首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 146 毫秒
1.
Hamana K  Niitsu M  Samejima K  Itoh T 《Microbios》2001,104(409):177-185
Cellular polyamines of four new thermophiles located in three early branched eubacterial clades, were investigated for the chemotaxonomic significance of polyamine distribution profiles. The thermophilic anaerobic Thermosipho japonicus, belonging to the order Thermotogales, contained norspermidine, norspermine and thermospermine in addition to spermidine and spermine. The polyamine profile was identical to the polyamine composition of Thermotoga, Fervidobacterium and Petrotoga species of the order. Spermidine, norspermidine, spermine, N4-bis(aminopropyl)spermidine and agmatine were found in thermophilic aerobic Thermaerobacter marianensis. Some differences were observed in the polyamine compositions of the phylogenetically related thermophilic anaerobes, Moorella, Dictyoglomus, Thermoanaerobacterium and Thermoanaerobacter species. Thermophilic anaerobic Caldicellulosiruptor kristianssonii and Caldicellulosiruptor owensensis contained a linear penta-amine, thermopentamine, and two quaternary branched penta-amines, N4-bis(aminopropyl)spermidine and N4-bis(aminopropyl)norspermidine, as the major polyamines. A novel tertiary branched penta-amine, N4-aminopropylspermine, was found in the two Caldicellulosiruptor species.  相似文献   

2.
Cellular polyamines of 45 thermophilic and 8 related mesophilic eubacteria were investigated by HPLC and GC analyses for the thermophilic and chemotaxonomic significance of polyamine distribution profiles. Spermidine and a quaternary branched penta-amine, N4-bis(aminopropyl)norspermidine, were the major polyamine in Thermocrinis, Hydrogenobacter, Hydrogenobaculum, Aquifex, Persephonella, Sulfurihydrogenibium, Hydrogenothermus, Balnearium and Thermovibrio, located in the order Aquificales. Thermodesulfobacterium and Thermodesulfatator belonging to the order Thermodesulfobacteriales contained another quaternary penta-amine, N4-bis(aminopropyl)spermidine. In the order Thermotogales, Thermotoga contained spermidine, norspermidine, caldopentamine and homocaldopentamine. The latter two linear penta-amines were not found in Marinitoga and Petrotoga. In the order Thermales, Thermus and Marinithermus contained homospermidine, norspermine and the linear penta-amines. Meiothermus lacked penta-amines. Vulcanithermus contained linear penta-amines and hexa-amines but not homospermidine. Oceanithermus contained spermine alone. Within the order Thermoanaerobacteriales, the two quaternary branched penta-amines were found in Thermanaeromonas and Thermoanaerobacter. Caldanaerobacter contained N4-bis(aminopropyl)spermidine. Thermoanaerobacterium lacked penta-amines. Thermaerobacter of the order Clostridiales contained N4-bis(aminopropyl)spermidine and agmatine. Thermosyntropha, Thermanaerovibrio, Thermobrachium ( the order Clostridiales), Sulfobacillus, Alicyclobacillus, Anoxybacillus, Ureibacillus, Thermicanus ( the order Bacillales), Desulfotomaculum, Desulfitobacterium and Pelotomaculum (the family Peptococcaceae) ubiquitously contained spermine. Some thermophiles of Bacillales added linear and branched penta-amines.  相似文献   

3.
Hamana K  Itoh T 《Microbios》2001,104(408):105-114
Cellular polyamines of eight new thermophilic archaebacteria were investigated to determine the chemotaxonomic significance of polyamine distribution profiles. Hyperthermoacidophilic Caldivirga maquilingensis belonging to the family Thermoproteaceae of the Crenarchaeota have a unique polyamine profile comprising spermidine, norspermidine and norspermine as the major polyamines. Within the order Thermococcales of the Euryarchaeota, the major polyamines of an extremely thermophilic terrestrial species of Thermococcus, T. zilligii, were spermidine and agmatine, whereas hyperthermophilic submarine species of Thermococcus and hyperthermophilic submarine Palaeococcus ferrophilus contained a quaternary branched penta-amine, N4-bis(aminopropyl)spermidine, as a major polyamine. A hyperthermophilic methanogen, Methanothermus sociabilis, belonging to Euryarchaeota, contained spermidine and spermine as the major polyamine.  相似文献   

