首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The uptake and catabolism of galactose by the yeast Saccharomyces cerevisiae is much lower than for glucose and fructose, and in applications of this yeast for utilization of complex substrates that contain galactose, for example, lignocellulose and raffinose, this causes prolonged fermentations. Galactose is metabolized via the Leloir pathway, and besides the industrial interest in improving the flux through this pathway it is also of medical relevance to study the Leloir pathway. Thus, genetic disorders in the genes encoding galactose-1-phosphate uridylyltransferase or galactokinase result in galactose toxicity both in patients with galactosemia and in yeast. In order to elucidate galactose related toxicity, which may explain the low uptake and catabolic rates of S. cerevisiae, we have studied the physiological characteristics and intracellular metabolite profiles of recombinant S. cerevisiae strains with improved or impaired growth on galactose. Aerobic batch cultivations on galactose of strains with different combinations of overexpression of the genes GAL1, GAL2, GAL7, and GAL10, which encode proteins that together convert extracellular galactose into glucose-1-phosphate, revealed a decrease in the maximum specific growth rate when compared to the reference strain. The hypothesized toxic intermediate galactose-1-phosphate cannot be the sole cause of galactose related toxicity, but indications were found that galactose-1-phosphate might cause a negative effect through inhibition of phosphoglucomutase. Furthermore, we show that galactitol is formed in S. cerevisiae, and that the combination of elevated intracellular galactitol concentration, and the ratio between galactose-1-phosphate concentration and phosphoglucomutase activity seems to be important for galactose related toxicity causing decreased growth rates.  相似文献   

2.
In Lactococcus lactis subsp. cremoris FD1, galactose and lactose are both transported and phosphorylated by phosphotransferase systems. Lactose 6-phosphate (lactose-6P) is hydrolyzed intracellularly to galactose-6P and glucose. Glucose enters glycolysis as glucose-6P, whereas galactose-6P is metabolized via the tagatose-6P pathway and enters glycolysis at the tagatose diphosphate and fructose diphosphate pool. Galactose would therefore be a gluconeogenic sugar in L. lactis subsp. cremoris FD1, but since fructose 1,6-diphosphatase is not present in this strain, galactose cannot serve as an essential biomass precursor (glucose-6P or fructose-6P) but only as an energy (ATP) source. Analysis of the growth energetics shows that transition from N limitation to limitation by glucose-6P or fructose-6P gives rise to a very high growth-related ATP consumption (152 mmol of ATP per g of biomass) compared with the value in cultures which are not limited by glucose-6P or fructose-6P (15 to 50 mmol of ATP per g of biomass). During lactose metabolism, the galactose flux through the tagatose-6P pathway (r(max) = 1.2 h) is lower than the glucose flux through glycolysis (r(max) = 1.5 h) and intracellular galactose-6P is dephosphorylated; this is followed by expulsion of galactose. Expulsion of a metabolizable sugar has not been reported previously, and the specific rate of galactose expulsion is up to 0.61 g of galactose g of biomass h depending on the lactose flux and the metabolic state of the bacteria. Galactose excreted during batch fermentation on lactose is reabsorbed and metabolized when lactose is depleted from the medium. In vitro incubation of galactose-6P (50 mM) and permeabilized cells (8 g/liter) gives a supernatant containing free galactose (50 mM) but no P(i) (less than 0.5 mM). No organic compound except the liberated galactose is present in sufficient concentration to bind the phosphate. Phosphate is quantitatively recovered in the supernatant as P(i) by hydrolysis with alkaline phosphatase (EC 3.1.3.1), whereas inorganic pyrophosphatase (EC 3.6.1.1) cannot hydrolyze the compound. The results indicate that the unknown phosphate-containing compound might be polyphosphate.  相似文献   

3.
The characteristics of the inducible galactose system in Saccharomyces cerevisiae were studied by using the nonmetabolized galactose analogues, l-arabinose and d-fucose, and galactokinaseless and transportless mutants. Induced wild-type cells transport l-arabinose by facilitated diffusion. Transportless cells transport neither galactose nor l-arabinose above the noninduced rate, whereas galactokinaseless cells transport galactose l-arabinose and d-fucose by facilitated diffusion. Determination of unidirectional rate of (14)C-labeled galactose uptake by preloaded galactokinaseless cells, containing a large unlabeled free-galactose pool, showed that the rate of galactose uptake by facilitated diffusion is greater than the rate of galactose metabolism at similar external galactose concentrations.  相似文献   

