首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The expression of inducible nitric-oxide synthase (iNOS) and subsequent "high-output" nitric oxide (NO) production underlies the systemic hypotension, inadequate tissue perfusion, and organ failure associated with septic shock. Therefore, modulators of iNOS expression and activity, both endogenous and exogenous, are important in determining the magnitude and time course of this condition. We have shown previously that NO from the constitutive endothelial NOS (eNOS) is necessary to obtain maximal iNOS expression and activity following exposure of murine macrophages to lipopolysaccharide (LPS). Thus, eNOS represents an important regulator of iNOS expression in vitro. Herein, we validate this hypothesis in vivo using a murine model of sepsis. A temporal reduction in iNOS expression and activity was observed in LPS-treated eNOS knock-out (KO) mice as compared with wild-type animals; this was reflected in a more stable hemodynamic profile in eNOS KO mice during endotoxaemia. Furthermore, in human umbilical vein endothelial cells, LPS leads to the activation of eNOS through phosphoinositide 3-kinase- and Akt/protein kinase B-dependent enzyme phosphorylation. These data indicate that the pathogenesis of sepsis is characterized by an initial eNOS activation, with the resultant NO acting as a co-stimulus for the expression of iNOS, and therefore highlight a novel pro-inflammatory role for eNOS.  相似文献   

2.
The role of nitric oxide (NO) in inflammatory bowel diseases has traditionally focused on the inducible form of NO synthase (iNOS). However, the constitutive endothelial (eNOS) and neuronal (nNOS) isoforms may also impact on colitis, either by contributing to the inflammation or by regulating mucosal integrity in response to noxious stimuli. To date, studies examining the roles of the NOS isoforms in experimental colitis have been conflicting, and the mechanisms by which these enzymes exert their effects remain unclear. To investigate and clarify the roles of the NOS isoforms in gut inflammation, we induced trinitrobenzenesulfonic acid colitis in eNOS, nNOS, and iNOS knockout (KO) mice, assessing the course of colitis at early and late times. Both eNOS and iNOS KO mice developed a more severe colitis compared with wild-type mice. During colitis, iNOS expression dramatically increased on epithelial and lamina propria mononuclear cells, whereas eNOS expression remained localized to endothelial cells. Electron and fluorescence microscopy identified bacteria in the ulcerated colonic mucosa of eNOS KO mice, but not in wild-type, iNOS, or nNOS KO mice. Furthermore, eNOS KO mice had fewer colonic goblet cells, impaired mucin production, and exhibited increased susceptibility to an inflammatory stimulus that was subthreshold to other mice. This susceptibility was reversible, because the NO donor isosorbide dinitrate normalized goblet cell numbers and ameliorated subsequent colitis in eNOS KO mice. These results identify a protective role for both iNOS and eNOS during colitis, with eNOS deficiency resulting in impaired intestinal defense against lumenal bacteria and increased susceptibility to colitis.  相似文献   

3.
4.
Nitric oxide (NO) produced by inducible nitric oxide synthase (iNOS) is responsible for sepsis-induced hypotension and plays a major contributory role in the ensuing multiorgan failure. The present study aimed to elucidate the role of endothelial NO in lipopolysaccharide (LPS)-induced iNOS expression, in isolated rat aortic rings. Exposure to LPS (1 mug/ml, 5 h) resulted in a reversal of phenylephrine precontracted tone in aortic rings (70.7 +/- 3.2%). This relaxation was associated with iNOS expression and NF-kappaB activation. Positive immunoreactivity for iNOS protein was localized in medial and adventitial layers of LPS-treated aortic rings. Removal of the endothelium rendered aortic rings resistant to LPS-induced relaxation (8.9 +/- 4.5%). Western blotting of these rings demonstrated an absence of iNOS expression. However, treatment of endothelium-denuded rings with the NO donor, diethylamine-NONOate (0.1 mum), restored LPS-induced relaxation (61.6 +/- 6.6%) and iNOS expression to levels comparable with arteries with intact endothelium. Blockade of endothelial NOS (eNOS) activation using geldanamycin and radicicol, inhibitors of heat shock protein 90, in endothelium-intact arteries suppressed both LPS-induced relaxation and LPS-induced iNOS expression (9.0 +/- 8.0% and 2.0 +/- 6.2%, respectively). Moreover, LPS treatment (12.5 mg/kg, intravenous, 15 h) of wild-type mice resulted in profound elevation of plasma [NO(x)] measurements that were reduced by approximately 50% in eNOS knock-out animals. Furthermore, LPS-induced changes in vascular reactivity and iNOS expression evident in wild-type tissues were profoundly suppressed in tissues taken from eNOS knockout animals. Together, these data suggest that eNOS-derived NO, in part via activation of NF-kappaB, regulates iNOS-induction by LPS. This study provides the first demonstration of a proinflammatory role of vascular eNOS in sepsis.  相似文献   

