trisaccharide, 4,6-dideoxy-4-(3-hydroxybutanamido)-2-O-methyl-Glcp-(1→3)-α-l-Rhap-(1→2)-α-l-Rha-(1→, which was identified in a previous study.  相似文献   

6.
A novel polysaccharide designated EPS-1A with an average molecular weight around 40 kDa was fractionated and purified by anion-exchange and gel-filtration chromatography from the crude exopolysaccharide (EPS) isolated from fermentation broth of Cs-HK1, a Tolypocladium sp. fungus isolated from wild Cordyceps sinensis. The structural characteristics of EPS-1A were determined with various methods (e.g. GC, GC–MS, FT-IR, 1H NMR and 13C NMR) and through acid hydrolysis, methylation, periodate-oxidation and Smith degradation. The results suggested that EPS-1A was composed of glucose, mannose and galactose at 15.2:3.6:1.0 M ratio. EPS-1A was a slightly branched polysaccharide and its backbone was composed of (1 → 6)-α-d-glucose residues (77%) and (1 → 6)-α-d-mannose residues (23%). Branching occurred at O-3 position of (1 → 6)-α-d-mannose residues of the backbone with (1 → 6)-α-d-mannose residues and (1 → 6)-α-d-glucose residues, and terminated with β-d-galactose residues.  相似文献   

7.
A water-soluble seed gum was isolated from seed endosperm of Cassia javahikai. The acid-catalyzed fragmentation, methylation, selective enzymatic degradation and periodate oxidation suggested a heteropolymeric structure for the polysaccharide. The polysaccharide was shown to have a linear chain of β(1 → 4) linked d-mannopyranosyls units with side chains of α(1 → 6) d-galactopyranosyl units. Grafting of polyacrylamide onto the gum was performed using K2S2O8/ascorbic acid redox system in presence of Ag+ as catalyst at 35 ± 2 °C. The viscosity of the gum solution increased on grafting and the grafted gum was observed to resist biodegradation for more than 256 h. Thermogravimetric analysis revealed that grafted gum was more thermally stable than native gum.  相似文献   

8.
Each of the cell walls of four representatives of the genus Kribbella (order Actinomycetales; suborder Propionibacterineae; family Nocardioidaceae) contains a neutral polysaccharide and an acidic polysaccharide with unusual structures. Common to all four strains studied is a mannan with the following repeating unit: In the cell wall of the strain VKM Ac-2541, a teichulosonic acid was identified with a monosaccharide component that has not hitherto been found in Gram-positive bacteria, viz., pseudaminic acid, and an unusual linkage type in the polymeric chain,

where R = Н (45%), α-d-Galp3OMe (37%) or α-d-Galp2,3OMe (18%).The anionic cell wall components of three other strains are represented by teichuronic acids with a rare constituent, viz., a diaminosugar, 2,3-diacetamido-2,3-dideoxyglucopyranose. The structures of their repeating units differ in the nature of the acidic components:→4)-β-d-Manp2,3NAcA-(1→6)-α-d-Glcp2,3NAc-(1→ (VKM Ас-2538 and VKM Ас-2540) and →4)-β-d-ManpNAcA-(1→6)-α-d-Glcp2,3NAc-(1→ (VKM Ас-2539).The structures of all the glycopolymers were established by chemical and NMR spectroscopic methods; they are identified in Gram-positive bacteria for the first time.  相似文献   

9.
A water-soluble polysaccharide isolated from Dalbergia sissoo Roxb. leaves was purified and major homogeneous fraction obtained by GPC. Complete hydrolysis of the polysaccharide followed by paper chromatography and GLC analysis indicated the presence of l-rhamnose, d-glucuronic acid, d-galactose and d-glucose in molar ratio of 1:1:2:2.33, respectively. Partial hydrolysis of the polysaccharide furnished one tri-[I], one hepta-[II] and one nona-[III] saccharides. Hydrolysis of the oligosaccharide I, II and III followed by GLC analysis furnished d-glucose and l-rhamnose (2:1); l-rhamnose, d-galactose and d-glucuronic acid (1:3:3); and l-rhamnose, d-galactose and d-glucose (1:3:5), respectively. Methylation analysis and periodate oxidation of the oligosaccharide I indicated the presence of two non reducing glucose units linked to rhamnose by 1→2 and 1→4 linkages, respectively. Oligosaccharide II is a branched molecule with a main chain consisting of 1,3-linked β-d-galactopyranosyl (2 mol), 1,3,4 linked α-l-rhamnopyranosyl (1 mol) and 1,4,6 linked β-d-galactopyranosyl unit (1 mol) and non reducing β-d-glucuronic acid at the end along with side chains of β-d-glucouronopyranosyl units (2 mol). Oligosaccharide III is also a branched molecule with a main chain consisting of 1,3,4 linked α-l-rhamnopyranosyl (1 mol), 1,2,4 linked β-d-glucopyranosyl (1 mol), 1,3 and 1,4 linked β-d-galactopyranosyl (2 and 1 mol, respectively) having β-d-glucopyranosyl as a non reducing end.  相似文献   

