首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yang R  Meng F  Ma S  Huang F  Liu H  Zhong Z 《Biomacromolecules》2011,12(8):3047-3055
The inferior in vivo stability of micellar drugs has been a prime challenge for their application in targeted drug delivery. Here we report on novel galactose-decorated covalently cross-linked biodegradable micelles based on photo-cross-linkable poly(ethylene glycol)-b-poly(acryloyl carbonate)-b-poly(ε-caprolactone) (PEG-PAC-PCL) and galactose-conjugated PEG-PCL (Gal-PEG-PCL) copolymers for enhanced hepatoma-targeting delivery of paclitaxel (PTX). The molecular weight of PEG in Gal-PEG-PCL was higher than that in PEG-PAC-PCL, thereby fully exposing Gal ligands at the micellar surface. These micelles, either with or without loading of PTX, were readily cross-linked by UV irradiation to afford micelles with small sizes (ca. 79-94 nm) and enhanced stability. The in vitro release studies confirmed that drug release from cross-linked micelles was significantly inhibited. Interestingly, MTT assays showed that Gal-decorated PTX-loaded cross-linked micelles retained a high antitumor activity in HepG2 cells, which was much more effective than PTX-loaded cross-linked micelles without Gal ligands and comparable to Gal-decorated PTX-loaded non-cross-linked micelles. Remarkably, the preliminary in vivo antitumor efficacy studies in SMMC-7721 tumor (human hepatoma)-bearing nude mice revealed that Gal-decorated PTX-loaded cross-linked micelles inhibited the growth of the human hepatoma more effectively than PTX-loaded cross-linked micelles as well as Gal-decorated PTX-loaded non-cross-linked micelles. These results indicate that Gal-decorated cross-linked PEG-PCL micelles have great potential in liver tumor-targeted chemotherapy.  相似文献   

2.
One of the major obstacles that delay the clinical translation of polymeric micelle drug delivery systems is whether these self-assembled micelles can retain their integrity in blood following intravenous (IV) injection. The objective of this study was to evaluate the impact of core functionalization on the thermodynamic and kinetic stability of polymeric micelles. The combination of ring-opening polymerization of N-carboxyanhydride (NCA) with highly efficient "click" coupling has enabled easy and quick access to a family of poly(ethylene glycol)-block-poly(γ-R-glutamate)s with exactly the same block lengths, for which the substituent "R" is tuned. The structures of these copolymers were carefully characterized by (1)H NMR, FT-IR, and GPC. When pyrene is used as the fluorescence probe, the critical micelle concentrations (CMCs) of these polymers were found to be in the range of 10(-7)-10(-6) M, which indicates good thermodynamic stability for the self-assembled micelles. The incorporation of polar side groups in the micelle core leads to high CMC values; however, micelles prepared from these copolymers are kinetically more stable in the presence of serum and upon SDS disturbance. It was also observed that these polymers could effectively encapsulate paclitaxel (PTX) as a model anticancer drug, and the micelles possessing better kinetic stability showed better suppression of the initial "burst" release and exhibited more sustained release of PTX. These PTX-loaded micelles exerted comparable cytotoxicity against HeLa cells as the clinically approved Cremophor PTX formulation, while the block copolymers showed much lower toxicity compared to the cremophor-ethanol mixture. The present work demonstrated that the PEG-b-PPLG can be a uniform block copolymer platform toward development of polymeric micelle delivery systems for different drugs through the facile modification of the PPLG block.  相似文献   