4.
Classic galactosemia is a human autosomal recessive disorder caused by mutations in the GALT gene (GAL7 in yeast), which encodes the enzyme galactose-1-phosphate uridyltransferase. Here we show that the unfolded protein response pathway is triggered by galactose in two yeast models of galactosemia: lithium-treated cells and the gal7Δ mutant. The synthesis of galactose-1-phosphate is essential to trigger the unfolded protein response under these conditions because the deletion of the galactokinase-encoding gene GAL1 completely abolishes unfolded protein response activation and galactose toxicity. Impairment of the unfolded protein response in both yeast models makes cells even more sensitive to galactose, unmasking its cytotoxic effect. These results indicate that endoplasmic reticulum stress is induced under galactosemic conditions and underscores the importance of the unfolded protein response pathway to cellular adaptation in these models of classic galactosemia.KEY WORDS: Yeast, Galactosemia, UPR, Lithium, Galactose  相似文献   

5.
Galactose inhibited auxin-induced cell elongation of oat coleoptiles but not that of azuki bean stems. Galactose decreased the level of UDP-glucose in oat coleoptiles but not in azuki bean hypocotyls. Glucose-1-phosphate uridyltransferase activity (EC 2.7.7.9), in a crude extract from oat coleoptiles, was competitively inhibited by galactose-1-phosphate, but that enzyme from azuki bean was not. A correlation was found between inhibition of growth by galactose and inhibition of glucose-1-phosphate uridyltransferase activity by galactose-1-phosphate using oat, wheat, maize, barley, azuki bean, pea, mung bean, and cucumber plants. Thus, it is concluded that galactose is converted into galactose-1-phosphate, which interferes with UDP-glucose formation as an analog of glucose-1-phosphate.  相似文献   

6.
Uptake and efflux of 6-deoxy-d-[3H]glucose and of 2-deoxy-d-[14C]glucose by the yeast Kluyveromyces lactis was studied. The tritiated, nonphosphorylatable hexose analogue leaves the cell in the absence and presence of intracellular 2-deoxy-d-glucose 6-phosphate. In energy-rich cells containing pools of hexose 6-phosphate, 2-deoxy-d-glucose is trapped in the cells, for it neither effluxes into glucose-free medium nor exchanges with external, free sugar. In starved, poisoned cells containing negligible amounts of 2-deoxy-d-glucose 6-phosphate, 2-deoxy-d-glucose does leave the cells upon transfer to glucose-free medium. An involvement of analogue structure and availability of metabolites of energy-rich cells in hexose retention is suggested. An internal pool of 6-deoxy-d-glucose does not affect the rate of uptake of 6-deoxy-d-[3H]glucose, nor does internal 2-deoxy-d-[14C]glucose 6-phosphate influence that rate. Hence, transport of glucose by this yeast is probably not regulated by internal pools of glucose 6-phosphate.  相似文献   

7.
The inducible galactose transport system in bakers' yeast carries out the facilitated diffusion of the nonmetabolized galactose analogues d-fucose and l-arabinose. This capacity depends on the activity of the Ga 2 gene. In some strains, d-fucose and l-arabinose are also gratuitous inducers. Mutants in which the inducibility of the galactose pathway enzymes is altered show a parallel alteration of the inducibility of the galactose transport system.  相似文献   