10.
Three new nervogenic acid glycosides, 1-O-α-l-rhamnopyranosyl 3,5-bis(3-methyl-but-2-enyl)-4-O-[α-l-rhamnopyranosyl-(1→2)-β-d-glucopyranosyl]-benzoate, 3,5-bis(3-methyl-but-2-enyl)-4-O-[α-l-rhamnopyranosyl-(1→2)-β-d-glucopyranosyl]-benzoic acid, and bis{3,5-bis(3-methyl-but-2-enyl)-4-O-[α-l-rhamnopyranosyl-(1→2)-β-d-glucopyranosyl]-benzoyl} 1,2-O-β-d-glucopyranose, which we named condobulbosides A–C, were isolated from a methanol extract of the leaves of Liparis condylobulbon together with an apigenin C-glycoside, schaftoside. Their structures were established on the basis of spectral techniques, namely, UV, IR, HR-MS spectroscopy, both 1D and 2D NMR experiments, and chemical reactions.  相似文献   

11.
A water-soluble polysaccharide named as PRP was isolated from the fruiting bodies of Phellinus ribis by hot water extraction, DEAE-cellulose and Superdex 30 column chromatography. Its structural characteristics were investigated by FT-IR, NMR spectroscopy, GLC-MS, methylation analysis, periodate oxidation and Smith degradation. Based on the data obtained, PRP was found to be a β-d-glucan containing a (1 → 4), (1 → 6)-linked backbone, with a single β-d-glucose at the C-3 position of (1 → 6)-linked glucosyl residue every eight residues, along the main chain. The glucan has a weight-average molecular weight of about 8.59 kDa by HPGPC determination using dextran samples as the standards. Preliminary activity tests in vitro revealed that PRP could stimulate the proliferation of spleen lymphocyte.  相似文献   

12.
The regioselectivity of the transglycosylation reaction catalyzed by extracellular α-galactosidases from filamentous fungi was studied using p-nitrophenyl α- -galactopyranoside. Regioisomers of p-nitrophenyl α- -galactobiopyranoside α(1→2), α(1→3) and α(1→6) were isolated and characterized. α-Galactosidases with pronounced regioselectivity towards α-Gal-O-R acceptor were identified.  相似文献   

13.
The recently described [Attolino, E.; Bonaccorsi, F.; Catelani, G.; D’Andrea, F. Carbohydr. Res. 2008, 343, 2545–2556.] β-d-MaNAcp-(1→4)-β-d-Glcp thiophenyl glycosyl donor 3 was used in α-glycosylation reactions of OH-2 and OH-3 of the suitably protected p-MeO-benzyl α-l-rhamnopyranoside acceptors 7 and 8. Glycosylation of the axial OH-2 of 7 took place in high yield (76%) and with acceptable stereoselectivity (α/β = 3.4) leading to the protected trisaccharide α-11, corresponding to the repeating unit of Streptococcus pneumoniae 19F. The same reaction on equatorial OH-3 of acceptor 8 gave the trisaccharide α-15, a constituent of the repeating unit of S. pneumoniae 19A, but in lower yield (41%) and without stereoselection (α/β = 1:1.3). Utilizing the introduced orthogonal protection of OH-1 and OH-4″, the trisaccharide α-11 was transformed into a trisaccharide building block suitable for the synthesis of its phosphorylated oligomers.  相似文献   