3.
A thermo-responsive poly{γ-2-[2-(2-methoxyethoxy)ethoxy]ethoxy-ε-caprolactone}-b-poly(γ-octyloxy-ε-caprolactone) (PMEEECL-b-POCTCL) diblock copolymer was synthesized by ring-opening polymerization using tin octanoate (Sn(Oct)(2)) catalyst and a fluorescent dansyl initiator. The PMEEECL-b-POCTCL had a lower critical solution temperature (LCST) of 38 °C, and it was employed to prepare thermally responsive micelles. Nile Red and Doxorubicin (DOX) were loaded into the micelles, and the micellar stability and drug carrying ability were investigated. The size and the morphology of the cargo-loaded micelles were determined by DLS, AFM, and TEM. The Nile-Red-loaded polymeric micelles were found to be stable in the presence of both fetal bovine serum and bovine serum albumin over a 72 h period and displayed thermo-responsive in vitro drug release. The blank micelles showed a low cytotoxicity. As comparison, the micelles loaded with DOX showed a much higher in vitro cytotoxicity against MCF-7 human breast cancer cell line when the incubation temperature was elevated above the LCST. Confocal laser scanning microscopy was used to study the cellular uptake and showed that the DOX-loaded micelles were internalized into the cells via an endocytosis pathway.  相似文献   

4.
A novel intracellular pH-sensitive polymeric micelle drug carrier that controls the systemic, local, and subcellular distributions of pharmacologically active drugs has been developed in this study. The micelles were prepared from self-assembling amphiphilic block copolymers, poly(ethylene glycol)-poly(aspartate hydrazone adriamycin), in which the anticancer drug, adriamycin, was conjugated to the hydrophobic segments through acid-sensitive hydrazone linkers. By this polymer design, the micelles can stably preserve drugs under physiological conditions (pH 7.4) and selectively release them by sensing the intracellular pH decrease in endosomes and lysosomes (pH 5-6). In vitro and in vivo studies show that the micelles have the characteristic properties, such as an intracellular pH-triggered drug release capability, tumor-infiltrating permeability, and effective antitumor activity with extremely low toxicity. The acquired experimental data clearly elucidate that the optimization of both the functional and structural features of polymeric micelles provides a promising formulation not only for the development of intracellular environment-sensitive supramolecular devices for cancer therapeutic applications but also for the future treatment of intractable cancers with limited vasculature.  相似文献   

5.
聚合物胶束作为药物载体具有良好的稳定性和生物相容性,提高疏水性药物溶解性等优势,是一类很有应用潜力的药物传输系统。本研究以合成的共价键连D-甘露糖的双亲性聚合物分子(PGMA-Mannose)为药物载体,包载抗癌药物阿霉素(DOX)制备具有甘露糖受体靶向性和pH敏感药物释放特性的新型载药聚合物胶束。利用激光共聚焦显微镜和MTT细胞毒性评价方法对载药胶束的细胞内吞摄取和毒性进行评价。实验结果表明,载药胶束能特异性识别人乳腺癌细胞MDA-MB-231表面过度表达的甘露糖受体,被癌细胞大量摄取并在细胞溶酶体酸性环境内释放药物,而载药胶束在表面甘露糖受体低表达的HEK293细胞中只有少量摄取。与原药DOX相比,该载药胶束对癌细胞的毒性显著提高,而对正常细胞的毒性较低。因此,该PGMA-Mannose聚合物胶束有望成为一种新型的靶向药物输送系统应用于癌症的治疗。  相似文献   

6.
Paclitaxel(PTX) is one of the most effective anticancer drugs for the treatment of various solid tumors, but its clinical use is limited by its poor solubility, low bioavailability, and severe systemic toxicity. Encapsulation of PTX in polymeric nanoparticles is used to overcome these problems but these micelles still need improvements in stability, pharmacokinetics, therapeutic efficacy, and safety profiles. In this study, we demonstrate a facile fabrication of a stable PTX-binding micelle made from poly(ethylene glycol)-block-dendritic polylysine, whose primary amines were reacted with phenethyl isothiocyanate(PEITC), a hydrophobic anticancer agent under clinical study. The amphiphilic conjugate(PEG-Gx-PEITC; Gx, the generation of the polylysine dendron) formed well-defined micelles whose core was composed of phenyl groups and thiourea groups binding PTX via π-π stacking and hydrogen bonding. Compared with the PTX-loaded poly(ethylene glycol)-block-poly(D,L-lactide)(PEGPDLLA/PTX) micelles in clinical use, PTX-loaded PEG-Gx-PEITC third-generation(PEG-G3-PEITC/PTX) micelles showed slowed blood clearance, enhanced tumor accumulation, and thus much improved in vivo therapeutic efficacy in both subcutaneous and orthotopic human breast cancer xenografts. Therefore, PEG-G3-PEITC is a promising drug delivery system for PTX in the treatment of breast cancer.  相似文献   

