首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During secondary cell wall formation, developing xylem vessels deposit cellulose at specific sites on the plasma membrane. Bands of cortical microtubules mark these sites and are believed to somehow orientate the cellulose synthase complexes. We have used live cell imaging on intact roots of Arabidopsis to explore the relationship between the microtubules, actin and the cellulose synthase complex during secondary cell wall formation. The cellulose synthase complexes are seen to form bands beneath sites of secondary wall synthesis. We find that their maintenance at these sites is dependent upon underlying bundles of microtubules which localize the cellulose synthase complex (CSC) to the edges of developing cell wall thickenings. Thick actin cables run along the long axis of the cells. These cables are essential for the rapid trafficking of complex-containing organelles around the cell. The CSCs appear to be delivered directly to sites of secondary cell wall synthesis and it is likely that transverse actin may mark these sites.  相似文献   

2.
Callose and cellulose are fundamental components of the cell wall of pollen tubes and are probably synthesized by distinct enzymes, callose synthase and cellulose synthase, respectively. We examined the distribution of callose synthase and cellulose synthase in tobacco (Nicotiana tabacum) pollen tubes in relation to the dynamics of actin filaments, microtubules, and the endomembrane system using specific antibodies to highly conserved peptide sequences. The role of the cytoskeleton and membrane flow was investigated using specific inhibitors (latrunculin B, 2,3-butanedione monoxime, taxol, oryzalin, and brefeldin A). Both enzymes are associated with the plasma membrane, but cellulose synthase is present along the entire length of pollen tubes (with a higher concentration at the apex) while callose synthase is located in the apex and in distal regions. In longer pollen tubes, callose synthase accumulates consistently around callose plugs, indicating its involvement in plug synthesis. Actin filaments and endomembrane dynamics are critical for the distribution of callose synthase and cellulose synthase, showing that enzymes are transported through Golgi bodies and/or vesicles moving along actin filaments. Conversely, microtubules appear to be critical in the positioning of callose synthase in distal regions and around callose plugs. In contrast, cellulose synthases are only partially coaligned with cortical microtubules and unrelated to callose plugs. Callose synthase also comigrates with tubulin by Blue Native-polyacrylamide gel electrophoresis. Membrane sucrose synthase, which expectedly provides UDP-glucose to callose synthase and cellulose synthase, binds to actin filaments depending on sucrose concentration; its distribution is dependent on the actin cytoskeleton and the endomembrane system but not on microtubules.  相似文献   

3.
J. Cronshaw 《Planta》1966,72(1):78-90
Summary Sterile pith cultures of Nicotiana tabacum have been induced to form localized regions of differentiating tracheids. These localized regions have been examined by phase, fluorescence, and electron microscopy, and polarization optics. Fixation for electron microscopy was with glutaraldehyde-osmium. The differentiating tracheids develop characteristic thick cell walls which are eventually lignified. The lignifications appear to be uniform throughout the secondary wall and little or no lignin appears to be deposited in the primary walls or intercellular layer. At all stages of secondary wall deposition, the peripheral cytoplasm contains a system of microtubules which form a pattern similar to that of the developing thickenings. Within this system the microtubules are oriented, the direction of orientation mirroring that of the fibrils in the most recently deposited parts of the wall. The observations support the view that the microtubules are somehow involved in microfibril orientation. The microtubules appear to be attached to the plasma membrane which has a triple layered structure. The two electron dense layers of the plasma membrane have a particulate structure. In the differentiating tracheids at regions where secondary wall thickening has not yet been deposited numerous invaginations of the plasma membrane are observed which contain loosely organized fibrillar material. It is suggested that these are areas of localized activity of the plasma membrane and that the enzymes concerned with the final organization of the cellulose microfibrils are situated at the surface of the plasma membrane. Dictyosomes in the differentiation cells give rise to vesicles which contain fibrous material and the contents are incorporated into the cell wall. Numerous profiles characteristic of plasmodesmata are evident in sections of the secondary thickenings.Part of this work was carried out at the Osborne Memorial Laboratories, Yale University.  相似文献   