14.
Sulfated polysaccharides were localized in the cuticle, cortex and medulla of the gametophyte thallus, being more concentrated in the intercellular matrix than in the cell walls. During the water extraction sequence, a small percentage of galactan sulfates (5.1% of dry seaweed) with average low Mr (6–11.4 kDa) were extracted at room temperature without disturbing the cellular arrangement, while sulfated galactans of average medium Mr (18–45 kDa) were obtained by further hot-water extractions (52.4% of dry seaweed), with diorganization of the tissue. The residue (40.0% of dry seaweed) still contained carrageenan-type (major) and agaran-type (minor) galactans. Part of these galactans was extracted with 8.4% LiCl solution in DMSO, from which “pure” κ/ι-carrageenans were isolated.Carrageenans and agarans were extracted in a ratio 1:0.5, showing the highest amount of agaran-structures for a carrageenophyte. The galactans comprise alternating 4-sulfated (major) and non-sulfated (minor) 3-linked β-d-galactopyranose units, and 4-linked α-galactopyranose units with the following substitutions: (i) non-sulfated and 2-sulfated 3,6-anhydro-α-d-galactopyranose residues in the carrageenan-structures, which belong to the κ-family (κ/ι-carrageenans); (ii) 3-sulfated α-l-galactopyranose units and 2-sulfated 3,6-anhydro-α-l-galactopyranose residues in the agaran-structures.Alkaline treatment and alkaline dialysis of the main extracts gave “pure” κ/ι-carrageenans, showing that carrageenan molecules are extracted together with low Mr agarans or agaran-dl-hybrids.  相似文献   

15.
The emergence of multi-drug resistant (MDR) strains of Mycobacterium tuberculosis (MTB) and the continuing pandemic of tuberculosis emphasizes the urgent need for the development of new anti-tubercular agents with novel drug targets. The recent structural elucidation of the mycobacterial cell wall highlights a large variety of structurally unique components that may be a basis for new drug development. This publication describes the synthesis, characterization, and screening of several octyl Galf(β,1→5)Galf and octyl Galf(β,1→6)Galf derivatives. A cell-free assay system has been utilized for galactosyltransferase activity using UDP[14C]Galf as the glycosyl donor, and in vitro inhibitory activity has been determined in a colorimetric broth microdilution assay system against MTB H37Ra and three clinical isolates of Mycobacterium avium complex (MAC). Certain derivatives showed moderate activities against MTB and MAC. The biological evaluation of these disaccharides suggests that more hydrophobic analogues with a blocked reducing end showed better activity as compared to totally deprotected disaccharides that more closely resemble the natural substrates in cell wall biosynthesis.  相似文献   

16.
Galactosyl transferases in mycobacterial cell wall synthesis   总被引:1,自引:0,他引:1       下载免费PDF全文
Two galactosyl transferases can apparently account for the full biosynthesis of the cell wall galactan of mycobacteria. Evidence is presented based on enzymatic incubations with purified natural and synthetic galactofuranose (Galf) acceptors that the recombinant galactofuranosyl transferase, GlfT1, from Mycobacterium smegmatis, the Mycobacterium tuberculosis Rv3782 ortholog known to be involved in the initial steps of galactan formation, harbors dual β-(1→4) and β-(1→5) Galf transferase activities and that the product of the enzyme, decaprenyl-P-P-GlcNAc-Rha-Galf-Galf, serves as a direct substrate for full polymerization catalyzed by another bifunctional Galf transferase, GlfT2, the Rv3808c enzyme.  相似文献   

17.
The regioselective glycosylation of three isomers of hydroxybenzoic acids was observed in Panax ginseng hairy root cultures. p-Hydroxybenzoic acid (1) and m-hydroxybenzoic acid (2) were converted into their corresponding glycosides (1a and 2a) and glycosyl esters (1b and 2b) while no metabolite of o-hydroxybenzoic acid (3) was detected. A new compound, m-hydroxybenzoic acid β-d-xylopyranosyl (1 → 6)-β-d-glycopyranosyl ester (2c) was identified as a biotransformation product of 2. Further time-course studies of the biotransformation reactions showed that the glycosides were major products in the latter stage. The addition of carbohydrates or antioxidants increased glycosyl esters formation.  相似文献   