5.
Nitric oxide (NO) is a potent vasodilator, but it can also modulate contractile responses of the airway smooth muscle. Whether or not endothelial (e) NO synthase (NOS) contributes to the regulation of bronchial tone is unknown at present. Experiments were designed to investigate the isoforms of NOS that are expressed in murine airways and to determine whether or not the endogenous release of NO modulates bronchial tone in wild-type mice and in mice with targeted deletion of eNOS [eNOS(-/-)]. The presence of neuronal NOS (nNOS), inducible NOS (iNOS), and eNOS in murine trachea and lung parenchyma was assessed by RT-PCR, immunoblotting, and immunohistochemistry. Airway resistance was measured in conscious unrestrained mice by means of a whole body plethysmography chamber. The three isoforms of NOS were constitutively present in lungs of wild-type mice, whereas only iNOS and nNOS were present in eNOS(-/-) mice. Labeling of nNOS was localized in submucosal airway nerves but was not consistently detected, and iNOS immunoreactivity was observed in tracheal and bronchiolar epithelial cells, whereas eNOS was expressed in endothelial cells. In wild-type mice, treatment with N-nitro-L-arginine methyl ester, but not with aminoguanidine, potentiated the increase in airway resistance produced by inhalation of methacholine. eNOS(-/-) mice were hyperresponsive to inhaled methacholine and markedly less sensitive to N-nitro-L-arginine methyl ester. These results demonstrate that the three NOS isoforms are expressed constitutively in murine lung and that NO derived from eNOS plays a physiological role in controlling bronchial airway reactivity.  相似文献   

6.
Nitric oxide (NO) and atrial natriuretic peptides (ANP) activate soluble (sGC) and particulate guanylate cyclase (pGC), respectively, and play important roles in the maintenance of cardiovascular homeostasis. However, little is known about potential interactions between these two cGMP-generating pathways. Here we demonstrate that sGC and pGC cooperatively regulate cGMP-mediated relaxation in human and murine vascular tissue. In human vessels, the potency of spermine-NONOate (SPER-NO) and ANP was increased after inhibition of endogenous NO synthesis and decreased by prior exposure to glyceryl trinitrate (GTN). Aortas from endothelial NO synthase (eNOS) knockout (KO) mice were more sensitive to ANP than tissues from wild-type (WT) animals. However, in aortas from WT mice, the potency of ANP was increased after pretreatment with NOS or sGC inhibitor. Vessels from eNOS KO animals were less sensitive to ANP after GTN pretreatment, an effect that was reversed in the presence of an sGC inhibitor. cGMP production in response to SPER-NO and ANP was significantly greater in vessels from eNOS KO animals compared with WT animals. This cooperative interaction between NO and ANP may have important implications for human pathophysiologies involving deficiency in either mediator and the clinical use of nitrovasodilators.  相似文献   

7.
We determined the cellular mRNA expression of all intrarenal nitric oxide (NO)-producing NO synthase (NOS) isoforms, endothelial NOS (eNOS) and neuronal NOS (nNOS) and inducible NOS (iNOS) in kidneys from wild-type mice (WT) and immune deficient Toll-like receptor 4 (TLR4) mutant mice, during normal physiological conditions and during a short-term (6–16 h) endotoxic condition caused by systemically administered lipopolysaccaride (LPS). Investigations were performed by means of in situ hybridization and polymerase chain reaction amplification techniques. In WT, LPS altered the expression rate of all intrarenal NOS isoforms in a differentiated but NOS-isoform coupled expression pattern, with iNOS induction, and up- and down-regulation of the otherwise constitutively expressed NOS isoforms, e.g. eNOS and nNOS and an iNOS isotype. In TLR4 mutants, LPS caused none or a lowered iNOS induction, but altered the expression rate of the constitutive NOS isoforms. It is concluded that the intrarenal spatial relation of individual NOS-isoforms and their alteration in expression provide the basis for versatile NO-mediated renal actions that may include local interactions between NOS isoforms and their individual NO-target sites, and that the NOS-isoform dependent events are regulated by TLR4 during endotoxic processes. These regulatory mechanisms are likely to participate in different pathophysiological conditions affecting NO-mediated renal functions.  相似文献   