8.
To better understand the pathophysiology of galactose-1-phosphate uridyltransferase (GALT) deficiency in humans, we studied the mechanisms by which a GALT-deficient yeast survived on galactose medium. Under normal conditions, GALT-deficient yeast cannot grow in medium that contains 0.2% galactose as the sole carbohydrate, a phenotype of Gal(-). We isolated revertants from a GALT-deficient yeast by direct selection for growth in galactose, a phenotype of Gal(+). Comparison of gene expression profiles among wild-type and revertant strains on galactose medium revealed that the revertant down-regulated genes encoding enzymes including galactokinase, galactose permease, and UDP-galactose-4-epimerase (the GAL regulon). By contrast, the revertant strain up-regulated the gene for UDP-glucose pyrophosphorylase, UGP1. There was reduced accumulation of galactose-1-phosphate in the galactose-grown revertant cells when compared to the GALT-deficient parent cells. In vitro biochemical analysis showed that UDP-glucose pyrophosphorylase had bifunctional properties and could catalyze the conversion of galactose-1-phosphate to UDP-galactose in the presence of UTP. To test if augmented expression of this gene could produce a Gal(+) phenotype in the GALT-deficient parent cells, we overexpressed the yeast UGP1 and the human homolog, hUGP2 in the mutant strain. The Gal(-) yeast transformed with either UGP1 or hUGP2 regained their ability to grow on galactose. We conclude that revertant can grow on galactose medium by reducing the accumulation of toxic precursors through down-regulation of the GAL regulon and up-regulation of the UGP1 gene. We speculate that increased expression of hUGP2 in humans could alleviate poor outcomes in humans with classic galactosemia.  相似文献   

9.
A new selection system based on galactose as selective agent and a UDP-glucose:galactose-1-phosphate uridyltransferase gene as selective gene is presented. A broad range of plant species, including agronomically important crops such as maize and rice, is sensitive to low dosages of galactose. The toxicity of galactose is believed to be due to accumulation of galactose-1-phosphate, generated by endogenous galactokinase after uptake. Here, it is demonstrated that this toxicity can be sufficiently alleviated by the Agrobacterium tumefaciens-mediated introduction of the E. coli UDP-glucose:galactose-1-phosphate uridyltransferase (galT) gene, driven by a 35S-promoter, to allow transgenic shoots of potato and oil seed rape to regenerate on galactose containing selection media, resulting in high transformation frequencies (up to 35% for potato). Analysis of genomic DNA and UDP-glucose:galactose-1-phosphate uridyltransferase activity in randomly selected potato transformants confirmed the presence and active expression of the galT gene. The agricultural performance of transgenic potatoes was evaluated by monitoring the phenotype and tuber yield for two generations and these characters were found to be indistinguishable from non-transgenic controls. Thus, the galactose selection system provides a new alternative being distinct from conventional antibiotic and herbicide selection systems as well as so-called positive selection systems where the selective agent has a beneficial effect.  相似文献   

10.
11.
Impairment of the human enzyme galactose-1-phosphate uridylyltransferase (GALT) results in the potentially lethal disorder galactosemia; the biochemical basis of pathophysiology in galactosemia remains unknown. We have applied a yeast expression system for human GALT to test the hypothesis that genotype will correlate with GALT activity measured in vitro and with metabolite levels and galactose sensitivity measured in vivo. In particular, we have determined the relative degree of functional impairment associated with each of 16 patient-derived hGALT alleles; activities ranged from null to essentially normal. Next, we utilized strains expressing these alleles to demonstrate a clear inverse relationship between GALT activity and galactose sensitivity. Finally, we monitored accumulation of galactose-1-P, UDP-gal, and UDP-glc in yeast expressing a subset of these alleles. As reported for humans, yeast deficient in GALT, but not their wild type counterparts, demonstrated elevated levels of galactose 1-phosphate and diminished UDP-gal upon exposure to galactose. These results present the first clear evidence in a genetically and biochemically amenable model system of a relationship between GALT genotype, enzyme activity, sensitivity to galactose, and aberrant metabolite accumulation. As such, these data lay a foundation for future studies into the underlying mechanism(s) of galactose sensitivity in yeast and perhaps other eukaryotes, including humans.  相似文献   

12.
Lactose-negative (Lac-) mutants were isolated from a variant of Streptococcus lactis C2 in which the lactose plasmid had become integrated into the chromosome. These mutants retained their parental growth characteristics on galactose (Lac- Gal+). This is in contrast to the Lac- variants obtained when the lactose plasmid is lost from S. lactis, which results in a slower growth rate on galactose (Lac- Gal+). The Lac- Gal+ mutants were defective in [14C]thiomethyl-beta-D-galactopyranoside accumulation, suggesting a defect in the lactose phosphoenolpyruvate-dependent phosphotransferase system, but still possessed the ability to form galactose-1-phosphate and galactose-6-phosphate from galactose in a ratio similar to that observed from the parental strain. The Lac- Gald variant formed only galactose-1-phosphate. The results imply that galactose is not translocated via the lactose phosphoenolpyruvate-dependent phosphotransferase system, but rather by a specific galactose phosphoenolpyruvate-dependent phosphotransferase system for which the genetic locus is also found on the lactose plasmid in S. lactis.  相似文献   

