首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
We studied whether similar developmental genetic mechanisms are involved in both convergent and divergent evolution. Mimetic insects are known for their diversity of patterns as well as their remarkable evolutionary convergence, and they have played an important role in controversies over the respective roles of selection and constraints in adaptive evolution. Here we contrast three butterfly species, all classic examples of Müllerian mimicry. We used a genetic linkage map to show that a locus, Yb, which controls the presence of a yellow band in geographic races of Heliconius melpomene, maps precisely to the same location as the locus Cr, which has very similar phenotypic effects in its co-mimic H. erato. Furthermore, the same genomic location acts as a "supergene", determining multiple sympatric morphs in a third species, H. numata. H. numata is a species with a very different phenotypic appearance, whose many forms mimic different unrelated ithomiine butterflies in the genus Melinaea. Other unlinked colour pattern loci map to a homologous linkage group in the co-mimics H. melpomene and H. erato, but they are not involved in mimetic polymorphism in H. numata. Hence, a single region from the multilocus colour pattern architecture of H. melpomene and H. erato appears to have gained control of the entire wing-pattern variability in H. numata, presumably as a result of selection for mimetic "supergene" polymorphism without intermediates. Although we cannot at this stage confirm the homology of the loci segregating in the three species, our results imply that a conserved yet relatively unconstrained mechanism underlying pattern switching can affect mimicry in radically different ways. We also show that adaptive evolution, both convergent and diversifying, can occur by the repeated involvement of the same genomic regions.  相似文献   

2.
Mimicry has had a significant historical influence as a tractable system for studying adaptation and is known to play a role in speciation. Here, we discuss recent theoretical treatment of adaptive walks to local adaptive peaks and contrast this with the adaptive landscape of mimicry. Evolution of novel Müllerian mimicry patterns almost certainly involves substitution of a major mutation to provide an initial similarity to the model, such that major gene effects are expected to an even greater degree than for other adaptive traits. The likelihood of large adaptive peak shifts in mimicry evolution may therefore promote speciation. In addition, mimicry adaptive peaks are determined by the local abundance of particular patterns and may be more fluid than the case for other traits. It will therefore be of considerable interest to test empirically the distribution of effect sizes fixed during mimicry evolution. Here, we show the feasibility of this by presenting a preliminary quantitative trait locus (QTL) analysis of Heliconius colour patterns. This shows that a number of modifier loci of different effect sizes influence forewing band morphology. We also show multiple pleiotropic effects of major Heliconius patterning loci and discuss the likelihood of multiple substitutions at the same loci in pattern evolution, which would inflate the importance of major loci in QTL analysis of the gene effect sizes. Analyses such as these have the potential to uncover the genetic architecture of both within and between species adaptive differences.  相似文献   

3.
Theory predicts strong stabilizing selection on warning patterns within species and convergent evolution among species in Müllerian mimicry systems yet Heliconius butterflies exhibit extreme wing pattern diversity. One potential explanation for the evolution of this diversity is that genetic drift occasionally allows novel warning patterns to reach the frequency threshold at which they gain protection. This idea is controversial, however, because Heliconius butterflies are unlikely to experience pronounced population subdivision and local genetic drift. To examine the fine-scale population genetic structure of Heliconius butterflies we genotyped 316 individuals from eight Costa Rican Heliconius species with 1428 AFLP markers. Six species exhibited evidence of population subdivision and/or isolation by distance indicating genetic differentiation among populations. Across species, variation in the extent of local genetic drift correlated with the roles different species have played in generating pattern diversity: species that originally generated the diversity of warning patterns exhibited striking population subdivision while species that later radiated onto these patterns had intermediate levels of genetic diversity and less genetic differentiation among populations. These data reveal that Heliconius butterflies possess the coarse population genetic structure necessary for local populations to experience pronounced genetic drift which, in turn, could explain the origin of mimetic diversity.  相似文献   