4.
Mesophyll cells of Zinnia elegans var. Envy that had been induced to differentiate into tracheary elements (TEs) in suspension culture were treated with the cellulose synthesis inhibitor 2,6-dichlorobenzonitrile (DCB). The deposition of cellulose into the patterned secondary cell wall thickenings typical of TEs was inhibited as demonstrated by reduced incorporation of [14C]glucose into acetic/nitric insoluble material and absence of cellulose detectable by fluorescence after staining with Tinopal LPW, polarization optics, or labeling with a specific cellulase. Respiration as indicated by release of 14CO2 was inhibited to a much lesser extent, supporting a selective mechanism of action of DCB on the cellulose biosynthetic pathway. Patterned secondary cell wall thickenings were deposited in DCB-treated TEs, but these were smaller and less regularly shaped than those of control TEs. These cellulose-depleted thickenings lacked another abundant component of normal thickenings, the hemicellulose xylan, as indicated by absence of labeling with a specific xylanase or an antibody to xylan. DCB-treated TEs also showed dispersed lignin after staining with phloroglucinol, whereas control TEs contained lignin specifically localized to the secondary cell wall thickenings. Isoxaben, another recently described inhibitor of synthesis of acetic/nitric insoluble cell wall material (putatively cellulose), caused the same absence of detectable cellulose and xylan in the thickenings and dispersed lignin. These data suggest that: (i) the localization of lignin is ultimately dependent on the localization of cellulose; (ii) normal patterned wall assembly in TEs occurs in a self-perpetuating cascade in which some molecules of the secondary cell wall mediate patterning of others.  相似文献   

5.
Control of cellulose synthase complex localization in developing xylem   总被引:20,自引:0,他引:20       下载免费PDF全文
Cellulose synthesis in the developing xylem vessels of Arabidopsis requires three members of the cellulose synthase (CesA) gene family. In young vessels, these three proteins localize within the cell, whereas in older vessels, all three CesA proteins colocalize with bands of cortical microtubules that mark the sites of secondary cell wall deposition. In the absence of one subunit, however, the remaining two subunits are retained in the cell, demonstrating that all three CesA proteins are required to assemble a functional complex. CesA proteins with altered catalytic activity localize normally, suggesting that cellulose synthase activity is not required for this localization. Cortical microtubule arrays are required continually to maintain normal CesA protein localization. By contrast, actin microfilaments do not colocalize with the CesA proteins and are unlikely to play a direct role in their localization. Green fluorescent protein-tagged CesA reveals a novel process in which the structure and/or local environment of the cellulose synthase complex is altered rapidly.  相似文献   

6.
Carbon partitioning to cellulose synthesis   总被引:39,自引:0,他引:39  
This article discusses the importance and implications of regulating carbon partitioning to cellulose synthesis, the characteristics of cells that serve as major sinks for cellulose deposition, and enzymes that participate in the conversion of supplied carbon to cellulose. Cotton fibers, which deposit almost pure cellulose into their secondary cell walls, are referred to as a primary model system. For sucrose synthase, we discuss its proposed role in channeling UDP-Glc to cellulose synthase during secondary wall deposition, its gene family, its manipulation in transgenic plants, and mechanisms that may regulate its association with sites of polysaccharide synthesis. For cellulose synthase, we discuss the organization of the gene family and how protein diversity could relate to control of carbon partitioning to cellulose synthesis. Other enzymes emphasized include UDP-Glc pyrophosphorylase and sucrose phosphate synthase. New data are included on phosphorylation of cotton fiber sucrose synthase, possible regulation by Ca2+ of sucrose synthase localization, electron microscopic immunolocalization of sucrose synthase in cotton fibers, and phylogenetic relationships between cellulose synthase proteins, including three new ones identified in differentiating tracheary elements of Zinnia elegans. We develop a model for metabolism related to cellulose synthesis that implicates the changing intracellular localization of sucrose synthase as a molecular switch between survival metabolism and growth and/or differentiation processes involving cellulose synthesis. Abbreviations: CesA, cellulose synthase; Csl, cellulose-like synthase (genes); DCB, dichlobenil; DPA, days after anthesis; SPS, sucrose phosphate synthase; SuSy, sucrose synthase; P-SuSy, particulate SuSy; S-SuSy, soluble SuSy  相似文献   