18.
A novel β-glucosidase from Fusarium proliferatum ECU2042 (FPG) was successfully purified to homogeneity with a 506-fold increase in specific activity. The molecular mass of the native purified enzyme (FPG) was estimated to be approximately 78.7 kDa, with two homogeneous subunits of 39.1 kDa, and the pI of this enzyme was 4.4, as measured by two-dimensional electrophoresis. The optimal activities of FPG occurred at pH 5.0 and 50 °C, respectively. The enzyme was stable at pH 4.0–6.5 and temperatures below 60 °C, and the deactivation energy (Ed) for FPG was 88.6 kJ mo1−1. Moreover, it was interesting to find that although the purified enzyme exhibited a very low activity towards p-nitrophenyl β-d-glucoside (pNPG), and almost no activity towards cellobiose, a relatively high activity was observed on ginsenoside Rg3. The enzyme hydrolyzed the 3-C, β-(1 → 2)-glucoside of ginsenoside Rg3 to produce ginsenoside Rh2, but did not sequentially hydrolyze the β-d-glucosidic bond of Rh2. The Km and Vmax values of FPG for ginsenoside Rg3 were 2.37 mM and 0.568 μmol (h mg protein)−1, respectively. In addition, this enzyme also exhibited significant activities towards various alkyl glucosides, aryl glucosides and several natural glycosides.  相似文献   

19.
β-(1→4)-Thiodisaccharides formed by a pentopyranose unit as reducing or non reducing end have been synthesized using a sugar enone derived from a hexose or pentose as Michael acceptor of a 1-thiopentopyranose or 1-thiohexopyranose derivatives. Thus, 2-propyl per-O-acetyl-3-deoxy-4-S-(β-d-Xylp)-4-thiohexopyranosid-2-ulose (3) and benzyl per-O-acetyl-3-deoxy-4-S-(β-d-Galp)-4-thiopentopyranosid-2-ulose (11) were obtained in almost quantitative yields. The carbonyl function of these uloses was reduced with NaBH4 or K-Selectride, and the stereochemical course of the reduction was highly dependent on the reaction temperature, reducing agent and solvent. Unexpectedly, reduction of 3 with NaBH4–THF at 0 °C gave a 3-deoxy-4-S-(β-d-Xylp)-4-thio-α-d-ribo-hexopyranoside derivative (6) as major product (74% yield), with isomerization of the sulfur-substituted C-4 stereocenter of the pyranone. Reduction of 11 gave always as major product the benzyl 3-deoxy-4-S-(Galp)-4-thio-β-d-threo-pentopyranoside derivative 14, which was the only product isolated (80% yield) in the reduction with K-Selectride in THF at −78 °C. Deprotection of 14 and its epimer at C-2 (13) afforded, respectively the free thiodisaccharides 19 and 18. They displayed strong inhibitory activity against the β-galactosidase from Escherichia coli. Thus, compound 18 proved to be a non-competitive inhibitor of the enzyme (Ki = 0.80 mM), whereas 19 was a mixed-type inhibitor (Ki = 32 μM).  相似文献   

20.
1. A microsomal enzyme preparation from the yeast Saccharomyces cerevisiae catalyzes the transfer of mannosyl units from GDPmannose to mannose and a number of mannose-containing oligosaccharides and glycosides whereby different glycosidic bonds are formed.2. Of the compounds tested besides mannose, only those containing an α-linked mannosyl unit at the nonreducing position of their moleculae were effective as receptors. Monodeoxyanalogues of mannose as well as α-mannose phosphates did not serve as receptors in the above reaction.3. The structure of the product formed with mannose as receptor was determined to be O-α-D-mannosyl-(1→2)-mannose; with αMan(1→Man(1→6)mannose as the acceptor, the product was αMan(1→6)αMan(1→6)mannose and with αMan-(1→2)mannose the product was tentatively characterized as a mixture of αMan-(1→3)αMan(1→2)mannose and αMan(1→2)αMan(1→2)mannose.4. The enzymes catalyzing the formation of different types of glycosidic bonds differed in their acceptor specificity, pH-activity curves and rates of heat denaturation.5. Radioactive disaccharids were unable to enter the mannan protein molecule in the cell-free system while free radioactive mannose did incorporate into polysacchride to a minor extent under the same conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号