4.
When species converge in their colour patterns because of mimicry, and those patterns are also used in mate recognition, there is a probability of conflicting selection pressures. Closely related species that mimic one another are particularly likely to face such confusion because of similarities in their courtship behaviour and ecology. We conducted experiments in greenhouse conditions to study interspecific attraction between two mimetic butterfly species, Heliconius erato and Heliconius melpomene. Both species spent considerable time approaching and courting females of the co-mimic species. Experiments using wing models demonstrated the importance of colour pattern in this interspecific attraction. Although males of H. melpomene were attracted to their co-mimics as much as to their own females, H. erato males were more efficient at distinguishing conspecifics, possibly using wing odours. Although preliminary, these results suggest that the use of additional cues may have evolved in H. erato to reduce the cost of convergence in visual signals with H. melpomene. Overall, our results showed that there might be a cost of mimetic convergence because of a reduction in the efficiency of species recognition. Such cost may contribute to explain the apparently stable diversity in Müllerian mimetic patterns in many tropical butterfly assemblages.  相似文献   

5.
Evolutionary Developmental Biology aims for a mechanistic understanding of phenotypic diversity, and present knowledge is largely based on gene expression and interaction patterns from a small number of well-known model organisms. However, our understanding of biological diversification depends on our ability to pinpoint the causes of natural variation at a micro-evolutionary level, and therefore requires the isolation of genetic and developmental variation in a controlled genetic background. The colour patterns of Heliconius butterflies (Nymphalidae: Heliconiinae) provide a rich suite of naturally occurring variants with striking phenotypic diversity and multiple taxonomic levels of variation. Diversification in the genus is well known for its dramatic colour-pattern divergence between races or closely related species, and for Müllerian mimicry convergence between distantly related species, providing a unique system to study the development basis of colour-pattern evolution. A long history of genetic studies has showed that pattern variation is based on allelic combinations at a surprisingly small number of loci, and recent developmental evidence suggests that pattern development in Heliconius is different from the eyespot determination of other butterflies. Fine-scale genetic mapping studies have shown that a shared toolkit of genes is used to produce both convergent and divergent phenotypes. These exciting results and the development of new genomic resources make Heliconius a very promising evo-devo model for the study of adaptive change.  相似文献   

6.
Biological mimicry has long been viewed as a powerful example of natural selection's ability to drive phenotypic evolution, although continuing debates surround the mechanisms leading to its development and the nature of these mimetic relationships. Müllerian mimicry, in which unpalatable species derive a mutual selective benefit through evolved phenotypic similarity, has alternatively been proposed to evolve through either a two-step process initiated by a large mutational change, or through continuous gradual evolution toward a common aposematic phenotype. I exposed a model predatory fish species to two species of endemic Lake Tanganyikan Synodontis to provide evidence for aposematism and the presence of Müllerian mimicry in these species. Predators quickly became conditioned to avoid the venomous catfish and did not discriminate between the two species when they were switched, supporting a hypothesis of functional Müllerian mimicry in this group of similarly colored fish. Ancestral state reconstructions and statistical comparisons of color pattern divergence in Tanganyikan Synodontis indicate that Müllerian mimicry in these catfish has developed through diversification of an aposematic common ancestor with subsequent conservative mutualistic coevolution among its daughter lineages, rather than advergent evolution of a mimic toward a nonrelated model, as assumed by widely accepted models of Müllerian mimicry evolution.  相似文献   