13.
Accumulation of galactose in dairy products due to partial lactose fermentation by lactic acid bacteria yields poor-quality products and precludes their consumption by individuals suffering from galactosemia. This study aimed at extending our knowledge of galactose metabolism in Lactococcus lactis, with the final goal of tailoring strains for enhanced galactose consumption. We used directed genetically engineered strains to examine galactose utilization in strain NZ9000 via the chromosomal Leloir pathway (gal genes) or the plasmid-encoded tagatose 6-phosphate (Tag6P) pathway (lac genes). Galactokinase (GalK), but not galactose permease (GalP), is essential for growth on galactose. This finding led to the discovery of an alternative route, comprising a galactose phosphotransferase system (PTS) and a phosphatase, for galactose dissimilation in NZ9000. Introduction of the Tag6P pathway in a galPMK mutant restored the ability to metabolize galactose but did not sustain growth on this sugar. The latter strain was used to prove that lacFE, encoding the lactose PTS, is necessary for galactose metabolism, thus implicating this transporter in galactose uptake. Both PTS transporters have a low affinity for galactose, while GalP displays a high affinity for the sugar. Furthermore, the GalP/Leloir route supported the highest galactose consumption rate. To further increase this rate, we overexpressed galPMKT, but this led to a substantial accumulation of α-galactose 1-phosphate and α-glucose 1-phosphate, pointing to a bottleneck at the level of α-phosphoglucomutase. Overexpression of a gene encoding α-phosphoglucomutase alone or in combination with gal genes yielded strains with galactose consumption rates enhanced up to 50% relative to that of NZ9000. Approaches to further improve galactose metabolism are discussed.Lactococcus lactis is a lactic acid bacterium widely used in the dairy industry for the production of fermented milk products. Because of its economic importance, L. lactis has been studied extensively in the last 40 years. A small genome, a large set of genetic tools, a wealth of physiological knowledge, and a relatively simple metabolic potential render L. lactis an attractive model with which to implement metabolic engineering strategies (reviewed in references 21 and 57).In the process of milk fermentation by L. lactis, lactose is taken up and concomitantly phosphorylated at the galactose moiety (C-6) by the lactose-specific phosphoenolpyruvate (PEP)-dependent phosphotransferase system (PTSLac), after which it is hydrolyzed to glucose and galactose 6-phosphate (Gal6P) (64). The glucose moiety enters the glycolytic pathway upon phosphorylation via glucokinase to glucose 6-phosphate (G6P), whereas Gal6P is metabolized to triose phosphates via the d-tagatose 6-phosphate (Tag6P) pathway, encompassing the steps catalyzed by galactose 6-phosphate isomerase (LacAB), Tag6P kinase (LacC), and tagatose 1,6-bisphosphate aldolase (LacD) (Fig. (Fig.1).1). Curiously, during the metabolism of lactose by L. lactis, part of the Gal6P is dephosphorylated and excreted into the growth medium, while the glucose moiety is readily used (2, 7, 51, 56, 60).Open in a separate windowFIG. 1.Schematic overview of the alternative routes for galactose uptake and further catabolism in L. lactis. Galactose can be imported by the non-PTS permease GalP and metabolized via the Leloir pathway (galMKTE) to α-G1P, which is converted to the glycolytic intermediate G6P by α-phosphoglucomutase (pgmH). Alternatively, galactose can be imported by PTSLac (lacFE) and further metabolized to triose phosphates by the Tag6P pathway (lacABCD). Here, we propose a new uptake route consisting of galactose translocation via the galactose PTS, followed by dephosphorylation of the internalized Gal6P to galactose, which is further metabolized via the Leloir pathway (highlighted in the gray box). galP, galactose permease; galM, galactose mutarotase; galK, galactokinase; galT, galactose 1-phosphate