4.
Cellular polyamines of newly isolated acidophilic, thermophilic and thermoacidophilic archaebacteria were investigated for the chemotaxonomic significance of polyamine distribution profiles. In addition to spermidine, spermine and agmatine, a quaternary branched penta-amine, N(4)-bis(aminopropyl)spermidine, was found in thermophilic Thermococcus waiotapuensis, Thermococcus aegaeus and Pyrococcus glycovorans belonging to the order Thermococcales. An acidophilic euryarchaeon, Ferroplasma acidiphilum located in the order Thermoplasmatales, contained spermidine and agmatine. Norspermidine, spermidine, norspermine and spermine were found in thermoacidophilic Acidilobus aceticus and thermophilic Thermodiscus maritimus located in the order Desulfurococcales, and in thermophilic Pyrobaculum arsenaticum, Pyrobaculum oguniense, Vulcanisaeta distributa and Vulcanisaeta souniana belonging to the order Thermoproteales; however, the four genera differ on their tetra- and penta-amine levels. Thermophilic Staphylothermus hellenicus belonging to Desulfurococcales contained caldopentamine, caldohexamine and N1-acetylcaldopentamine in addition to norspermidine, spermidine and norspermine. This is the first report on the occurrence of acetylated penta-amine in nature.  相似文献   

5.
Abstract Polyamines were analyzed in 4 species of genus Agrobacterium . Not only putrescine, spermidine and spermine, but also homospermidine and thermospermine were found in A. tumefaciens, A. radiobacter, A. rubi and A. rhizogenes . Trace amounts of aminopropylhomospermidine were also observed. Norspermidine and norspermine were formed from diamonorpropane added to the medium. Aminopropylcadaverine and its aminopropyl derivative(s) (aminopentylnorspermidine and N,N '-bis(3-aminopropyl) cadaverine) were produced from the supplemented cadaverine. A strain of A. rhizogenes normally contains only putrescine and homospermidine; no other diamines, triamines and tetraamines were synthesized.  相似文献   

6.
Polyamines extracted from whole bodies of four springtails, Tomocerus ishibashii, Hypogastrura communis, Sinella cruviseta and Folsomia candida, a bristletail, Pedetontus nipponicus, and two silverfish, Lepisma saccharina and Thermobia domestica, were analyzed by high-performance liquid chromatography and gas chromatography. All seven apterous insect species contained putrescine, cadaverine and spermidine as the common major polyamines, detected at the level of micromol/g wet mass. T. ishibashii also contained spermine, S. cruviseta contained norspermidine and norspermine and H. communis, F. candida and P. nipponicus contained diaminopropane, norspermidine and norspermine, as minor polyamines above the detection limit (0.01 micromol/g wet mass). The occurrence of diaminopropane, norspermidine, norspermine, spermine and thermospermine was confirmed in L. saccharina and T. domestica. The novel polyamines norspermidine, norspermine and thermospermine, widespread in higher insects, were also distributed within the primitive apterygotan insects.  相似文献   

7.
Polyamine contents of various species of plants and fungi including Bryophyta, Pteridophyta, Gymnospermae, Ascomycota, Basidiomycota, and Lichenobionta were determined by the combination of six chromatographic techniques. Polyamines examined included putrescine, spermidine, spermine, 1,3-diaminopropane (diaminopropane), sym-norspermidine (norspermidine), sym-norspermine (norspermine), thermospermine, caldopentamine, homocaldopentamine, cadaverine, aminopropylcadaverine, sym-homospermidine (homospermidine), agmatine, and canavalmine. In addition to the widely occurring polyamines (putrescine, spermidine, and spermine), the "unusual" polyamines norspermidine and norspermine were found to be widely distributed in Bryophyta and Lichenobionta. These two polyamines were not detected in any species of Pteridophyta, Gymnospermae, and fungi even though their possible precursor, diaminopropane, was found in some species. Homospermidine was one of the major polyamines in Bryophyta and Lichenobionta, and was detected in most species of Pteridophyta and sporadically in higher plants. Agmatine was detected in most species of Bryophyta and in certain species of Gymnospermae. These data suggest that norspermidine, norspermine, and homospermidine can serve as chemical phylogenic and taxonomic markers in Plantae and Fungi.  相似文献   