7.
The unpalatable and warning-patterned butterflies Heliconius erato and Heliconius melpomene provide the best studied example of mutualistic Müllerian mimicry, thought-but rarely demonstrated-to promote coevolution. Some of the strongest available evidence for coevolution comes from phylogenetic codivergence, the parallel divergence of ecologically associated lineages. Early evolutionary reconstructions suggested codivergence between mimetic populations of H. erato and H. melpomene, and this was initially hailed as one of the most striking known cases of coevolution. However, subsequent molecular phylogenetic analyses found discrepancies in phylogenetic branching patterns and timing (topological and temporal incongruence) that argued against codivergence. We present the first explicit cophylogenetic test of codivergence between mimetic populations of H. erato and H. melpomene, and re-examine the timing of these radiations. We find statistically significant topological congruence between multilocus coalescent population phylogenies of H. erato and H. melpomene. Cophylogenetic historical reconstructions support repeated codivergence of mimetic populations, from the base of the sampled radiations. Pairwise distance correlation tests, based on our coalescent analyses plus recently published AFLP and wing colour pattern gene data, also suggest that the phylogenies of H. erato and H. melpomene show significant topological congruence. Divergence time estimates, based on a Bayesian coalescent model, suggest that the evolutionary radiations of H. erato and H. melpomene occurred over the same time period, and are compatible with a series of temporally congruent codivergence events. Our results suggest that differences in within-species genetic divergence are the result of a greater overall effective population size for H. erato relative to H. melpomene and do not imply incongruence in the timing of their phylogenetic radiations. Repeated codivergence between Müllerian co-mimics, predicted to exert mutual selection pressures, strongly suggests coevolution. Our results therefore support a history of reciprocal coevolution between Müllerian co-mimics characterised by phylogenetic codivergence and parallel phenotypic change.  相似文献   

8.
The evolution of mimicry in similarly defended prey is well described by the Müllerian mimicry theory, which predicts the convergence of warning patterns in order to gain the most protection from predators. However, despite this prediction, we can find great diversity of color patterns among Müllerian mimics such as Heliconius butterflies in the neotropics. Furthermore, some species have evolved the ability to maintain multiple distinct warning patterns in single populations, a phenomenon known as polymorphic mimicry. The adaptive benefit of these polymorphisms is questionable since variation from the most common warning patterns is expected to be disadvantageous as novel signals are punished by predators naive to them. In this study, we use artificial butterfly models throughout Central and South America to characterize the selective pressures maintaining polymorphic mimicry in Heliconius doris. Our results highlight the complexity of positive frequency‐dependent selection, the principal selective pressure driving convergence among Müllerian mimics, and its impacts on interspecific variation of mimetic warning coloration. We further show how this selection regime can both limit and facilitate the diversification of mimetic traits.  相似文献   

9.
Premating behavioral isolation is increasingly recognized as an important part of ecological speciation, where divergent natural selection causes the evolution of reproductive barriers. A number of studies have now demonstrated that traits under divergent natural selection also affect mate preferences. However, studies of single species pairs only capture a snapshot of the speciation process, making it difficult to assess the role of mate preferences throughout the entire process. Heliconius butterflies are well known for their brightly colored mimetic warning patterns, and previous studies have shown that these patterns are also used as mate recognition cues. Here, we present mate preference data for four pairs of sister taxa, representing different stages of divergence, which together allow us to compare diverging mate preferences across the continuum of Heliconius speciation. Using a novel Bayesian approach, our results support a model of ecological speciation in which strong premating isolation arises early, but continues to increase throughout the continuum from polymorphic populations through to "good," sympatric ecologically divergent species.  相似文献   

10.
Species richness varies among clades, yet the drivers of diversification creating this variation remain poorly understood. While abiotic factors likely drive some of the variation in species richness, ecological interactions may also contribute. Here, we examine one class of potential contributors to species richness variation that is particularly poorly understood: mutualistic interactions. We aim to elucidate large‐scale patterns of diversification mediated by mutualistic interactions using a spatially explicit population‐based model. We focus on mutualistic Müllerian mimicry between conspicuous toxic prey species, where convergence in color patterns emerges from predators' learning process. To investigate the effects of Müllerian mimicry on species diversification, we assume that some speciation events stem from shifts in ecological niches, and can also be associated with shift in mimetic color pattern. Through the emergence of spatial mosaics of mimetic color patterns, Müllerian mimicry constrains the geographical distribution of species and allows different species occupying similar ecological niches to exist simultaneously in different regions. Müllerian mimicry and the resulting spatial segregation of mimetic color patterns thus generate more balanced phylogenetic trees and increase overall species diversity. Our study sheds light on complex effects of Müllerian mimicry on ecological, spatial, and phylogenetic diversification.  相似文献   