uridylyltransferase; galE, UDP-galactose-4-epimerase; pgmH, α-phosphoglucomutase; lacAB, galactose 6-phosphate isomerase; lacC, Tag6P kinase; lacD, tagatose 1,6-bisphosphate aldolase; lacFE, PTSLac; PTSGal, unidentified galactose PTS; Phosphatase; unidentified Gal6P-phosphatase; pgi, phosphoglucose isomerase; pfk, 6-phosphofructo-1-kinase; fba, fructose 1,6-bisphosphate aldolase; tpi, triose phosphate isomerase; α-Gal1P, α-galactose 1-phosphate; α-G1P, α-glucose 1-phosphate; UDP-gal, UDP-galactose; UDP-glc, UDP-glucose; G6P, glucose 6-phosphate; Gal6P, galactose 6-phosphate; Tag6P, tagatose 6-phosphate; TBP, tagatose 1,6-bisphosphate; FBP, fructose 1,6-bisphosphate; DHAP, dihydroxyacetone phosphate; GAP, glyceraldehyde 3-phosphate. The dotted arrow represents the conversions of GAP to pyruvate via the glycolytic pathway. Steps essential to improve galactose consumption are shown in black boxes.As a result of incomplete lactose utilization, some fermented dairy products contain significant residual amounts of galactose. The presence of galactose has been associated with shoddier qualities of the fermented product (6, 27, 43). In particular, galactose is a major contributor to the browning that occurs when dairy products (e.g., yogurt and mozzarella, Swiss, and cheddar cheese) are cooked or heated in the manufacture of pizzas, sauce preparation, or processed cheese. In addition, availability of residual galactose may result in production of CO2 by heterofermentative starters and, consequently, in textural defects such as the development of slits and fractures in cheeses. Therefore, the availability of starter strains with improved galactose utilization capacity is desirable to develop higher-quality dairy products. Additionally, strains with increased galactose metabolism could provide galactose-free foods for individuals and, in particular, children suffering from the rare disease galactosemia (36). To this end, a comprehensive understanding of galactose catabolism is essential.Galactose metabolism in L. lactis was thoroughly studied in the past and has been and still is the subject of some controversy. Indeed, conflicting results regarding the type of PTS involved in galactose uptake have been published. Some authors advocated that galactose is exclusively transported via the plasmid-encoded PTSLac, whereas others proposed transport via a galactose-specific PTS (PTSGal) to the extreme of questioning the contribution of the PTSLac (17, 20, 50, 59). However, a gene encoding PTSGal has never been identified in L. lactis. Independently of the nature of the PTS, it is generally accepted that the resulting Gal6P is metabolized via the Tag6P pathway (lac operon) (Fig. (Fig.1).1). On the other hand, galactose translocated via the highly specific galactose permease (GalP) is metabolized via the Leloir pathway to α-glucose 1-phosphate (α-G1P) through the sequential action of galactose mutarotase (GalM), galactokinase (GalK), and galactose 1-phosphate uridylyltransferase (GalT)/UDP-galactose-4-epimerase (GalE) (gal operon). Entry in glycolysis is preceded by the α-phosphoglucomutase (α-PGM)-catalyzed isomerization of α-G1P to G6P. The use of the Leloir and/or the Tag6P pathway for galactose utilization is currently viewed as being strain dependent (9, 16, 25, 32, 33, 58), but the relative efficacy in the degradation of the sugar has not been established.The ultimate aim of this study was to engineer L. lactis for improved galactose-fermenting capacity as a means to minimize the galactose content in dairy products. To gain insight into galactose catabolism via the Leloir (gal genes) and the Tag6P (lac genes) pathways, a series of L. lactis subsp. cremoris NZ9000 isogenic gal and lac mutants were constructed. Carbon 13 labeling experiments coupled with nuclear magnetic resonance (NMR) spectroscopy were used to investigate galactose metabolism in the gal and lac strains. The data obtained revealed a novel route for galactose dissimilation and provided clues to further enhance galactose utilization.  相似文献   