8.
Effect of various polyamine analogs on in vitro polypeptide synthesis   总被引:2,自引:0,他引:2  
Various polyamine analogs were examined for their ability to stimulate and to function as sparing agents for the Mg2+ requirement in polypeptide synthesis at various temperatures in Escherichia coli (37 and 47 degrees C) and the extremely thermophilic Thermus thermophilus (60 and 70 degrees C) cell-free systems. The optimal concentration of each polyamine analog increased as the incubation temperature was elevated. At a fixed temperature, the optimal concentration of polyamine analogs was in the order diamines greater than triamines greater than tetraamines greater than pentaamines. All diamines tested stimulated polypeptide synthesis almost equally but lowered the optimal Mg2+ concentration in the order diaminopropane greater than putrescine greater than cadaverine. The degree of diamine stimulation was maximal at 37 degrees C. The effects of three triamines were very similar in the E. coli system but in the T. thermophilus system spermidine was most effective in stimulation of polypeptide synthesis. From the results of experiments using tetraamines and pentaamines, it was deduced that the presence of both aminobutyl and aminopropyl groups in polyamine analogs is important for stimulation of polypeptide synthesis. In the E. coli system, triamines were the most effective polyamines for stimulation of polyphenylalanine synthesis at both 37 and 47 degrees C, while, in the T. thermophilus system, thermospermine, a tetraamine, was most effective at 60 degrees C and 3,4,4,3-pentaamine was most effective at 70 degrees C.  相似文献   

9.
  • 1.1. Diaminopropane, putrescine, norspermidine, spesrmidine, norspermine and spermine were commonly found in the larval silk gland and head of Bombyx mori, Antheraea yamamai and Galleria mellonella.
  • 2.2. The cockroach Periplaneta americana contained thermospermine, caldopentamine, caldohexamine, homospermidine, aminopropylhomospermidine and aminobutylhomospermidine (homospermine) in addition to the common polyamines. This is the first report to show the occurrence of the homospermidine derivatives and a hexamine in insects.
  • 3.3. In addition to thermospermine, caldopentamine, agmatine, histamine, cadaverine and other usual polyamines, three cadaverine-derivatives, aminopropylcadaverine, bis(aminopropyl)cadaverine and aminopentylnorspermidine, were detected in the silk gland and head of the spiders, Nephila clavata and Araneus ventricosus. The occurrence of aminopropyl derivatives of of cadaverine has never been reported in animals.
  相似文献   

10.
Distribution of spermine in bacilli and lactic acid bacteria   总被引:1,自引:0,他引:1  
Obligate moderately thermophilic bacilli and obligate moderately thermoacidophilic bacilli contained spermine as the major polyamine in addition to putrescine and spermidine. The identity of spermine was confirmed by thin-layer chromatography and high-performance liquid chromatography before and after treatment with putrescine oxidase. Using these methods, thermospermine and spermine can be separated; thermospermine was not present in these organisms. On the other hand, various facultative thermophiles and mesophilic strains of the genus Bacillus, including alkalophiles and halophiles, lack spermine and other tetraamines. No spermine was detected in several strains of mesophilic or facultative slightly thermophilic lactic acid bacteria, Lactobacillus and Streptococcus.  相似文献   

11.
Yeasts of wild-type strains, such as Saccharomyces cerevisiae, Schizosaccharomyces pombe and Candida albicans were shown to have the ability to form aminopropylcadaverine and aminopropylhomospermidine from cadaverine and homospermidine, respectively. A polyamine autotroph S. cerevisiae 179-5, which lacks ornithine decarboxylase, produced both aminopropylcadaverine and aminopropylhomospermidine, while another mutant S. cerevisiae Y 260 A, which lacks spermine synthase, formed only aminopropylcadaverine. Naturally-occurring triamines and tetraamines except norspermidine and norspermine stimulated the growth of S. cerevisiae 179-5. All the six aliphatic diamines with carbon chain length ranging from one to six were effective in activating the growth of S. cerevisiae 179-5, though all of them were not converted to either triamines or tetraamines.  相似文献   