8.
In the brain, three isoforms of nitric oxide (NO) synthase (NOS), namely neuronal NOS (nNOS, NOS1), inducible NOS (iNOS, NOS2), and endothelial NOS (eNOS, NOS3), have been implicated in biological roles such as neurotransmission, neurotoxicity, immune function, and blood vessel regulation, each isoform exhibiting in part overlapping roles. Previous studies showed that iNOS is induced in the brain by systemic treatment with lipopolysaccharide (LPS), a Gram-negative bacteria-derived stimulant of the innate immune system. Here we found that eNOS mRNA is induced in the rat brain by intraperitoneal injection of LPS of a smaller amount than that required for induction of iNOS mRNA. The induction of eNOS mRNA was followed by an increase in eNOS protein. Immunohistochemical analysis revealed that eNOS is located in astrocytes of both gray and white matters as well as in blood vessels. Induction of eNOS in response to a low dose of LPS, together with its localization in major components of the blood-brain barrier, suggests that brain eNOS is involved in early pathophysiologic response against systemic infection before iNOS is induced with progression of the infection.  相似文献   

9.
Garlic has been used as a traditional medicine for prevention and treatment of cardiovascular diseases. However, the molecular mechanism of garlic's pharmacological action has not been clearly elucidated. We examined here the effect of garlic extract and its major component, S-allyl cysteine (SAC), on nitric oxide (NO) production by macrophages and endothelial cells. The present study demonstrates that these reagents inhibited NO production through the suppression of iNOS mRNA and protein expression in the murine macrophage cell line RAW264.7, which had been stimulated with LPS and IFNgamma. The garlic extract also inhibited NO production in peritoneal macrophages, rat hepatocytes, and rat aortic smooth muscle cells stimulated with LPS plus cytokines, but it did not inhibit NO production in iNOS-transfected AKN-1 cells or iNOS enzyme activity. These reagents suppressed NF-kappaB activation and murine iNOS promoter activity in LPS and IFNgamma-stimulated RAW264.7 cells. In contrast, these reagents significantly increased cGMP production by eNOS in HUVEC without changes in activity, protein levels, and cellular distribution of eNOS. Finally, garlic extract and SAC both suppressed the production of hydroxyl radical, confirming their antioxidant activity. These data demonstrate that garlic extract and SAC, due to their antioxidant activity, differentially regulate NO production by inhibiting iNOS expression in macrophages while increasing NO in endothelial cells. Thus, this selective regulation may contribute to the anti-inflammatory effect and prevention of atherosclerosis by these reagents.  相似文献   

10.
Nitric oxide (NO) plays a role in the pathophysiology of spinal cord injury (SCI). NO is produced by three types of nitric oxide synthase (NOS) enzymes: The constitutive Ca2+/calmodulin-dependent neuronal NOS (nNOS) and endothelial NOS (eNOS) isoforms, and the inducible calcium-independent isoform (iNOS). During the early stages of SCI, nNOS and eNOS produce significant amounts of NO, therefore, the regulation of their activity and expression may participate in the damage after SCI. In the present study, we used Cyclosporin-A (CsA) to further substantiate the role of Ca-dependent NOS in neural responses associated to SCI. Female Wistar rats were subjected to SCI by contusion, and killed 4 h after lesion. Results showed an increase in the activity of constitutive NOS (cNOS) after lesion, inhibited by CsA (2.5 mg/kg i.p.). Western blot assays showed an increased expression of both nNOS and eNOS after trauma, also antagonized by CsA administration.  相似文献   

11.
Nitric oxide (NO) reacts with superoxide to produce peroxynitrite, a potent oxidant and reportedly exerts cytotoxic action. Herein we validated the hypothesis that interaction of NO with superoxide exerts protection against superoxide toxicity using macrophages from mice with a knockout (KO) of inducible NO synthase (NOS2) and superoxide dismutase 1 (SOD1), either individually or both. While no difference was observed in viability between wild-type (WT) and NOS2KO macrophages, SOD1KO and SOD1-and NOS2-double knockout (DKO) macrophages were clearly vulnerable and cell death was observed within four days. A lipopolysaccharide (LPS) treatment induced the formation of NOS2, which resulted in NO production in WT and these levels were even higher in SOD1KO macrophages. The viability of the DKO macrophages but not SOD1KO macrophages were decreased by the LPS treatment. Supplementation of NOC18, a NO donor, improved the viability of SOD1KO and DKO macrophages both with and without the LPS treatment. The NOS2 inhibitor nitro-l-arginine methyl ester consistently decreased the viability of LPS-treated SOD1KO macrophages but not WT macrophages. Thus, in spite of the consequent production of peroxynitrite in LPS-stimulated macrophages, the coordinated elevation of NO appears to exert anti-oxidative affects by coping with superoxide cytotoxicity upon conditions of inflammatory stimuli.  相似文献   