7.
Plant cortical microtubules have crucial roles in cell wall development. Cortical microtubules are tightly anchored to the plasma membrane in a highly ordered array, which directs the deposition of cellulose microfibrils by guiding the movement of the cellulose synthase complex. Cortical microtubules also interact with several endomembrane systems to regulate cell wall development and other cellular events. Recent studies have identified new factors that mediate interactions between cortical microtubules and endomembrane systems including the plasma membrane, endosome, exocytic vesicles, and endoplasmic reticulum. These studies revealed that cortical microtubule-membrane interactions are highly dynamic, with specialized roles in developmental and environmental signaling pathways. A recent reconstructive study identified a novel function of the cortical microtubule-plasma membrane interaction, which acts as a lateral fence that defines plasma membrane domains. This review summarizes recent advances in our understanding of the mechanisms and functions of cortical microtubule-membrane interactions.  相似文献   

8.
Summary. The roles of cellulose microfibrils and cortical microtubules in establishing and maintaining the pattern of secondary-cell-wall deposition in tracheary elements were investigated with direct dyes to inhibit cellulose microfibril assembly and amiprophosmethyl to inhibit microtubule polymerization. When direct dyes were added to xylogenic cultures of Zinnia elegans L. mesophyll cells just before the onset of differentiation, the secondary cell wall was initially secreted as bands composed of discrete masses of stained material, consistent with immobilized sites of cellulose synthesis. The masses coalesced, forming truncated, sinuous or smeared thickenings, as secondary cell wall deposition continued. The absence of ordered cellulose microfibrils was confirmed by polarization microscopy and a lack of fluorescence dichroism as determined by laser scanning microscopy. Indirect immunofluorescence showed that cortical microtubules initially subtended the masses of dye-altered secondary cell wall material but soon became disorganized and disappeared. Although most of the secondary cell wall was deposited in the absence of subtending cortical microtubules in dye-treated cells, secretion remained confined to discrete regions of the plasma membrane. Examination of non-dye-treated cultures following application of microtubule inhibitors during various stages of secondary-cell-wall deposition revealed that the pattern became fixed at an early stage such that deposition remained localized in the absence of cortical microtubules. These observations indicate that cortical microtubules are required to establish, but not to maintain, patterned secondary-cell-wall deposition. Furthermore, cellulose microfibrils play a role in maintaining microtubule arrays and the integrity of the secondary-cell-wall bands during deposition.Correspondence and reprints: Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, U.S.A.Present address: Biology Editors Co., Peacedale, Rhode Island, U.S.A.Present address: Department of Biology and Marine Biology, Roger Williams University, Bristol, Rhode Island, U.S.A.Present address: Department of Crop Science and Department of Botany, North Carolina State University, Raleigh, North Carolina, U.S.A.  相似文献   

