首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The chain specificities of 18 Ak and 26 Ab-reactive anti-Ia monoclonal antibodies have been determined. L cells were transfected with haplotype-matched (A alpha k:A beta k, A alpha b:A beta k) or haplotype-mismatched (A alpha k:A beta b, A alpha b:A beta k) cDNA pairs, lines expressing high levels of surface A complex were selected, and antibody reactivity with a panel of reagents was assessed by cytofluorimetric analysis. Most of the antibodies recognized a determinant specified by one chain, either alpha or (more commonly) beta. A few examples of more complex determinants were also observed. A knowledge of the chain specificities of anti-Ia monoclonal antibodies should prove useful for a variety of studies aimed at dissecting Ia structure-function relationships.  相似文献   

2.
Studies on cell lines transfected with MHC class II genes have revealed important limitations on the assembly of haplotype-mismatched A alpha:A beta complexes. These findings led to the speculation that pairing restrictions, if applied in a cell type-specific fashion, might be involved in various autoimmune phenomena. We have investigated pairing restrictions in vivo by analyzing transgenic mice that carry an Ak alpha chain, an Ak beta chain, or the Ak alpha:Ak beta complex on an H-2b or H-2s background. Our conclusion is that the assembly of haplotype-mismatched A alpha:A beta complexes is limited in vivo, and that this is equally true for all cell types examined, regardless of their role in the immune response.  相似文献   

3.
We report the creation and characterization of several transgenic mouse lines that carry genes coding for the Ak alpha or Ak beta MHC class II (or Ia) molecules. In all these lines, the transgenes are expressed at the RNA and protein level with correct tissue and cell type specificity. Crosses between certain of them yield progeny displaying very high surface levels of class II protein--roughly five times the normal amount--allowing us to evaluate the consequences of quantitative variation in Ia molecule density on the organization and function of the immune system. The effects appear rather limited: we detect subtle changes in thymic lymphocyte subpopulations, as well as an enhanced Ag presentation capacity in vitro. Yet, in vivo responses are largely unaffected, and Ia overexpression to such levels does not provoke lymphoproliferation, immunodeficiency, or autoimmunity.  相似文献   

4.
A J Sant  R N Germain 《Cell》1989,57(5):797-805
Mixed isotype (E alpha A beta and A alpha E beta) dimers are not found on Ia+ hematopoietic cells, although some pairs (e.g., E alpha A beta d) reach the membrane of transfected cells expressing only the two relevant class II genes. To examine the basis for this difference in potential versus actual Ia molecule expression, we utilized an L cell transfection model more closely resembling the normal condition of multiple class II alpha and beta chain synthesis within a single cell, such that competition among alpha and beta chains could occur. The surface expression of individual Ia dimers was compared with the available class II chains in such cells. Our data indicate that 3- to 5-fold preferences in assembly or transport of the predominant A alpha A beta and E alpha E beta species preclude expression of the mixed isotype E alpha A beta pair under physiologic conditions of balanced chain synthesis, but that asymmetric chain synthesis can lead to the expression of such mixed dimers on the cell surface in biologically significant amounts.  相似文献   

5.
Antigen-presenting cells (APC) expressing mutant Ek beta and Ak alpha proteins were isolated after chemical mutagenesis of TA3 cells and negative immunoselection for altered Ek beta molecules. Mutant clones were analyzed for biosynthesis, assembly, and cell surface expression of altered Ia molecules, and were assayed for antigen-presenting function by using a variety of T cell clones. Three types of mutants were detected: type 1, which had lost expression of the Ek beta chain and produced altered Ak alpha chains; type 2, which also expressed altered Ak alpha chains, and which expressed Ek beta proteins that had lost reactivity to the 17.3.3 and 74D monoclonal antibodies (mAb), but retained reactivity to other anti-Ek beta mAb; and type 3, which had lost expression of both Ek beta and Ak beta: Ak alpha surface molecules. Thus, all of the mutant clones that produced modified Ak alpha proteins also displayed either total loss or serologic modification of the Ek beta molecule. Ek beta:E alpha-reactive T cell clones were not stimulated when type 1 or type 3 cells were used as APC, but all such T cells were fully reactive with type 2 mutant APC. Most Ak beta:Ak alpha-reactive T cell clones could respond to type 1 and 2 APC, and none were responsive to type 3 APC. However, two autoreactive Ak beta:Ak alpha-specific T cell hybridomas were stimulated only very weakly by type 1 and type 2 cells expressing modified Ak alpha proteins. These results demonstrate that Ia mutations can have highly selective effects on antigen presentation to T cells as well as on mAb binding, and thus suggest that individual Ia molecules may be composed of many different functional subsites.  相似文献   