11.
Understanding the fate of hybrids in wild populations is fundamental to understanding speciation. Here we provide evidence for disruptive sexual selection against hybrids between Heliconius cydno and Heliconius melpomene. The two species are sympatric across most of Central and Andean South America, and coexist despite a low level of hybridization. No-choice mating experiments show strong assortative mating between the species. Hybrids mate readily with one another, but both sexes show a reduction in mating success of over 50% with the parental species. Mating preference is associated with a shift in the adult colour pattern, which is involved in predator defence through Müllerian mimicry, but also strongly affects male courtship probability. The hybrids, which lie outside the curve of protection afforded by mimetic resemblance to the parental species, are also largely outside the curves of parental mating preference. Disruptive sexual selection against F(1) hybrids therefore forms an additional post-mating barrier to gene flow, blurring the distinction between pre-mating and post-mating isolation, and helping to maintain the distinctness of these hybridizing species.  相似文献   

12.
Hybrid zones can yield estimates of natural selection and gene flow. The width of a cline in gene frequency is approximately proportional to gene flow (sigma) divided by the square root of per-locus selection (square root of s). Gene flow also causes gametic correlations (linkage disequilibria) between genes that differ across hybrid zones. Correlations are stronger when the hybrid zone is narrow, and rise to a maximum roughly equal to s. Thus cline width and gametic correlations combine to give estimates of gene flow and selection. These indirect measures of sigma and s are especially useful because they can be made from collections, and require no field experiments. The method was applied to hybrid zones between color pattern races in a pair of Peruvian Heliconius butterfly species. The species are Müllerian mimics of one another, and both show the same changes in warning color pattern across their respective hybrid zones. The expectations of cline width and gametic correlation were generated using simulations of clines stabilized by strong frequency-dependent selection. In the hybrid zone in Heliconius erato, clines at three major color pattern loci were between 8.5 and 10.2 km wide, and the pairwise gametic correlations peaked at R approximately 0.35. These measures suggest that s approximately 0.23 per locus, and that sigma approximately 2.6 km. In erato, the shapes of the clines agreed with that expected on the basis of dominance. Heliconius melpomene has a nearly coincident hybrid zone. In this species, cline widths at four major color pattern loci varied between 11.7 and 13.4 km. Pairwise gametic correlations peaked near R approximately 1.00 for tightly linked genes, and at R approximately 0.40 for unlinked genes, giving s approximately 0.25 per locus and sigma approximately 3.7 km. In melpomene, cline shapes did not perfectly fit theoretical shapes based on dominance; this deviation might be explained by long-distance migration and/or strong epistasis. Compared with erato, sample sizes in melpomene are lower and the genetics of its color patterns are less well understood. In spite of these problems, selection and gene flow are clearly of the same order of magnitude in the two species. The relatively high per locus selection coefficients agree with "major gene" theories for the evolution of Müllerian mimicry, but the genetic architecture of the color patterns does not. These results show that the genetics and evolution of mimicry are still only sketchily understood.  相似文献   

13.
In Heliconius butterflies, it has been proposed that speciation occurs through a combination of divergence in ecological habitat preferences and mimetic colour patterns. Here we test this hypothesis by investigating a parapatric form of the widespread species Heliconius erato. Mendelian (colour patterns) and molecular genetic data permit us to address hypotheses about introgression and genetic differentiation between different populations. Combined analysis of colour pattern, microsatellite loci and mitochondrial DNA showed that Heliconius erato venus and Heliconius erato chestertonii form a bimodal hybrid zone implying partial reproductive isolation. In a sample of 121 individuals collected in sympatry, 25% were hybrids representing a significant deficit of heterozygotes compared to the Hardy-Weinberg expectation. Seven microsatellite loci, analysed for a subset of these individuals, showed marked differentiation between the parental taxa, and unambiguously identified two genotypic clusters concordant with our phenotypic classification of individuals. Mitochondrial DNA analysis showed H. erato venus as a monophyletic group well differentiated from H. erato chestertonii, implying a lack of historical introgression between the populations. Heliconius erato chestertonii is therefore an incipient species that maintains its integrity despite high levels of hybridization. Moreover, H. erato chestertonii is found at higher altitudes than other races of H. erato and has a distinct colour pattern and mimetic relationship. Hence, there are now two examples of parapatric incipient species related to H. erato, H. himera and H. erato chestertonii, both of which are associated with higher altitudes, more arid habitats and distinct mimetic relationships. This implies that parapatric habitat adaptation is a likely cause of speciation in this group.  相似文献   