12.
Summary The uncommon polyamines, norspermidine and norspermine, were detected in maizein vitro cultures of three different genotypes. The common polyamines, spermidine and spermine, along with the diamine, putrescine, were also observed. The total amounts of the uncommon polyamines, norspermidine and norspermine, were comparable to the total amounts of the common polyamines, spermidine and spermine, in the maize tissues. The titer for norspermidine was 6- to 15-fold greater than that of its common counterpart (spermidine) in the three genotypes. Norspermidine was the predominant polyamine among all triamines and tetramines detected in cell cultures of two of the three genotypes of maize examined and was predominant along with spermine in the third genotype. Enzyme assays performed with extracts from callus of one of the genotypes suggested a likely mechanism to account for the biosynthesis of the uncommon polyamines in cultured maize cells, through the actions of putrescine aminopropyltransferase, polyamine oxidase, and Schiff-base reductase/decarboxylase enzyme activities. This is the first report of the detection of uncommon polyamines in maize tissues, as well as the first report of these uncommon polyamines in a monocotyledonous plant.  相似文献   

13.
Further study on polyamines in primitive unicellular eukaryotic algae   总被引:1,自引:0,他引:1  
The possible usefulness of polyamines as chemotaxonomic markers has been investigated in eukaryotic algae. Polyamines were analyzed in 12 species of primitive unicellular eukaryotic algae including some anomalous species. Norspermidine and norspermine in addition to putrescine and spermidine are widely distributed in most unicellular species of the algae. However, neither norspermidine nor norspermine was found in the taxonomically conflicting algae, Cyanophora and Glaucocystis, which contain cyanellae, or in a primitive red alga, Porphyridium. A thermoacidophilic eukaryotic alga, Cyanidium, is rich in both norspermidine and norspermine. Appreciable amounts of spermine and sym-homospermidine were detected only in the species belonging to the Rhodophyta (red algae).  相似文献   

14.
Exposure of human colon tumor (HT 29 cells) to N1,N12-bis(ethyl)spermine and analogs produced a rapid loss of intracellular polyamines. This loss was brought about predominantly by an increased excretion of spermidine. N1,N11-Bis(ethyl)norspermine and N1,N12-Bis(ethyl)spermine were potent inducers of spermidine/spermine N1-acetyltransferase, and this induction facilitated the efflux of polyamines by enhancing the conversion of spermine into spermidine. N1,N14-Bis(ethyl)homospermine, which did not induce spermidine/spermine N1-acetyltransferase, also caused the loss of spermidine from the cell but was less effective in bringing about the decline in intracellular spermine. These results indicate that cellular polyamine levels can be regulated by excretion of spermidine and that the bis(ethyl)spermine derivatives deplete intracellular polyamine content by interference with this process.  相似文献   

15.
We analyzed the cellular contents of not only major polyamines but also minor polyamines in slime molds Physarum polycephalum and Dictyostelium discoideum. The presence of putrescine and spermidine in either plasmodia or myxamoebae of these molds as major polyamines was confirmed. In addition to these polyamines, appreciable amounts of 1,3-diaminopropane were detected in P. polycephalum and D. discoideum. Cadaverine and sym-homospermidine were detected in P. polycephalum even when the slime mold was cultured in a chemically defined growth medium. Spermine was not detected when these molds were grown in synthetic media. Other "unusual" polyamines such as norspermidine, norspermine, thermospermine, aminopropylcadaverine, and canavalmine were not detected in either mold.  相似文献   

16.
Knott JM  Römer P  Sumper M 《FEBS letters》2007,581(16):3081-3086
Polyamines are involved in many fundamental cellular processes. Common polyamines are putrescine, spermidine and spermine. Spermine is synthesized by transfer of an aminopropyl residue derived from decarboxylated S-adenosylmethionine to spermidine. Thermospermine is an isomer of spermine and assumed to be synthesized by an analogous mechanism. However, none of the recently described spermine synthases was investigated for their possible activity as thermospermine synthases. In this work, putative spermine synthases from the diatom Thalassiosira pseudonana and from Arabidopsis thaliana could be identified as thermospermine synthases. These findings may explain the previous result that two putative spermine synthase genes in Arabidopsis produce completely different phenotypes in knock-out experiments. Likely, part of putative spermine synthases identifiable by sequence comparisons represents in fact thermospermine synthases.  相似文献   