7.
Li G  Liu J  Pang Y  Wang R  Mao L  Yan D  Zhu X  Sun J 《Biomacromolecules》2011,12(6):2016-2026
The hydrophobic block of polymeric micelles formed by amphiphilic copolymers has no direct therapeutical effect, and the metabolites of these hydrophobic segments might lead to some unexpected side effects. Here the hydrophobic core of polymeric micelles is replaced by highly water-insoluble drugs themselves, forming a new micellar drug delivery system. By grafting hydrophobic drugs of paclitaxel (PTX) onto the surface of hydrophilic hyperbranched poly(ether-ester) (HPEE), we constructed an amphiphilic copolymer (HPEE-PTX). HPEE-PTX could self-assemble into micellar nanoparticles in aqueous solution with tunable drug contents from 4.1 to 10.7%. Moreover, the hydrolysis of HPEE-PTX in serum resulted in the cumulative release of PTX. In vivo evaluation indicated that the dosage toleration of PTX in mice had been improved greatly and HPEE-PTX micellar nanoparticles could be used as an efficient prodrug with satisfactory therapeutical effect. We believe that most of the lipophilic drugs could improve their characters through this strategy.  相似文献   

8.
Jin Y  Song L  Su Y  Zhu L  Pang Y  Qiu F  Tong G  Yan D  Zhu B  Zhu X 《Biomacromolecules》2011,12(10):3460-3468
Oxime bonds dispersed in the backbones of the synthetic polymers, while young in the current spectrum of the biomedical application, are rapidly extending into their own niche. In the present work, oxime linkages were confirmed to be a robust tool for the design of pH-sensitive polymeric drug delivery systems. The triblock copolymer (PEG-OPCL-PEG) consisting of hydrophilic poly(ethylene glycol) (PEG) and hydrophobic oxime-tethered polycaprolactone (OPCL) was successfully prepared by aminooxy terminals of OPCL ligating with aldehyde-terminated PEG (PEG-CHO). Owing to its amphiphilic architecture, PEG-OPCL-PEG self-assembled into the micelles in aqueous media, validated by the measurement of critical micelle concentration (CMC). The MTT assay showed that PEG-OPCL-PEG exhibited low cytotoxicity against NIH/3T3 normal cells. Doxorubicin (DOX) as a model drug was encapsulated into the PEG-OPCL-PEG micelles. Drug release study revealed that the DOX release from micelles was significantly accelerated at mildly acid pH of 5.0 compared to physiological pH of 7.4, suggesting the pH-responsive feature of the drug delivery systems with oxime linkages. Flow cytometry and confocal laser scanning microscopy (CLSM) measurements indicated that these DOX-loaded micelles were easily internalized by living cells. MTT assay against HeLa cancer cells showed DOX-loaded PEG-OPCL-PEG micelles had a high anticancer efficacy. All of these results demonstrate that these polymeric micelles self-assembled from oxime-tethered block copolymers are promising carriers for the pH-triggered intracellular delivery of hydrophobic anticancer drugs.  相似文献   