12.
The effect of inhibiting nitric oxide (NO) synthase (NOS) or enhancing NO on the course of acute pancreatitis (AP) is controversial, in part because three NOS isoforms exist: neuronal (nNOS), endothelial (eNOS), and inducible (iNOS). We investigated whether inhibition or selective gene deletion of NOS isoforms modified the initiation phase of caerulein-induced AP in mice and explored whether this affected pancreatic microvascular blood flow (PMBF). We investigated the effects of nonspecific NOS inhibition with N(omega)-nitro-l-arginine (l-NNA; 10 mg/kg ip) or targeted deletion of eNOS, nNOS, or iNOS genes on the initiation phase of caerulein-induced AP in mice using in vivo and in vitro models. Western blot analysis was performed to assess eNOS phosphorylation status, an indicator of enzyme activity, and microsphere studies were used to measure PMBF. l-NNA and eNOS deletion, but not nNOS or iNOS deletion, increased pancreatic trypsin activity and serum lipase during the initiation phase of in vivo caerulein-induced AP. l-NNA and eNOS did not affect trypsin activity in caerulein-hyperstimulated isolated acini, suggesting that nonacinar events mediate the effect of NOS blockade in vivo. The initiation phase of AP in wild-type mice was associated with eNOS Thr(495) residue dephosphorylation, which accompanies eNOS activation, and a 178% increase in PMBF; these effects were absent in eNOS-deleted mice. Thus eNOS is the main isoform influencing the initiation of caerulein-induced AP. eNOS-derived NO exerts a protective effect through actions on nonacinar cell types, most likely endothelial cells, to produce greater PMBF.  相似文献   

13.
Nitric oxide (NO) and the expression of endothelial (eNOS) and inducible (iNOS) isoforms of nitric oxide synthase (NOS) are recognized as important mediators of physiological and pathological processes of renal ischemia/reperfusion (I/R) injury, but little is known about their role in apoptosis. The ability of the eNOS/NO system to regulate the iNOS/NO system and thus promote apoptosis was assessed during experimental renal I/R. Renal caspase-3 activity and the number of TUNEL-positive cells increased with I/R, but decreased when NOS/NO systems were blocked with L-NIO (eNOS), 1400W (iNOS), and N-nitro-l-arginine methyl ester (L-NAME; a nonselective NOS inhibitor). I/R increased renal eNOS and iNOS expression as well as NO production. The NO increase was eNOS- and iNOS-dependent. Blockage of NOS/NO systems with L-NIO or L-NAME also resulted in a lower renal expression of iNOS and iNOS mRNA; in contrast, eNOS expression was not affected by iNOS-specific blockage. In conclusion, two pathways define the role of NOS/NO systems in the development of apoptosis during experimental renal I/R: a direct route, through eNOS overexpression and NO production, and an indirect route, through expression/activation of the iNOS/NO system, induced by eNOS.  相似文献   

14.
Soluble guanylate cyclase (sGC) is an important downstream intracellular target of nitric oxide (NO) that is produced by endothelial NO synthase (eNOS) and inducible NO synthase (iNOS). In this study, we demonstrate that sGC exists in a complex with eNOS and heat shock protein 90 (HSP90) in aortic endothelial cells. In addition, we show that in aortic smooth muscle cells, sGC forms a complex with HSP90. Formation of the sGC/eNOS/HSP90 complex is increased in response to eNOS-activating agonists in a manner that depends on HSP90 activity. In vitro binding assays with glutathione S-transferase fusion proteins that contain the alpha- or beta-subunit of sGC show that the sGC beta-subunit interacts directly with HSP90 and indirectly with eNOS. Confocal immunofluorescent studies confirm the subcellular colocalization of sGC and HSP90 in both endothelial and smooth muscle cells. Complex formation of sGC with HSP90 facilitates responses to NO donors in cultured cells (cGMP accumulation) as well as in anesthetized rats (hypotension). These complexes likely function to stabilize sGC as well as to provide directed intracellular transfer of NO from NOS to sGC, thus preventing inactivation of NO by superoxide anion and formation of peroxynitrite, which is a toxic molecule that has been implicated in the pathology of several vascular diseases.  相似文献   