14.
Although Streptococcus thermophilus accumulated [14C]lactose in the absence of an endogenous energy source, galactose-fermenting (Gal+) cells were unable to accumulate [14C]galactose unless an additional energy source was added to the test system. Both Gal+ and galactose-nonfermenting (Gal-) strains transported galactose when preincubated with sucrose. Accumulation was inhibited 50 or 95% when 10 mM sodium fluoride or 1.0 mM iodoacetic acid, respectively, was added to sucrose-treated cells, indicating that ATP was required for galactose transport activity. Proton-conducting ionophores also inhibited galactose uptake, although N,N'-dicyclohexyl carbodiimide had no effect. The results suggest that galactose transport in S. thermophilus occurs via an ATP-dependent galactose permease and that a proton motive force is involved. The galactose permease in S. thermophilus TS2b (Gal+) had a Km for galactose of 0.25 mM and a Vmax of 195 micromol of galactose accumulated per min per g (dry weight) of cells. Several structurally similar sugars inhibited galactose uptake, indicating that the galactose permease had high affinities for these sugars.  相似文献   

15.
Galactose transport in Streptococcus thermophilus.   总被引:4,自引:2,他引:2       下载免费PDF全文
Although Streptococcus thermophilus accumulated [14C]lactose in the absence of an endogenous energy source, galactose-fermenting (Gal+) cells were unable to accumulate [14C]galactose unless an additional energy source was added to the test system. Both Gal+ and galactose-nonfermenting (Gal-) strains transported galactose when preincubated with sucrose. Accumulation was inhibited 50 or 95% when 10 mM sodium fluoride or 1.0 mM iodoacetic acid, respectively, was added to sucrose-treated cells, indicating that ATP was required for galactose transport activity. Proton-conducting ionophores also inhibited galactose uptake, although N,N'-dicyclohexyl carbodiimide had no effect. The results suggest that galactose transport in S. thermophilus occurs via an ATP-dependent galactose permease and that a proton motive force is involved. The galactose permease in S. thermophilus TS2b (Gal+) had a Km for galactose of 0.25 mM and a Vmax of 195 micromol of galactose accumulated per min per g (dry weight) of cells. Several structurally similar sugars inhibited galactose uptake, indicating that the galactose permease had high affinities for these sugars.  相似文献   

16.
When the glucose/K+ balance in the medium is favourable to rhythm expression in Aspergillus niger Van Tieghem, galactose has an inhibitory effect on amplitude but not on period length of the rhythm. Galactose is active when its level reaches 1/10 of that of glucose. On liquid media a small quantity of glucose is necessary to start growth on galactose. Under these conditions U14C-galactose is rather slowly metabolized. After 6 h of feeding on the labelled galactose medium, this sugar is converted into glucose, which is used both for the synthesis of compounds derived from C3 and C4 units and for synthesis of polysaccharides and perhaps small peptides. The labelling of the macromolecules always remains low. The insoluble carbohydrates of the mycelium are little affected by the type of sugar supplied to the fungus. The metabolism on galactose differs from the metabolism on glucose mainly in a decrease of the free asparagine pool and a simultaneous equivalent increase of the free aspartate pool; such an effect could not be correlated with an increase of the aspartate aminotransferase activity. Supply of aspartate but not of gluta-mate into the agar medium inhibits the rhythm amplitude. So, the damping effect of galactose on the rhythm might be at least partly due to its effect on the regulation of the aspartate cross-way.  相似文献   

17.
Erythrocytic galactokinase and/or galactose-1-phosphate uridyl transferase activity were low in many species of marsupials. However, cataract formation was observed only in pouch-young members of these species when reared on cow's milk. The galactose tolerance of young kangaroos was found to be greatly impaired, but improved rapidly and markedly at the stage of which the definitive structure of the ruminant type of stomach as in adults is formed. The combination of high absorption of galactose and low levels of galactokinase and/or transferase thus appears to determine the predisposition of pouch-young marsupials to galactose cataractogenesis.  相似文献   