9.
Based on work with cotton fibers, a particulate form of sucrose (Suc) synthase was proposed to support secondary wall cellulose synthesis by degrading Suc to fructose and UDP-glucose. The model proposed that UDP-glucose was then channeled to cellulose synthase in the plasma membrane, and it implies that Suc availability in cellulose sink cells would affect the rate of cellulose synthesis. Therefore, if cellulose sink cells could synthesize Suc and/or had the capacity to recycle the fructose released by Suc synthase back to Suc, cellulose synthesis might be supported. The capacity of cellulose sink cells to synthesize Suc was tested by analyzing the Suc phosphate synthase (SPS) activity of three heterotrophic systems with cellulose-rich secondary walls. SPS is a primary regulator of the Suc synthesis rate in leaves and some Suc-storing, heterotrophic organs, but its activity has not been previously correlated with cellulose synthesis. Two systems analyzed, cultured mesophyll cells of Zinnia elegans L. var. Envy and etiolated hypocotyls of kidney beans (Phaseolus vulgaris), contained differentiating tracheary elements. Cotton (Gossypium hirsutum L. cv Acala SJ-1) fibers were also analyzed during primary and secondary wall synthesis. SPS activity rose in all three systems during periods of maximum cellulose deposition within secondary walls. The Z. elegans culture system was manipulated to establish a tight linkage between the timing of tracheary element differentiation and rising SPS activity and to show that SPS activity did not depend on the availability of starch for degradation. The significance of these findings in regard to directing metabolic flux toward cellulose will be discussed.  相似文献   

10.
Summary The role of microtubules in tracheary element formation in cultured stem segments ofColeus has been investigated through the use of the antimicrotubule drug, colchicine. Colchicine treatment of the cultured stem segments produced a dual effect on xylem differentiation. If applied at the time of stem segment isolation or shortly thereafter, wound vessel member formation is almost completely blocked. However, if colchicine is applied after the third day of culture, it does not inhibit differentiation, but instead large numbers of xylem elements are formed which have highly deformed secondary walls. Both effects are related to colchicine's specific affinity for microtubules. In the first case it is shown that colchicine blocks mitosis, presumably by destroying the spindle apparatus, and thus inhibits divisions which are prerequisite for the initiation of xylem differentiation. While, if colchicine is applied after the necessary preparative divisions have taken place, it destroys specifically the cortical microtubules associated with the developing bands of secondary wall, thus causing aberrant wall deposition.Light and electron microscopic analysis of drug-treated cells reveals that the secondary wall becomes smeared over the surface of the primary wall and does not retain the discrete banded pattern characteristic of secondary thickenings in untreated cells. Examination of colchicine-treated secondary walls in KMnO4 fixed material shows that in the absence of microtubules the cellulose microfibrils lose their normal parallel orientation and are deposited in swirls and curved configurations, and often lie at sharp angles to the axis of the secondary wall band. Microtubules, thus, appear to play a major role in defining the pattern of secondary wall deposition and in directing the orientation of the cellulose microfibrils of the wall. Factors in addition to microtubules also act in controlling the secondary wall pattern, since we observe that even in the absence of microtubules secondary thickenings of two adjacent xylem elements are deposited directly opposite one another across the common primary wall.  相似文献   

11.
Plant growth and organ formation depend on the oriented deposition of load-bearing cellulose microfibrils in the cell wall. Cellulose is synthesized by plasma membrane–bound complexes containing cellulose synthase proteins (CESAs). Here, we establish a role for the cytoskeleton in intracellular trafficking of cellulose synthase complexes (CSCs) through the in vivo study of the green fluorescent protein (GFP)-CESA3 fusion protein in Arabidopsis thaliana hypocotyls. GFP-CESA3 localizes to the plasma membrane, Golgi apparatus, a compartment identified by the VHA-a1 marker, and, surprisingly, a novel microtubule-associated cellulose synthase compartment (MASC) whose formation and movement depend on the dynamic cortical microtubule array. Osmotic stress or treatment with the cellulose synthesis inhibitor CGA 325''615 induces internalization of CSCs in MASCs, mimicking the intracellular distribution of CSCs in nongrowing cells. Our results indicate that cellulose synthesis is coordinated with growth status and regulated in part through CSC internalization. We find that CSC insertion in the plasma membrane is regulated by pauses of the Golgi apparatus along cortical microtubules. Our data support a model in which cortical microtubules not only guide the trajectories of CSCs in the plasma membrane, but also regulate the insertion and internalization of CSCs, thus allowing dynamic remodeling of CSC secretion during cell expansion and differentiation.  相似文献   