6.
7.
Class II major histocompatibility complex (MHC) molecules, the Ia antigens, are intimately involved in regulating the intensity and specificity of the cellular and humoral responses to T cell-dependent antigens. One approach to understanding the mechanism of this regulation is to analyze the structure and allelic polymorphism of Ia molecules. In addition there are regulatory polymorphisms in the expression of the I-E alpha and I-E beta class II MHC polypeptide chains. Analysis of the cDNA sequence indicates that I-A and I-E alpha chains are similar with short stretches of homology and other regions of nonhomology. Analysis of Northern blots of mRNA indicates that at least three separate types of regulatory polymorphisms result in failure of expression of I-E alpha. Comparison of allelic sequences of six alleles of the I-A alpha chain shows that almost all of the allelic polymorphism is in the first domain and that within the first domain it is clustered in three allelic hypervariable regions within the first domain of I-A alpha. The structural and functional implications of these findings are discussed.  相似文献   

8.
Chemically induced mutants of an I-Ak,d-expressing, antigen-presenting B cell-B lymphoma hybridoma have recently been generated by immunoselection in vitro with I-Ak-specific monoclonal antibodies, and were found to possess alterations in some of the I-Ak region-dependent functions. The mutants were categorized as alpha-polypeptide mutants or beta-polypeptide mutants on the basis of the patterns of reactivity with anti I-Ak alpha and anti I-Ak beta monoclonal antibodies. To delineate the structural alterations underlying the differences in serologic and functional properties of these mutants, I-A molecules from several of these mutant hybridomas were compared biochemically with wild type I-Ak polypeptides by two-dimensional gel electrophoresis and high-pressure liquid chromatographic (HPLC) tryptic peptide analyses. These results suggest that the marked alterations in antibody reactivity and T cell-activating functions of the beta-polypeptide mutants G1, K2, and LD3, as well as the Ia alpha-polypeptide mutant JE50, may be due to very limited alterations in the Ia polypeptides. The functional deficiencies of the alpha-polypeptide mutant JE67 could be attributed to the change in net charge exhibited by its Ak alpha polypeptide. HPLC tryptic peptide analysis of I-A molecules isolated from the alpha-polypeptide mutant J4 indicates that the functional deficiencies exhibited by this mutant are due to a complete loss of expression of the Ak alpha polypeptide. The inability to detect significant amounts of Ad alpha Ak beta and Ak alpha Ad beta hybrid molecules in immunoprecipitates from some of these cell lines suggests that some hybrid molecules may be expressed at low levels due to preferential Ia polypeptide chain association. Together, these results indicate that most serologically defined epitopes are localized on either one or the other Ia polypeptide, whereas T cell-defined epitopes are determined by a combination of both Ia polypeptides. The results of these analyses also enable us to evaluate different immunoselection strategies for the most efficient production of mutants expressing limited alterations in Ia polypeptides.  相似文献   

9.
The class II (Ia) MHC Ag are integral membrane proteins whose expression is limited to specific cell types. A pair of consensus sequences, X and Y, is found upstream from all class II genes and deletion of each of these sequences eliminates expression of transfected genes. Cells that express Ia demonstrate a coordinate response to lymphokines and other stimuli. These conserved sequences might, therefore, play a role in tissue specificity or lymphokine inducibility of Ia gene expression. The X box sequence of the murine class II A alpha gene diverges much more substantially from the X consensus than does the Y box motif of this gene. We demonstrate that this X box motif is nonetheless recognized by sequence-specific DNA-binding proteins, as is the more closely conserved Y box. Gel retardation assays and DNase I footprints were compared for a panel of Ia+ and Ia- cells as well as for cells stimulated with the Ia-inducing lymphokines IL-4 and IFN-gamma. The level, retardation pattern and region of DNA contact were comparable in all instances. Thus the availability of active DNA-binding X and Y box factors cannot alone account for the regulation of A alpha expression. To test whether the same set of proteins binds all class II MHC conserved motifs, oligonucleotide probe binding and cross-competition experiments with X box sequences from A alpha, E alpha, and E beta genes were performed. These studies demonstrated A alpha, E alpha, and E beta DNA-protein complexes with unique mobilities and specificities. In addition, all three X box oligonucleotide probes generated one faint complex with an affinity profile of E beta greater than E alpha much greater than A alpha. These three complexes comigrated and thus may represent a communal binding protein. The data are most consistent with the conclusion that multiple proteins bind class II MHC X boxes. For A alpha, the predominant complexes represent different specificities from the predominant E alpha and E beta X box binding proteins.  相似文献   