15.
The interactions of neuronal nitric-oxide synthase (nNOS) with calmodulin (CaM) and mutant forms of CaM, including CaM-troponin C chimeras, have been previously reported, but there has been no comparable investigation of CaM interactions with the other constitutively expressed NOS (cNOS), endothelial NOS (eNOS), or the inducible isoform (iNOS). The present study was designed to evaluate the role of the four CaM EF hands in the activation of eNOS and iNOS. To assess the role of CaM regions on aspects of enzymatic function, three distinct activities associated with NOS were measured: NADPH oxidation, cytochrome c reduction, and nitric oxide (*NO) generation as assessed by the oxyhemoglobin capture assay. CaM activates the cNOS enzymes by a mechanism other than stimulating electron transfer into the oxygenase domain. Interactions with the reductase moiety are dominant in cNOS activation, and EF hand 1 is critical for activation of both nNOS and eNOS. Although the activation patterns for nNOS and eNOS are clearly related, effects of the chimeras on all the reactions are not equivalent. We propose that cytochrome c reduction is a measure of the release of the FMN domain from the reductase complex. In contrast, cytochrome c reduction by iNOS is readily activated by each of the chimeras examined here and may be constitutive. Each of the chimeras were co-expressed with the human iNOS enzyme in Escherichia coli and subsequently purified. Domains 2 and 3 of CaM contain important elements required for the Ca2+/CaM independence of *NO production by the iNOS enzyme. The disparity between cytochrome c reduction and *NO production at low calcium can be attributed to poor association of heme and FMN domains when the bound CaM constructs are depleted of Ca2+. In general cNOSs are much more difficult to activate than iNOS, which can be attributed to their extra sequence elements, which are adjacent to the CaM-binding site and associated with CaM control.  相似文献   

16.
Nitric oxide (NO) is a gaseous, radical molecule that plays a role in various physiological processes in the nervous system such as learning and hippocampal plasticity. It is generated from l-arginine by nitric oxide synthases (NOS), which come in three isoforms depending on the tissue of origin, namely inducible-NOS (iNOS in macrophages), endothelial-NOS (eNOS in endothelial cells) and neural-NOS (nNOS in neural cells). We used epidermal growth factor (EGF)-responsive nestin-positive neural precursor cells originating from the mouse E16 embryonic striatum, and studied the relative expression of NOS isoforms probed with isoform-specific antibody using the avidin-biotin immunohistochemical method. Our data revealed both nNOS and eNOS to be expressed in both neurospheres and desegregated neural precursor cells. However, iNOS signals were virtually undetectable in both cell categories. When the neural precursor cells were carried in the presence of poly-l-ornithine (PLO), there was a strong induction of the expression of iNOS proteins, indicating the possibility that this isoform is amenable to modulation by extracellular cues. These preliminary results suggest both nNOS and eNOS to be important in the physiology of neural precursor cells, and that iNOS might also play a role at certain stages in the life of these cells.  相似文献   

17.
The pathogenesis of sepsis is complex and, unfortunately, poorly understood. The cellular process of autophagy is believed to play a protective role in sepsis; however, the mechanisms responsible for its regulation in this setting are ill defined. In the present study, interferon regulatory factor 1 (IRF-1) was found to regulate the autophagic response in lipopolysaccharide (LPS)-stimulated macrophages. In vivo, tissue macrophages obtained from LPS-stimulated IRF-1 knockout (KO) mice demonstrated increased autophagy and decreased apoptosis compared to those isolated from IRF-1 wild-type (WT) mice. In vitro, LPS-stimulated peritoneal macrophages obtained from IRF-1 KO mice experienced increased autophagy and decreased apoptosis. IRF-1 mediates the inhibition of autophagy by modulating the activation of the mammalian target of rapamycin (mTOR). LPS induced the activation of mTOR in WT peritoneal macrophages, but not in IRF-1 KO macrophages. In contrast, overexpression of IRF-1 alone increased the activation of mTOR and consequently decreased autophagic flux. Furthermore, the inhibitory effects of IRF-1 mTOR activity were mediated by nitric oxide (NO). Therefore, we propose a novel role for IRF-1 and NO in the regulation of macrophage autophagy during LPS stimulation in which IRF-1/NO inhibits autophagy through mTOR activation.  相似文献   