14.
A spatially explicit model is studied to analyse the movement of coupled clines in two-species Müllerian mimicry system as exemplified by the comimicking helicoiine butterflies in Central-South America Heliconius erato and Heliconius melpomene. In this system, a pair of comimicking wing patterns of two species (mimicry ring) is found in a geographical region but another pair of wing patterns is found in a different geographical region. The distribution of mimicry rings thus forms a spatial mosaic in a large geographical scale, and the mechanism responsible for their stable maintenance has been a long-standing question in evolutionary biology. We here examine the speed of the movement of boundaries that divide the regions inhabited by different mimetic morphs in each comimicking species, by assuming coupled two-state stochastic cellular automatons where the flipping rate of the site occupied by a mimetic morph depends on the local density of the same morph and of the comimicking morph in the other species. The speed of cline movement shows a complex dependence on the coupling parameter between mimetic species--greater coupling of comimicking morphs between species slows down the cline movement only when the reduction in predation rate exhibits diminishing return to the increase of local mimetic morph density. The analytical predictions are confirmed by the results of Monte Carlo simulations. The speed of advance is quite different from that predicted from the conventional reaction-diffusion model, indicating that demographic stochasticity plays a critical role in determining the speed of cline movement. We also examine if the spatial heterogeneity in migration rate can stably maintain clines.  相似文献   

15.
Ecological speciation proceeds through the accumulation of divergent traits that contribute to reproductive isolation, but in the face of gene flow traits that characterize incipient species may become disassociated through recombination. Heliconius butterflies are well known for bright mimetic warning patterns that are also used in mate recognition and cause both pre- and post-mating isolation between divergent taxa. Sympatric sister taxa representing the final stages of speciation, such as Heliconius cydno and Heliconius melpomene, also differ in ecology and hybrid fertility. We examine mate preference and sterility among offspring of crosses between these species and demonstrate the clustering of Mendelian colour pattern loci and behavioural loci that contribute to reproductive isolation. In particular, male preference for red patterns is associated with the locus responsible for the red forewing band. Two further colour pattern loci are associated, respectively, with female mating outcome and hybrid sterility. This genetic architecture in which ‘speciation genes’ are clustered in the genome can facilitate two controversial models of speciation, namely divergence in the face of gene flow and hybrid speciation.  相似文献   

16.
Tropical butterflies in the genus Heliconius have long been models in the study of the stages of speciation. Heliconius are unpalatable to predators, and many species are notable for multiple geographic populations with striking warning colour pattern differences associated with Müllerian mimicry. A speciation continuum is evident in Heliconius hybrid zones. Examples range from hybrid zones across which (a) there is little genetic differentiation other than at mimicry loci, but where hybrids are common, (b) to ‘bimodal‘ hybrid zones with strong genetic divergence and few hybrids, (c) through to ‘good’ sympatric species, with hybridization extremely rare or absent. Now, in this issue of Molecular Ecology, Arias et al. ( 2012 ) have found an intermediate case in Colombian Heliconius cydno showing evidence for assortative mating and molecular differences, but where hybrids are abundant.  相似文献   