9.
The synthesis and complete characterization of both norbornene-derived doxorubicin (mono 1) and polyethylene glycol (mono 2) monomers are clearly described, and their copolymerization by ring-opening metathesis polymerization (ROMP) to get the block copolymer (COPY-DOX) is vividly elaborated. The careful design of these conjugates exhibits properties like well-shielded drug moieties and well-defined nanostructures; additionally, they show solubility in both water and biological medium and also have the important tendency of rendering acid-triggered drug release. The drug release profile suggests the importance of having the hydrazone linker that helps to release the drug exactly at the mild acidic conditions resembling the pH of the cancerous cells. It is also observed that the drug release from micelles of COPY-DOX is significantly accelerated at a mildly acidic pH of 5.5-6, compared to the physiological pH of 7.4, suggesting the pH-responsive feature of the drug delivery system with hydrazone linkages. Confocal laser scanning microscopy (CLSM) measurements indicate that these COPY-DOX micelles are easily internalized by living cells. MTT assays against HeLa and 4T cancer cells showing COPY-DOX micelles have a high anticancer efficacy. All of these results demonstrate that these polymeric micelles that self-assembled from COPY-DOX block copolymers have great scope in the world of medicine, and they also symbolize promising carriers for the pH-triggered intracellular delivery of hydrophobic anticancer drugs.  相似文献   

10.
Amphiphilically modified low molecular weight chitosan (LMWC) with long chain alkyl groups as hydrophobic moieties and carboxymethyl groups as hydrophilic moieties (N-octyl-N,O-carboxymethyl LMWC, OC-LMWC) was synthesized. Self-assembled polymeric micelles of OC-LMWC were prepared in aqueous environment. Critical micelle concentrations (CMC) of OC-LMWCs were varied from 8.7 to 27.7 mg/l. Paclitaxel (PTX) was successfully encapsulated into the hydrophobic cores of the nanoparticles. The drug loading content and entrapment efficiency were higher to 32.17% (w/w) and 80.61%, respectively. Differential scanning calorimetry (DSC), transmission electron microscope (TEM) observation and dynamic light scattering (DLS) measurements were carried out to determination the physicochemical properties of the micelles. MTT assay showed that the in vitro cytotoxic effect of the PTX-loaded micelles was comparable to that of the commercial formulation, but the blank micelles were far less than the Cremophor EL® vehicle. These results suggested that OC-LMWC micelles were promising carriers for hydrophobic anticancer agents.  相似文献   

11.
Cancer treatment efficacy and safety of the environmentally sensitive polymeric micelle drug carriers were significantly increased by optimizing the number of ligands on their surface. These micelles were designed to target the cancerous tumors through the interaction between folate and its receptors that overexpress on the cancer cell membrane while achieving pH-controlled drug release in the intracellular acidic compartments such as endosomes and lysosomes. In order to elucidate the effects of folate on cytotoxicity, biodistribution, anticancer activity, and pharmacological properties, folate concentration on the surface of the micelles was controlled by precise synthesis of two different amphiphilic block copolymers that self-assemble into spherical micelles, folate-poly(ethylene glycol)-poly(aspartate-hydrazone-adriamycin) with gamma-carboxylic acid activated folate and methoxy-poly(ethylene glycol)-poly(aspartate-hydrazone-adriamycin) without folate. It is of significance that, although folate conjugation induced an extremely small change in tumor accumulation of the micelles, folate-conjugated micelles showed lower in vivo toxicity and higher antitumor activity over a broad range of the dosage from 7.50 to 26.21 mg/kg, which was 5-fold broader than free drugs.  相似文献   