18.
Galactose-nonfermenting (Gal-) Streptococcus thermophilus TS2 releases galactose into the extracellular medium when grown in medium containing excess lactose. Starved and de-energized Gal- cells, however, could be loaded with galactose to levels approximately equal to the extracellular concentration (0 to 50 mM). When loaded cells were separated from the medium and resuspended in fresh broth containing 5 mM lactose, galactose efflux occurred. De-energized, galactose-loaded cells, resuspended in buffer or medium, accumulated [14C]lactose at a greater rate and to significantly higher intracellular concentrations than unloaded cells. Uptake of lactose by loaded cells was inhibited more than that by unloaded cells in the presence of extracellular galactose, indicating that a galactose gradient was involved in the exchange system. When de-energized, galactose-loaded cells were resuspended in carbohydrate-free medium at pH 6.7, a proton motive force (Δp) of 86 to 90 mV was formed, whereas de-energized, nonloaded cells maintained a Δp of about 56 mV. However, uptake of lactose by loaded cells occurred when the proton motive force was abolished by the addition of an uncoupler or in the presence of a proton-translocating ATPase inhibitor. These results support the hypothesis that galactose efflux in Gal-S. thermophilus is electrogenic and that the exchange reaction (lactose uptake and galactose efflux) probably occurs via an antiporter system.  相似文献   

19.
Phosphoglucomutase is a key enzyme of glucose metabolism that interconverts glucose-1-phosphate and glucose-6-phosphate. Loss of the major isoform of phosphoglucomutase in Saccharomyces cerevisiae results in a significant increase in the cellular glucose-1-phosphate-to-glucose-6-phosphate ratio when cells are grown in medium containing galactose as carbon source. This imbalance in glucose metabolites was recently shown to also cause a six- to ninefold increase in cellular Ca2+ accumulation. We found that Li+ inhibition of phosphoglucomutase causes a similar elevation of total cellular Ca2+ and an increase in 45Ca2+ uptake in a wild-type yeast strain grown in medium containing galactose, but not glucose, as sole carbon source. Li+ treatment also reduced the transient elevation of cytosolic Ca2+ response that is triggered by exposure to external CaCl2 or by the addition of galactose to yeast cells starved of a carbon source. Finally, we found that the Ca2+ overaccumulation induced by Li+ exposure was significantly reduced in a strain lacking the vacuolar Ca2+-ATPase Pmc1p. These observations suggest that Li+ inhibition of phosphoglucomutase results in an increased glucose-1-phosphate-to-glucose-6-phosphate ratio, which results in an accelerated rate of vacuolar Ca2+ uptake via the Ca2+-ATPase Pmc1p. calcium influx; calcium signal; galactose; glucose phosphate  相似文献   

20.
Partial lactose-fermenting revertants from lactose-negative (lac(-)) mutants of Streptococcus lactis C2 appeared on a lawn of lac(-) cells after 3 to 5 days of incubation at 25 C. The revertants grew slowly on lactose with a growth response similar to that for cryptic cells. In contrast to lac(+)S. lactis C2, the revertants were defective in the accumulation of [(14)C]thiomethyl-beta-d-galactoside, indicating that they were devoid of a transport system. Hydrolysis of o-nitrophenyl-beta-d-galactoside-6-phosphate by toluene-treated cells confirmed the presence of phospho-beta-d-galactosidase (P-beta-gal) in the revertant. However, this enzyme was induced only when the cells were grown in the presence of lactose; galactose was not an inducer. In lac(+)S. lactis C2, enzyme induction occurred in lactose- or galactose-grown cells. The revertants were defective in EII-lactose and FIII-lactose of the phosphoenolpyruvate-dependent phosphotransferase system. Galactokinase activity was detected in cell extracts of lac(+)S. lactis C2, but the activity was 9 to 13 times higher in extracts from the revertant and lac(-), respectively. This suggested that the lac(-) and the revertants use the Leloir pathway for galactose metabolism and that galactose-1-phosphate rather than galactose-6-phosphate was being formed. This may explain why lactose, but not galactose, induced P-beta-gal in the revertants. Because the revertant was unable to form galactose-6-phosphate, induction could not occur. This compound would be formed on hydrolysis of lactose phosphate. The data also indicate that galactose-6-phosphate may serve not only as an inducer of the lactose genes in S. lactis C2, but also as a repressor of the Leloir pathway for galactose metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号