17.
Müllerian mimicry, in which toxic species gain mutual protection from shared warning signals, is poorly understood in vertebrates, reflecting a paucity of examples. Indirect evidence for mimicry is found if monophyletic species or clades show parallel geographic variation in warning patterns. Here, we evaluate a hypothesis of Müllerian mimicry for the pitvipers in Southeast Asia using a phylogeny derived from DNA sequences from four combined mitochondrial regions. Mantel matrix correlation tests show that conspicuous red colour pattern elements are significantly associated with sympatric and parapatric populations in four genera. To our knowledge, this represents the first evidence of a Müllerian mimetic radiation in vipers. The putative mimetic patterns are rarely found in females. This appears paradoxical in light of the Müllerian prediction of monomorphism, but may be explained by divergent selection pressures on the sexes, which have different behaviours. We suggest that biased predation on active males causes selection for protective warning coloration, whereas crypsis is favoured in relatively sedentary females.  相似文献   

18.
A new species of Heliconius and a new geographical race of Heliconius melpomene are described from the vicinity of Mocoa, Dpto. Putumayo, Colombia, based on molecular and morphological characters. The new species, H. tristero , is a close relative of H. cydno , a geographically differentiated species which lacks red coloration and engages in Müllerian mimicry with other blue and yellow Heliconius species in Central and northwestern South America. H. tristero has switched mimetic associations, instead mimicking the local, sympatric forms of two widespread mimetic species, H. erato and H. melpomene. This discovery provides evidence that the splinter species H. heurippa, H. tristero and H. timareta represent phenotypically divergent members of the H. cydno group that are endemic to successive river valleys on the eastern slope of the northern Andean Cordillera. The nominal taxon Heliconius amaryllis bellula Stichel, currently misapplied to both H. tristero and H. melpomene populations from the Mocoa region of Colombia, is considered here to represent a hybrid between H. heurippa and H. tristero. The Mocoa melpomene race is formally named Heliconius melpomene mocoa , new subspecies.  相似文献   

19.
The process of adaptive radiation and convergence, usually regarded as a feature of macro-evolution, can be seen in the mimetic colour patterns of the butterflies within the confines of the South American genus Heliconius. This can be shown by dividing the genus into subgroups on the basis of adult, pupal and larval morphology: the theory that the mimicry between species results solely from close systematic relationships is thereby refuted, as members of the same morphological group can display widely divergent mimetic patterns, and conversely mutual mimics may belong to several different morphological groups. Various forms of parallel and convergent evolution are thought to account for the present pattern of mimicry, the process is known to start even before full speciation has taken place. A new subgenus (Neruda) is created to contain three atypical members of the genus.  相似文献   

20.
Müllerian mimicry, where groups of chemically defended species display a common warning color pattern and thereby share the cost of educating predators, is one of the most striking examples of ecological adaptation. Classic models of Müllerian mimicry predict that all unpalatable species of a similar size and form within a community should converge on a single mimetic pattern, but instead communities of unpalatable species often display a remarkable diversity of mimetic patterns (e.g. neotropical ithomiine butterflies). It has been suggested that this apparent paradox may be explained if different suites of predators and species belonging to different mimicry groups utilize different micro-habitats within the community. We developed a stochastic individual-based model for a community of unpalatable mimetic prey species and their predators to evaluate this hypothesis and to examine the effect of predator heterogeneity on prey micro-habitat use. We found that community-level mimetic diversity was higher in simulations with heterogeneous predator micro-habitat use than in simulations with homogeneous predator micro-habitat use. Regardless of the form of predation, mimicry pattern-based assortative mating caused community-level mimetic diversity to persist. Heterogeneity in predator micro-habitat use led to an increased association between mimicry pattern and prey micro-habitat use relative to homogeneous predator micro-habitat use. This increased association was driven, at least in part, by evolutionary convergence of prey micro-habitat use when predators displayed heterogeneous micro-habitat use. These findings provide a theoretical explanation for an important question in evolutionary biology: how is community-level Müllerian mimetic diversity maintained in the face of selection against rare phenotypes?  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号