12.
This paper deals with the synthesis of thermo-responsive microspheres with proteic structure exhibiting a transition temperature close to the body temperature. Temperature-sensitive hydrogels have attracted extensive interest due to their potential and promising applications in drug delivery field since they can undergo a rapid and reversible phase transition from a swollen to a shrunken state depending on environmental temperature. The hydrogels were synthesized by free-radical polymerization of hydrolyzed methacrylated gelatin (HGel-MA) and N,N′-methylenebisacrylamide as pro-hydrophilic multifunctional macromer and crosslinker, respectively, and N-isopropylacrylamide as thermo-responsive monomer. Thermal analyses showed negative thermo-responsive behavior for all compositions and, by increasing the content of the hydrophilic moieties in the network, the transition temperature raised to 36.9°C, close to the physiological values. In order to test the materials as drug carriers, diclofenac sodium salt was chosen as model drug. Drug release profiles, in phosphate buffer solution (pH 7.0, 10−3 M) at 25 and 40°C, depend on the hydrogel’s crosslinking degree and hydrophilic/hydrophobic balance in the polymeric network. For all formulations, in the shrunken state, the drug release percent values ranged from 80% to 100% after 24 h, and after 3 h, more than 60% of therapeutics was delivered. On the contrary, the swelling of the loaded microparticles produces, even after 30 h, a drug release percent of about 75%. By using semi-empirical equations, the release mechanism was extensively studied and the diffusional contribute was evaluated. The physico-chemical characteristics of thermo-responsive materials confirm the applicability of the microspheres as drug delivery device.  相似文献   

13.
目的:制备一种姜黄素共聚物胶束以提高姜黄素的水溶性及其抗肿瘤活性。方法:采用乳化溶剂挥发法制备了载姜黄素的共聚物胶束(Cur/PTL1胶束),对其粒径、载药量、包封率和体外药物释放行为进行了考察;并采用MTT法考察了PTL1空白胶束和Cur/PTL1胶束的体外细胞毒作用。结果:制备了粒径在40 nm左右的载姜黄素共聚物胶束,载药量为9.78±0.29%,包封率为97.24±2.68%。体外药物释放实验表明,游离姜黄素在24 h内的药物累积释放率达到90%以上,而Cur/PTL1胶束在24 h内药物累积释放率为23.8%,能够持续释放14天,14天内累积释放率为85.9%,具有一定的缓释能力。MTT实验结果表明,当PTL1空白胶束浓度达到1 mg/mL时,细胞的存活率仍在90%以上;Cur/PTL1胶束组IC50为4.73±0.23μg/mL,游离姜黄素组IC50为6.42±0.35μg/mL。结论:实验结果表明,Cur/PTL1胶束可以作为一种有前景的纳米药物输送系统。  相似文献   

14.
Wei R  Cheng L  Zheng M  Cheng R  Meng F  Deng C  Zhong Z 《Biomacromolecules》2012,13(8):2429-2438
Reduction-sensitive reversibly core-cross-linked micelles were developed based on poly(ethylene glycol)-b-poly(N-2-hydroxypropyl methacrylamide)-lipoic acid (PEG-b-PHPMA-LA) conjugates and investigated for triggered doxorubicin (DOX) release. Water-soluble PEG-b-PHPMA block copolymers were obtained with M(n,PEG) of 5.0 kg/mol and M(n,HPMA) varying from 1.7 and 4.1 to 7.0 kg/mol by reversible addition-fragmentation chain transfer (RAFT) polymerization. The esterification of the hydroxyl groups in the PEG-b-PHPMA copolymers with lipoic acid (LA) gave amphiphilic PEG-b-PHPMA-LA conjugates with degrees of substitution (DS) of 71-86%, which formed monodispersed micelles with average sizes ranging from 85.3 to 142.5 nm, depending on PHPMA molecular weights, in phosphate buffer (PB, 10 mM, pH 7.4). These micelles were readily cross-linked with a catalytic amount of dithiothreitol (DTT). Notably, PEG-b-PHPMA(7.0k)-LA micelles displayed superior DOX loading content (21.3 wt %) and loading efficiency (90%). The in vitro release studies showed that only about 23.0% of DOX was released in 12 h from cross-linked micelles at 37 °C at a low micelle concentration of 40 μg/mL, whereas about 87.0% of DOX was released in the presence of 10 mM DTT under otherwise the same conditions. MTT assays showed that DOX-loaded core-cross-linked PEG-b-PHPMA-LA micelles exhibited high antitumor activity in HeLa and HepG2 cells with low IC(50) (half inhibitory concentration) of 6.7 and 12.8 μg DOX equiv/mL, respectively, following 48 h incubation, while blank micelles were practically nontoxic up to a tested concentration of 1.0 mg/mL. Confocal laser scanning microscope (CLSM) studies showed that DOX-loaded core-cross-linked micelles released DOX into the cell nuclei of HeLa cells in 12 h. These reduction-sensitive disassemblable core-cross-linked micelles with excellent biocompatibility, superior drug loading, high extracellular stability, and triggered intracellular drug release are promising for tumor-targeted anticancer drug delivery.  相似文献   