12.
Plant development is highly plastic and dependent on light quantity and quality monitored by specific photoreceptors. Although we have a detailed knowledge of light signaling pathways, little is known about downstream targets involved in growth control. Cell size and shape are in part controlled by cellulose microfibrils extruded from large cellulose synthase complexes (CSCs) that migrate in the plasma membrane along cortical microtubules. Here we show a role for the red/far-red light photoreceptor PHYTOCHROME B (PHYB) in the regulation of cellulose synthesis in the growing Arabidopsis hypocotyl. In this organ, CSCs contains three distinct cellulose synthase (CESA) isoform classes: nonredundant CESA1 and CESA3 and a third class represented by partially redundant CESA2, CESA5, and CESA6. Interestingly, in the dark, depending on which CESA subunits occupy the third position, CSC velocity is more or less inhibited through an interaction with microtubules. Activation of PHYB overrules this inhibition. The analysis of cesa5 mutants shows a role for phosphorylation in the control of CSC velocity. These results, combined with the cesa5 mutant phenotype, suggest that cellulose synthesis is fine tuned through the regulated interaction of CSCs with microtubules and that PHYB signaling impinges on this process to maintain cell wall strength and growth in changing environments.  相似文献   

13.
The extracellular matrix is constructed beyond the plasma membrane, challenging mechanisms for its control by the cell. In plants, the cell wall is highly ordered, with cellulose microfibrils aligned coherently over a scale spanning hundreds of cells. To a considerable extent, deploying aligned microfibrils determines mechanical properties of the cell wall, including strength and compliance. Cellulose microfibrils have long been seen to be aligned in parallel with an array of microtubules in the cell cortex. How do these cortical microtubules affect the cellulose synthase complex? This question has stood for as many years as the parallelism between the elements has been observed, but now an answer is emerging. Here, we review recent work establishing that the link between microtubules and microfibrils is mediated by a protein named cellulose synthase-interacting protein 1 (CSI1). The protein binds both microtubules and components of the cellulose synthase complex. In the absence of CSI1, microfibrils are synthesized but their alignment becomes uncoupled from the microtubules, an effect that is phenocopied in the wild type by depolymerizing the microtubules. The characterization of CSI1 significantly enhances knowledge of how cellulose is aligned, a process that serves as a paradigmatic example of how cells dictate the construction of their extracellular environment.  相似文献   

14.
Microtubules have long been known to play a key role in plant cell morphogenesis, but just how they fulfill this function is unclear. Transverse microtubules have been thought to constrain the movement of cellulose synthase complexes in order to generate transverse microfibrils that are essential for elongation growth. Surprisingly, some recent studies demonstrate that organized cortical microtubules are not essential for maintaining or re-establishing transversely oriented cellulose microfibrils in expanding cells. At the same time, however, there is strong evidence that microtubules are intimately associated with cellulose synthesis activity, especially during secondary wall deposition. These apparently conflicting results provide important clues as to what microtubules do at the interface between the cell and its wall. I hypothesize that cellulose microfibril length is an important parameter of wall mechanics and suggest ways in which microtubule organization may influence microfibril length. This concept is in line with current evidence that links cellulose synthesis levels and microfibril orientation. Furthermore, in light of new evidence showing that a wide variety of proteins bind to microtubules, I raise the broader question of whether a major function of plant microtubules is in modulating signaling pathways as plants respond to sensory inputs from the environment.  相似文献   

15.
Cellulose biosynthesis in plants: from genes to rosettes   总被引:37,自引:0,他引:37  
Modern techniques of gene cloning have identified the CesA genes as encoding the probable catalytic subunits of the plant CelS, the cellulose synthase enzyme complex visualized in the plasma membrane as rosettes. At least 10 CesA isoforms exist in Arabidopsis and have been shown by mutant analyses to play distinct role/s in the cellulose synthesis process. Functional specialization within this family includes differences in gene expression, regulation and, possibly, catalytic function. Current data points towards some CesA isoforms potentially being responsible for initiation or elongation of the recently identified sterol beta-glucoside primer within different cell types, e.g. those undergoing either primary or secondary wall cellulose synthesis. Different CesA isoforms may also play distinct roles within the rosette, and there is some circumstantial evidence that CesA genes may encode the catalytic subunit of the mixed linkage glucan synthase or callose synthase. Various other proteins such as the Korrigan endocellulase, sucrose synthase, cytoskeletal components, Rac13, redox proteins and a lipid transfer protein have been implicated to be involved in synthesizing cellulose but, apart from CesAs, only Korrigan has been definitively linked with cellulose synthesis. These proteins should prove valuable in identifying additional CelS components.  相似文献   