17.
  • 1.1. Polyamines were extracted from the guts and ovaries of the sea urchin Anthocidoris crassispina, and the guts and flesh of the sea cucumber Stichopus japonicus and the sea squirt Halocynthia roretzi, the oyster Crassostrea gigas and the short-necked clam Tapes philippinarum, and analyzed by ion-exchange high-performance liquid chromatography and gas chromatography-mass spectrometry.
  • 2.2. Norspermidine and norspermine as well as putrescine, cadaverine, spermidine, spermine and agmatine were the ubiquitous polyamines in these invertebrates. These results suggest the widespread distribution of norspermidine and norspermine in invertebrates.
  • 3.3. Thermopentamine, thermohexamine and homothermohexamine were found in the sea urchin. This in the first report on the occurence of thermopentamine and hexaamine in invertebrates.
  • 4.4. Homospermidine, canavalmine, aminopropylhomospermidine, homospermine, caldopentamine, homocaldopentamine and aminopropylcanavalmine were found in the sea cucumber. Homospermidine, aminopropylhomospermidine and homospermine were found in the squirt. This is the first report on the occurence of canavalmine, aminopropylhomospermidine, homospermine, homocaldopentamine and aminopropylcanavalmine in invertebrates.
  相似文献   

18.
Extreme inducibility of spermidine/spermine acetyltransferase (SSAT) by bis-ethyl derivatives of spermine in human large cell lung carcinoma and melanoma cells has prompted biochemical characterization of the purified enzyme. Treatment of human MALME-3 melanoma cells with 10 microM N1,N11-bis(ethyl)norspermine (BENSPM) for 48-72 h increased SSAT activity by some 1000- to 4000-fold and enabled purification of the enzyme by established procedures--binding on immobilized spermine and elution with spermine followed by binding on Matrex Blue A and elution with coenzyme A. The enzyme showed a single band by sodium dodecyl sulfate-polyacrylamide gel electrophoresis with a single subunit species and molecular weight of approximately 20,300 Da. By gel permeation chromatography, the holoenzyme was found to have a molecular weight of 80,000 Da, suggesting a total of four identical subunits. Purified SSAT had a specific activity of 285 mumol/min/mg for spermidine and Km values of 5.9 microM for acetylcoenzyme A, 55 microM for spermidine, 5 microM for spermine, 36 microM for N1-acetylspermine, 1.6 microM for norspermidine, and 4 microM for norspermine. Homologs of BENSPM were found to be competitive inhibitors of spermidine acetylation, with Ki values of 0.8 microM for BENSPM, 1.9 microM for N1,N12-bis-(ethyl)spermine and 17 microM for N1,N14-bis-(ethyl)-homospermine. Correlation of these values with the relative abilities of the homologs to increase SSAT in intact cells suggests that formation of an enzyme inhibitor complex may play a contributing role in enzyme induction.  相似文献   

19.
Euglene gracilis (strain Z) was found to contain five polyamines which could be separated by high-pressure cation-exchange chromatography. 1,3-Diaminopropane, putrescine, norspermidine (N-(3-aminopropyl)-1,3-diaminopropane), spermidine and norspermine (N,N'-bis(aminopropyl)-1,3-diaminopropane) were identified. Biosynthesis of putrescine in E. gracilis proceeds through decarboxylation of L-ornithine, no arginine decarboxylase (EC 4.1.1.19) activity could be detected. The properties of the enzymes ornithine decarboxylase (EC 4.1.1.17) and S-adenosylmethionine decarboxylase (EC 4.1.1.50) in this alga were found to be similar to those of the enzymes isolated from animal tissues or yeast cells. A bioxynthetic scheme is proposed which relates the different polyamines occurring in E. gracilis.  相似文献   

20.
Synthesis of novel polyamines in Paracoccus, Rhodobacter and Micrococcus   总被引:1,自引:0,他引:1  
Abstract The Gram-negative facultative chemolithotroph, Paracoccus denitrificans contains putrescine, cadaverine, agmatine, spermidine, aminopropylcadaverine, spermine, thermospermine and aminopentylnorspermidine. This bacterium has the ability to produce norspermidine from supplemented diaminopropane. The halophile, Paracoccus halodenitrificans is devoid of any polyamines. Neither decarboxylation of ornithine, lysine or arginine, nor triamine synthetic activity from diamines was detected in this halophile. Two Gram-negative facultative photoautotrophs, Rhodobacter sphaeroides and Rhodobacter capsulatus contain putrescine, cadaverine, agmatine and spermidine and can produce norspermidine from supplemented diaminopropane. A Gram-negative eubacterium, Micrococcus cryophilus , contains histamine and homospermidine in addition to putrescine, cadaverine and spermidine. Hence, polyamine distribution patterns and polyamine biosynthetic activities were very different among the four groups of Gram-negative eubacteria examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号