18.
The roles of endothelial nitric oxide synthase (eNOS), and its putative association with protein kinase B (PKB), and inducible nitric oxide synthase (iNOS) are not well characterized in hypoxic cardiac cells and there is a lack of studies that measure nitric oxide (NO) directly. Objective To measure NO production in cardiomyocytes and cardiac microvascular endothelial cells (CMECs) under baseline and hypoxic conditions and to evaluate the expression, regulation and activation of eNOS, iNOS and PKB. The effect of PI3-K/PKB inhibition on NO production and eNOS expression/activation was also investigated. Methods Adult rat cardiomyocytes and rat CMECs were made hypoxic by cell pelleting and low PO2 incubation. Intracellular NO was measured by FACS analysis of DAF-2/DA fluorescence, and eNOS, iNOS and PKB were evaluated by Western blotting or flow cytometry. Upstream PKB inhibition was achieved with wortmannin. Results (1) NO levels increased in both cell types after exposure to hypoxia. (2) In hypoxic CMECs, eNOS was upregulated and activated, no iNOS expression was observed and PKB was activated. (3) In myocytes, hypoxia did not affect eNOS expression, but increased its activation. Activated PKB also increased during hypoxia. FACS analysis showed increased iNOS in hypoxic myocytes. (4) Wortmannin resulted in decreased hypoxia-induced NO production and reduced activated eNOS levels. Conclusions Cardiomyocytes and CMECs show increased NO production during hypoxia. eNOS seems to be the main NOS isoform involved as source of the increased NO generation, although there may be a role for iNOS and other non-eNOS sources of NO in the hypoxic myocytes. Hypoxia-induced PKB and eNOS activation occurred simultaneously in both cell types, and the PI3-K/PKB pathway was associated with hypoxia-induced NO production via eNOS activation.  相似文献   

19.
Osteopontin is induced by nitric oxide in RAW 264.7 cells   总被引:1,自引:0,他引:1  
Nitric oxide (NO) produced by macrophages is thought to contribute to various pathological conditions. Osteopontin (OPN) is a phosphorylated glycoprotein produced principally by macrophages. OPN inhibits inducible nitric oxide synthase (iNOS), which generates large amounts of NO production. However, the relationship between NO and endogenous OPN in activated macrophages has not yet been elucidated. We therefore examined expression of endogenous iNOS and OPN in a murine macrophage cell line, RAW 264.7 cells, by treating the cells with lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma). Treatment of cells with LPS and IFN-gamma resulted in an increase of iNOS mRNA to maximum at 12 h after stimulation. In contrast, OPN mRNA was induced more slowly than iNOS mRNA. Induction of both iNOS and OPN mRNA in RAW 264.7 cells was markedly suppressed by addition of the specific iNOS inhibitor S-2-aminoethyl isothiourea dihydrobromide. The NOS inhibitor NG-methyl-L-arginine also suppressed induction of OPN mRNA but hardly affected iNOS mRNA expression. The NO-releasing agent spermine-NONOate but not peroxynitrite enhanced induction of OPN mRNA. These results suggest that NO directly up-regulates the endogenous OPN in macrophages stimulated with LPS and IFN-gamma. This up-regulation of endogenous OPN may represent a negative feedback system acting to reduce iNOS expression.  相似文献   

20.
BACKGROUND: Nitric oxide (NO) has been implicated as a mediator of penile erection, because the neuronal isoform of NO synthase (NOS) is localized to the penile innervation and NOS inhibitors selectively block erections. NO can also be formed by two other NOS isoforms derived from distinct genes, inducible NOS (iNOS) and endothelial NOS (eNOS). To clarify the source of NO in penile function, we have examined mice with targeted deletion of the nNOS gene (nNOS- mice). MATERIALS AND METHODS: Mating behavior, electrophysiologically induced penile erection, isolated erectile tissue isometric tension, and eNOS localization by immunohistochemistry and Western blot were performed on nNOS- mice and wild-type controls. RESULTS: Both intact animal penile erections and isolated erectile tissue function are maintained in nNOS mice, in agreement with demonstrated normal sexual behaviors, but is stereospecifically blocked by the NOS inhibitor, L-nitroarginine methyl ester (L-NAME). eNOS is abundantly present in endothelium of penile vasculature and sinusoidal endothelium within the corpora cavemosa, with levels that are significantly higher in nNOS- mice than in wild-type controls. CONCLUSIONS: eNOS mediates NO-dependent penile erection in nNOS- animals and normal penile erection. These data clarify the role of nitric oxide in penile erection and may have implications for therapeutic agents with selective effects on NOS isoforms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号