16.
The shape of plants depends on cellulose, a biopolymer that self-assembles into crystalline, inextensible microfibrils (CMFs) upon synthesis at the plasma membrane by multi-enzyme cellulose synthase complexes (CSCs). CSCs are displaced in directions predicted by underlying parallel arrays of cortical microtubules, but CMFs remain transverse in cells that have lost the ability to expand unidirectionally as a result of disrupted microtubules. These conflicting findings suggest that microtubules are important for some physico-chemical property of cellulose that maintains wall integrity. Using X-ray diffraction, we demonstrate that abundant microtubules enable a decrease in the degree of wall crystallinity during rapid growth at high temperatures. Reduced microtubule polymer mass in the mor1-1 mutant at high temperatures is associated with failure of crystallinity to decrease and a loss of unidirectional expansion. Promotion of microtubule bundling by over-expressing the RIC1 microtubule-associated protein reduced the degree of crystallinity. Using live-cell imaging, we detected an increase in the proportion of CSCs that track in microtubule-free domains in mor1-1, and an increase in the CSC velocity. These results suggest that microtubule domains affect glucan chain crystallization during unidirectional cell expansion. Microtubule disruption had no obvious effect on the orientation of CMFs in dark-grown hypocotyl cells. CMFs at the outer face of the hypocotyl epidermal cells had highly variable orientation, in contrast to the transverse CMFs on the radial and inner periclinal walls. This suggests that the outer epidermal mechanical properties are relatively isotropic, and that axial expansion is largely dependent on the inner tissue layers.  相似文献   

17.
Plasma membrane ghosts form when plant protoplasts attached to a substrate are lysed to leave a small patch of plasma membrane. We have identified several factors, including the use of a mildly acidic actin stabilization buffer and the inclusion of glutaraldehyde in the fixative, that allow immunofluorescent visualization of extensive cortical actin arrays retained on membrane ghosts made from tobacco (Nicotiana tabacum L.) suspension-cultured cells (line Bright Yellow 2). Normal microtubule arrays were also retained using these conditions. Membrane-associated actin is random; it exhibits only limited coalignment with the microtubules, and microtubule depolymerization in whole cells before wall digestion and ghost formation has little effect on actin retention. Actin and microtubules also exhibit different sensitivities to the pH and K+ and Ca2+ concentrations of the lysis buffer. There is, however, strong evidence for interactions between actin and the microtubules at or near the plasma membrane, because both ghosts and protoplasts prepared from taxol-pretreated cells have microtubules arranged in parallel arrays and an increased amount of actin coaligned with the microtubules. These experiments suggest that the organization of the cortical actin arrays may be dependent on the localization and organization of the microtubules.  相似文献   

18.
The Candida albicans plasma membrane plays important roles in cell growth and as a target for antifungal drugs. Analysis of Ca-Sur7 showed that this four transmembrane domain protein localized to stable punctate patches, similar to the plasma membrane subdomains known as eisosomes or MCC that were discovered in S. cerevisiae. The localization of Ca-Sur7 depended on sphingolipid synthesis. In contrast to S. cerevisiae, a C. albicans sur7Δ mutant displayed defects in endocytosis and morphogenesis. Septins and actin were mislocalized, and cell wall synthesis was very abnormal, including long projections of cell wall into the cytoplasm. Several phenotypes of the sur7Δ mutant are similar to the effects of inhibiting β-glucan synthase, suggesting that the abnormal cell wall synthesis is related to activation of chitin synthase activity seen under stress conditions. These results expand the roles of eisosomes by demonstrating that Sur7 is needed for proper plasma membrane organization and cell wall synthesis. A conserved Cys motif in the first extracellular loop of fungal Sur7 proteins is similar to a characteristic motif of the claudin proteins that form tight junctions in animal cells, suggesting a common role for these tetraspanning membrane proteins in forming specialized plasma membrane domains.  相似文献   