15.
An arginine-glycine-aspartic acid (RGD) containing model peptide was conjugated to the surface of poly(ethylene oxide)-block-poly(epsilon-caprolactone) (PEO-b-PCL) micelles as a ligand that can recognize adhesion molecules overexpressed on the surface of metastatic cancer cells, that is, integrins, and that can enhance the micellar delivery of encapsulated hydrophobic drug into a tumor cell. Toward this goal, PEO-b-PCL copolymers bearing acetal groups on the PEO end were synthesized, characterized, and assembled to polymeric micelles. The acetal group on the surface of the PEO-b-PCL micelles was converted to reactive aldehyde under acidic condition at room temperature. An RGD-containing linear peptide, GRGDS, was conjugated on the surface of the aldehyde-decorated PEO-b-PCL micelles by incubation at room temperature. A hydrophobic fluorescent probe, that is, DiI, was physically loaded in prepared polymeric micelles to imitate hydrophobic drugs loaded in micellar carrier. The cellular uptake of DiI loaded GRGDS-modified micelles by melanoma B16-F10 cells was investigated at 4 and 37 degrees C by fluorescent spectroscopy and confocal microscopy techniques and was compared to the uptake of DiI loaded valine-PEO-b-PCL micelles (as the irrelevant ligand decorated micelles) and free DiI. GRGDS conjugation to polymeric micelles significantly facilitated the cellular uptake of encapsulated hydrophobic DiI most probably by intergrin-mediated cell attachment and endocytosis. The results indicate that acetal-terminated PEO-b-PCL micelles are amenable for introducing targeting moieties on the surface of polymeric micelles and that RGD-peptide conjugated PEO-b-PCL micelles are promising ligand-targeted carriers for enhanced drug delivery to metastatic tumor cells.  相似文献   

16.
Polymeric micelles were studied as delivery carriers of diazepam, a practically insoluble drug in water, for rectal administration. The diazepam-loaded polymeric micelles were developed by using poloxamer 407 (P407), poloxamer 188, and d-α-tocopheryl poly(ethylene glycol) 1000 succinate (TPGS). Among the used polymers, TPGS resulted in polymeric micelles with good characteristics for encapsulation of diazepam which had the small particle size of 8–12 nm and narrow size distribution (PI 0.053–0.275). Additionally, 7.5% w/v of TPGS could entirely entrap the desired concentration of diazepam (5 mg/mL). To improve the physical stability upon lyophilization, an addition of P407 of 1% w/v prevented aggregation, increased physical stability, and maintained chemical stability of the lyophilized powders of diazepam-loaded polymeric micelles for 3 months storage at 4°C. The rate and amount of diazepam release from TPGS polymeric micelles mainly depended on the concentration of TPGS. The release data were fitted to Higuchi''s model suggesting that the drug release mechanism was controlled by Fickian diffusion. In conclusion, 10% w/v TPGS and 1% w/v P407 were the optimum formulation of lyophilized diazepam-loaded polymeric micelles.Key words: diazepam, lyophilization, poloxamer 407, polymeric micelles, d-α-tocopheryl poly(ethylene glycol) 1000 succinate (TPGS)  相似文献   