10.
The B6.C-H-2bm12 (bm12) mouse possesses a naturally occurring mutation in its class II MHC A beta gene. The three amino acid substitutions at positions 67, 70, and 71 that comprise this mutation lead to changes in both Ia expression and immune recognition of the resultant A beta A alpha molecule. The experiments reported here utilize a combination of oligonucleotide-mediated site-directed mutagenesis and DNA-mediated gene transfer to explore the roles played by each of the three mutant residues in these various phenotypic changes. A beta genes comprising all permutations of the residues distinguishing Ab beta from Abm12 beta were created and were individually co-transfected with Ab beta into mouse L cells. Sublines expressing high levels of membrane Ia were selected by preparative flow cytometry and were studied for reactivity with a panel of monoclonal anti-Ia antibodies, or for their ability to act as antigen-presenting cells (APC) for the stimulation of T cell hybridomas. During the generation of these transfectant lines, it was noted that expression of a high level of Abm12 beta Ab alpha was more difficult to achieve than a similar level of Ab beta Ab alpha. Northern blot analysis of specific A beta and A alpha mRNA levels in these various lines indicated that more class II mRNA, and presumably more A beta and A alpha chains, were required to achieve expression of Abm12 beta Ab alpha equal to that of Ab beta Ab alpha, suggesting that the previously noted reduction of Ia expression on cells from bm12 mice reflects a decreased ability of Abm12 beta Ab alpha chains to pair, or to reach the membrane. Staining of the panel of transfectants with monoclonal antibodies revealed that antibodies which did not distinguish Ab beta Ab alpha from Abm12 beta Ab alpha also reacted equally well with all molecules involving in vitro mutant A beta chains. Monoclonal antibodies reactive with Ab beta Ab alpha but not Abm12 beta Ab alpha were specific for an epitope primarily determined by the presence or absence of Arg 70 in Ab beta. In striking contrast, all three mutant positions were found to play crucial roles in T cell recognition, because all substitutions led to significant or complete loss of antigen-presenting function with all but one of the T hybridomas tested.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Unlike all other vertebrates examined to date, there is only one detectable class I locus in the Xenopus MHC. On the bases of a nearly ubiquitous and high tissue expression, extensive polymorphism, and MHC linkage, this gene is of the classical or class Ia type. Sequencing analysis of class Ia cDNAs encoded by eight defined MHC haplotypes reveals two very old allelic lineages that perhaps emerged when humans and mice diverged from a common ancestor up to 100 million years ago. The unprecedented age of these lineages suggests that different class Ia genes from ancestors of the laboratory model Xenopus laevis are now expressed as alleles in this species. The lineages are best defined by their cytoplasmic and alpha2 peptide-binding domains, and there are highly diverse alleles (defined by the alpha1 peptide-binding domain) in each lineage. Surprisingly, the alpha3 domains are homogenized in both lineages, suggesting that interallelic gene conversion/recombination maintains the high sequence similarity.  相似文献   

12.
Possible interactions between regions of allelic polymorphism in the alpha- and beta-chains of class II MHC molecules were examined by measuring the efficiency of surface expression and the reactivity with mAb of wild-type and recombinant A alpha A beta-chain pairs from the b, d, and k haplotypes. These studies revealed regions of polymorphism within the alpha- and beta-chains that interact with complementary regions in the other chain. Unexpectedly, almost all the variable segments of both the class II MHC alpha- and beta-chains either directly contributed to or were near sites of interchain interactions. The exception was the beta HV3 (hypervariable (HV] segment (residues 61-71), which appeared to neither participate in nor be affected by interchain interactions. This division of the MHC molecule into interacting vs independent regions of allelic structural variation suggests that mutagenesis experiments involving the beta HV3 segment can be analyzed in a straightforward manner, as such mutations appear unlikely to alter the conformation of other molecular segments. Furthermore, functions attributed to the beta HV3 segment either experimentally or by population analysis should have a high probability of transfer by beta HV3 exchange (either experimentally or evolutionarily), because epitopes assigned to this region of the molecule are not affected by sequences outside this segment. This is of special importance because of the apparent involvement of this region in defining a potential site of interaction with antigenic peptides and TCR. In contrast, almost all other variable segments of the MHC molecule appear to have the capacity to contribute to interactions involving at least one other variable segment. This suggests not only that the experimental analysis of the contributions of these regions to various functions requires a consideration of inter- and intrachain interaction, but also that the transfer of function by genetic exchange of these structurally dependent regions is unpredictable. Selection must therefore operate on these interacting HV segments in the context of the complete alpha beta heterodimer. These results support our earlier arguments for cis-co-evolution of alpha- and beta-chain polymorphism and the absence of selection for F1 (hybrid) class II molecules. Finally, asymmetries observed in the contributions of particular pairs of HV segments to the efficient expression of Ia alpha beta heterodimers provide a basis for understanding mechanistically how cis-co-evolution may have occurred.  相似文献   