19.
Information on the sites of cellulose synthesis and the diversity and evolution of cellulose-synthesizing enzyme complexes (terminal complexes) in algae is reviewed. There is now ample evidence that cellulose synthesis occurs at the plasma membrane-bound cellulose synthase, with the exception of some algae that produce cellulosic scales in the Golgi apparatus. Freeze-fracture studies of the supramolecular organization of the plasma membrane support the view that the rosettes (a six-subunit complex) in higher plants and both the rosettes and the linear terminal complexes (TCs) in algae are the structures that synthesize cellulose and secrete cellulose microfibrils. In the Zygnemataceae, each single rosette forms a 5-nm or 3-nm single “elementary” microfibril (primary wall), whereas rosettes arranged in rows of hexagonal arrays synthesize criss-crossed bands of parallel cellulose microfibrils (secondary wall). In Spirogyra, it is proposed that each of the six subunits of a rosette might synthesize six β-1,4-glucan chains that cocrystallize into a 36-glucan chain “elementary” microfibril, as is the case in higher plants. One typical feature of the linear terminal complexes in red algae is the periodic arrangement of the particle rows transverse to the longitudinal axis of the TCs. In bangiophyte red algae and in Vaucheria hamata, cellulose microfibrils are thin, ribbon-shaped structures, 1–1.5 nm thick and 5–70 nm wide; details of their synthesis are reviewed. Terminal complexes appear to be made in the endoplasmic reticulum and are transferred to Golgi cisternae, where the cellulose synthases are activated and may be transported to the plasma membrane. In algae with linear TCs, deposition follows a precise pattern directed by the movement and the orientation of the TCs (membrane flow). A principal underlying theme is that the architecture of cellulose microfibrils (size, shape, crystallinity, and intramicrofibrillar associations) is directly related to the geometry of TCs. The effects of inhibitors on the structure of cellulose-synthetizing complexes and the relationship between the deposition of the cellulose microfibrils with cortical microtubules and with the membrane-embedded TCs is reviewed In Porphyra yezoensis, the frequency and distribution of TCs reflect polar tip growth in the apical shoot cell.The evolution of TCs in algae is reviewed. The evidence gathered to date illustrates the utility of terminal complex organization in addressing plant phylogenetic relationships.  相似文献   

20.
Differentiating xylem elements of Avena coleoptiles have been examined by light and electron microscopy. Fixation in 2 per cent phosphate-buffered osmium tetroxide and in 6 per cent glutaraldehyde, followed by 2 per cent osmium tetroxide, revealed details of the cell wall and cytoplasmic fine structure. The localized secondary wall thickening identified the xylem elements and indicated their state of differentiation. These differentiating xylem elements have dense cytoplasmic contents in which the dictyosomes and elements of rough endoplasmic reticulum are especially numerous. Vesicles are associated with the dictyosomes and are found throughout the cytoplasm. In many cases, these vesicles have electron-opaque contents. "Microtubules" are abundant in the peripheral cytoplasm and are always associated with the secondary wall thickenings. These microtubules are oriented in a direction parallel to the microfibrillar direction of the thickenings. Other tubules are frequently found between the cell wall and the plasma membrane. Our results support the view that the morphological association of the "microtubules" with developing cell wall thickenings may have a functional significance, especially with respect to the orientation of the microfibrils. Dictyosomes and endoplasmic reticulum may have a function in some way connected with the synthetic mechanism of cell wall deposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号