17.
A new approach to engineer a local drug delivery system with delayed release using nanostructured surface with nanotube arrays is presented. TNT arrays electrochemically generated on a titanium surface are used as a model substrate. Polymer micelles as drug carriers encapsulated with drug are loaded at the bottom of the TNT structure and their delayed release is obtained by loading blank micelles (without drug) on the top. The delayed and time-controlled drug release is successfully demonstrated by controlling the ratio of blank and drug loaded-micelles. The concept is verified using four different polymer micelles (regular and inverted) loaded with water-insoluble (indomethacin) and water-soluble drugs (gentamicin).  相似文献   

18.
Vitamin B12 (VB12)-modified dextran-g-polyethyleneoxide cetyl ether (DEX-g-PEO-C16) was synthesized by linking VB12 residues to a DEX-g-PEO-C16 copolymer via a 2,2'-(ethylenedioxy)bis(ethylamine) spacer. The level of VB12 substitution on the DEX-g-PEO-C16 copolymer reached 1.68% (w/w). In aqueous solution, DEX-based copolymers form micelles that can entrap within their hydrophobic core up to 8.5% w/w of cyclosporin A (CsA), a poorly water soluble immunosuppressant. The permeability of Caco-2 cell membranes to CsA incorporated in VB12 modified and unmodified polymeric micelles was monitored in the presence and absence of intrinsic factor (IF). The apical (AP) to basolateral (BL) permeation of CsA through Caco-2 cell monolayers after 24 h of transport was significantly higher (1.8 and 2.3 times in absence and presence of IF, respectively) in the case of CsA loaded in VB12-modified polymeric micelles, compared to CsA in unmodified micelles. The results point to possible improvement in the application of polysaccharide-based polymeric micelles as targeted polymeric drug carriers for the oral delivery of poorly water soluble drugs.  相似文献   

19.
The purpose of this study was to develop a new therapeutic approach for atorvastatin (ATV) adopting nanostructured polymeric micelles for its controlled delivery to the cancer cells. Amphiphilic block copolymers of stearyl chitosan (SC) and sulfated stearyl chitosan (S-SC) that could self assemble to form polymeric micelles with different degree of substitution (DS) were synthesized and characterized. The synthesized chitosan derivatives were able to self assemble and form micelles encapsulating ATV with critical micellar concentrations ranging from 6.9 to 21μg/ml, drug-loading ranging from 40% to 84.1% and encapsulation efficiency ranging from 10.4% to 35%. ATV caused a significant decrease in particle size and zeta potential of both SC and S-SC micelles. Micelles encapsulating ATV exhibited a sustained release and more cytotoxic activity against MCF 7 and HCT 116 cell lines than ATV alone. The 50% cellular growth inhibition (IC50%) of the drug decreased from 10.4 to 3.7 in case of MCF 7 and from 9.4 to 3.4 in case of HCT 116 after its loading in micelles. These results indicate that SC ATV polymeric micelles can be considered as a promising system for site specific controlled delivery of ATV to tumor cells.  相似文献   

20.
Drug combinations are common in cancer treatment and are rapidly evolving, moving beyond chemotherapy combinations to combinations of signal transduction inhibitors. For the delivery of drug combinations, i.e., multi-drug delivery, major considerations are synergy, dose regimen (concurrent versus sequential), pharmacokinetics, toxicity, and safety. In this contribution, we review recent research on polymeric micelles for multi-drug delivery in cancer. In concurrent drug delivery, polymeric micelles deliver multi-poorly water-soluble anticancer agents, satisfying strict requirements in solubility, stability, and safety. In sequential drug delivery, polymeric micelles participate in pretreatment strategies that “prime” solid tumors and enhance the penetration of secondarily administered anticancer agent or nanocarrier. The improved delivery of multiple poorly water-soluble anticancer agents by polymeric micelles via concurrent or sequential regimens offers novel and interesting strategies for drug combinations in cancer treatment.KEY WORDS: controlled release, drug combination, drug delivery, drug solubilization, polymeric micelles  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号