首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
O'Reilly M  Watson KA  Johnson LN 《Biochemistry》1999,38(17):5337-5345
Acarbose is a naturally occurring pseudo-tetrasaccharide. It has been used in conjunction with other drugs in the treatment of diabetes where it acts as an inhibitor of intestinal glucosidases. To probe the interactions of acarbose with other carbohydrate recognition enzymes, the crystal structure of E. coli maltodextrin phosphorylase (MalP) complexed with acarbose has been determined at 2.95 A resolution and refined to crystallographic R-values of R (Rfree) = 0.241 (0.293), respectively. Acarbose adopts a conformation that is close to its major minimum free energy conformation in the MalP-acarbose structure. The acarviosine moiety of acarbose occupies sub-sites +1 and +2 and the disaccharide sub-sites +3 and +4. (The site of phosphorolysis is between sub-sites -1 and +1.) This is the first identification of sub-sites +3 and +4 of MalP. Interactions of the glucosyl residues in sub-sites +2 and +4 are dominated by carbohydrate stacking interactions with tyrosine residues. These tyrosines (Tyr280 and Tyr613, respectively, in the rabbit muscle phosphorylase numbering scheme) are conserved in all species of phosphorylase. A glycerol molecule from the cryoprotectant occupies sub-site -1. The identification of four oligosaccharide sub-sites, that extend from the interior of the phosphorylase close to the catalytic site to the exterior surface of MalP, provides a structural rationalization of the substrate selectivity of MalP for a pentasaccharide substrate. Crystallographic binding studies of acarbose with amylases, glucoamylases, and glycosyltranferases and NMR studies of acarbose in solution have shown that acarbose can adopt two different conformations. This flexibility allows acarbose to target a number of different enzymes. The two alternative conformations of acarbose when bound to different carbohydrate enzymes are discussed.  相似文献   

2.
D-eritadenine (DEA) is a potent inhibitor (IC(50) = 7 nm) of S-adenosyl-l-homocysteine hydrolase (AdoHcyase). Unlike cyclic sugar Ado analogue inhibitors, including mechanism-based inhibitors, DEA is an acyclic sugar Ado analogue, and the C2' and C3' have opposite chirality to those of the cyclic sugar Ado inhibitors. Crystal structures of DEA alone and in complex with AdoHcyase have been determined to elucidate the DEA binding scheme to AdoHcyase. The DEA-complexed structure has been analyzed by comparing it with two structures of AdoHcyase complexed with cyclic sugar Ado analogues. The DEA-complexed structure has a closed conformation, and the DEA is located near the bound NAD(+). However, a UV absorption measurement shows that DEA is not oxidized by the bound NAD(+), indicating that the open-closed conformational change of AdoHcyase is due to the substrate/inhibitor binding, not the oxidation state of the bound NAD. The adenine ring of DEA is recognized by four essential hydrogen bonds as observed in the cyclic sugar Ado complexes. The hydrogen bond network around the acyclic sugar moiety indicates that DEA is more tightly connected to the protein than the cyclic sugar Ado analogues. The C3'-H of DEA is pointed toward C4 of the bound NAD(+) (C3'...C4 = 3.7 A), suggesting some interaction between DEA and NAD(+). By placing DEA into the active site of the open structure, the major forces to stabilize the closed conformation of AdoHcyase are identified as the hydrogen bonds between the backbone of His-352 and the adenine ring, and the C3'-H...C4 interaction. DEA has been believed to be an inactivator of AdoHcyase, but this study indicates that DEA is a reversible inhibitor. On the basis of the complexed structure, selective inhibitors of AdoHcyase have been designed.  相似文献   

3.
As a member of the alpha-amylase superfamily of enzymes, amylomaltase catalyzes either the transglycosylation from one alpha-1,4 glucan to another or an intramolecular cyclization. The latter reaction is typical for cyclodextrin glucanotransferases. In contrast to these enzymes, amylomaltase catalyzes the formation of cyclic glucans with a degree of polymerization larger than 22. To characterize the factors that determine the size of the synthesized cycloamyloses, we have analyzed the X-ray structure of amylomaltase from Thermus aquaticus in complex with the inhibitor acarbose, a maltotetraose derivative, at 1.9 A resolution. Two acarbose molecules are bound to the enzyme, one in the active site groove at subsite -3 to +1 and a second one approximately 14 A away from the nonreducing end of the acarbose bound to the catalytic site. The inhibitor bound to the catalytic site occupies subsites -3 to +1. Unlike the situation in other enzymes of the alpha-amylase family, the inhibitor is not processed and the inhibitory cyclitol ring of acarbose, which mimicks the half chair conformation of the transition state, does not bind to catalytic subsite -1. The minimum ring size of cycloamyloses produced by this enzyme is proposed to be determined by the distance of the specific substrate binding sites at the active site and near Tyr54 and by the size of the 460s loop. The 250s loop might be involved in binding of the substrate at the reducing end of the scissile bond.  相似文献   