13.
We have isolated and characterized four mutant I-Ak-expressing cell lines derived from the B cell-B lymphoma hybrid antigen-presenting cell line TA3. The mutants were isolated by first selecting against expression of one Ak epitope by treatment with a monoclonal antibody in the presence of complement and then selecting for retention of a second Ak epitope by electronic cell-sorting of cells stained for fluorescence with a second monoclonal antibody. The serologic and functional phenotypes of the mutants were characterized by using panels of I-Ak-specific monoclonal antibodies and I-Ak-restricted T hybridomas. We obtained one Ak alpha mutant (J4) that no longer reacts with any Ak alpha-specific antibody and also is incapable of stimulating any I-Ak-restricted T hybridoma. We obtained three Ak beta mutants (LD3, K5, G1) that express a wide range of serologic and functional phenotypes. Correlation of the serologic and functional phenotypes reveals that the serologic epitope Ia.1 may overlap with a major site of T cell recognition, whereas the Ia.17 serologic epitope appears to be only a minor site for T cell recognition.  相似文献   

14.
Previous work made use of nucleic acid probes corresponding to different subtypes of the class II regions of the human and murine major histocompatibility complex (MHC) to isolate seven different alpha and 24 different beta genes of the ovine MHC from two cosmid libraries. In an attempt to identify pairs of alpha and beta genes capable of cell surface expression, all permutations of alpha and beta genes were in turn transfected into mouse L-cells. Two pairs of alpha and beta genes co-expressed and stable ovine MHC class II L-cell lines were developed. The expressed alpha genes had previously been defined as DR-alpha homologues (DRA) by differential Southern hybridization to human subtype specific class II probes. The expressed ovine beta genes were also assigned as ovine DR-beta homologues (DRB) on the basis of their sequence having a higher degree of similarity with human DRB than any other subtype. A total of eight out of 23 anti-sheep class II specific monoclonal antibodies were typed OLA-DR specific by FACScan analysis using the L-cell lines.  相似文献   

15.
We demonstrated a tightly coordinated timing in the appearance of mRNA for the four class II (Ia) MHC chains, A alpha, A beta, E alpha, and E beta, and the Ia-associated invariant chain in a murine macrophage cell line after the addition of immune interferon (IFN-gamma) or of IFN-gamma-containing supernatants from Con A-stimulated spleen cells. The marked increase in mRNA levels for these molecules at approximately 8 hr after IFN-gamma addition contrasts sharply with the earlier, more gradual kinetics observed for class I (H-2) and beta 2-microglobulin mRNA. The difference in kinetics of IFN-gamma induction of class I and class II mRNA suggests differential regulation of the expression of Ia and H-2 antigens. The long lag period preceding detection of Ia mRNA raises the possibility that IFN-gamma may not directly mediate the increase in mRNA expression, but may act through an additional cellular intermediate.  相似文献   

16.
17.
Chimeric histocompatibility genes encoding the amino-terminal (beta 1) domain of the class II Ak beta polypeptide and the carboxy-terminal (C2, transmembrane, and intracytoplasmic) domains of either the class I H-2Ld or H-2Dd molecules were stably introduced into mouse L cells. Although both were transcribed, only 5' Ak beta/3' H-2Dd transformants had significant cell membrane expression of a 30-40 kd, heterogeneous glycoprotein containing Ak beta 1 and H-2Dd (C2) serological epitopes. These transformants had a unique pattern of reactivity with monoclonal antibodies previously identified as requiring the Ak beta 1 domain for recognition of complete I-A molecules. These results allow new insight into the structural requirements for cell surface expression of proteins and provide unique cellular reagents for the dissection of humoral and cell-mediated recognition of MHC molecules.  相似文献   

18.
An overview of a strategy for the molecular analysis of class II major histocompatibility complex (Ia) gene product structure-function relationships is presented, and results obtained to date by using this approach are summarized. The A beta, A alpha, E alpha, and E beta genes have been cloned and sequenced to yield information on gene organization and primary protein sequence. Comparison of sequences from allelic forms of these genes show the NH2-terminal domain to be the locus of most intraspecies polymorphism. Transfection of I-A alpha and A beta genes into B lymphoma cells or L cells has generated cells expressing the transfected gene products on their membrane. Such Ia+ transfectants present antigen to various T cells, which use the expressed I-A as a restriction element. Exon shuffling has shown the beta 1 domain of A beta to play a predominant role in such restricted antigen recognition. Preliminary data refining this analysis to sites within beta 1, as well as data on control of alpha: beta chain association, are reviewed, and future prospects for use of this approach in resolving questions of immunological interest are discussed.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号