4.
Comparison of AMP and NADH binding to glycogen phosphorylase b   总被引:3,自引:0,他引:3  
The binding sites for the allosteric activator, AMP, to glycogen phosphorylase b are described in detail utilizing the more precise knowledge of the native structure obtained from crystallographic restrained least-squares refinement than has hitherto been available. Localized conformational changes are seen at the allosteric effector site that include shifts of between 1 and 2 A for residues Tyr75 and Arg309 and very small shifts for the region of residues 42 to 44 from the symmetry-related subunit. Kinetic studies demonstrate that NADH inhibits the AMP activation of glycogen phosphorylase b. Crystallographic binding studies at 3.5 A resolution show that NADH binds to the same sites on the enzyme as AMP, i.e. the allosteric effector site N, which is close to the subunit-subunit interface, and the nucleoside inhibitor site I, which is some 12 A from the catalytic site. The conformations of NADH at the two sites are different but both conformations are "folded" so that the nicotinamide ring is close (approx. 6 A) to the adenine ring. These conformations are compared with those suggested from solution studies and with the extended conformations observed in the single crystal structure of NAD+ and for NAD bound to dehydrogenases. Possible mechanisms for NADH inhibition of phosphorylase activation are discussed.  相似文献   

5.
The product specificity of cyclodextrin glucanotransferase (CGTase) from alkalophilic Bacillus sp. #1011 is improved to near-uniformity by mutation of histidine-233 to asparagine. Asparagine 233-replaced CGTase (H233N-CGTase) no longer produces alpha-cyclodextrin, while the wild-type CGTase from the same bacterium produces a mixture of predominantly alpha-, beta-, and gamma-cyclodextrins, catalyzing the conversion of starch into cyclic or linear alpha-1,4-linked glucopyranosyl chains. In order to better understand the protein engineering of H233N-CGTase, the crystal structure of the mutant enzyme complexed with a maltotetraose analog, acarbose, was determined at 2.0 A resolution with a final crystallographic R value of 0.163 for all data. Taking a close look at the active site cleft in which the acarbose molecule is bound, the most probable reason for the improved specificity of H233N-CGTase is the removal of interactions needed to form a compact ring like a-cyclodextrin.  相似文献   

6.
Escherichia coli pyridoxine 5'-phosphate oxidase (PNPOx) catalyzes the oxidation of either pyridoxine 5'-phosphate (PNP) or pyridoxamine 5'-phosphate (PMP), forming pyridoxal 5'-phosphate (PLP). This reaction serves as the terminal step in the de novo biosynthesis of PLP in E. coli and as a part of the salvage pathway of this coenzyme in both E. coli and mammalian cells. Recent studies have shown that in addition to the active site, PNPOx contains a noncatalytic site that binds PLP tightly. The crystal structures of PNPOx with one and two molecules of PLP bound have been determined. In the active site, the PLP pyridine ring is stacked almost parallel against the re-face of the middle ring of flavin mononucleotide (FMN). A large protein conformational change occurs upon binding of PLP. When the protein is soaked with excess PLP an additional molecule of this cofactor is bound about 11 A from the active site. A possible tunnel exists between the two sites. Site mutants were made of all residues at the active site that make interactions with the substrate. Stereospecificity studies showed that the enzyme is specific for removal of the proR hydrogen atom from the prochiral C4' carbon of PMP. The crystal structure and the stereospecificity studies suggest that the pair of electrons on C4' of the substrate are transferred to FMN as a hydride ion.  相似文献   

7.
The crystal structure of the complex between bovine alpha-chymotrypsin and the leech (Hirudo medicinalis) protein proteinase inhibitor eglin c has been refined at 2.0 A resolution to a crystallographic R-factor of 0.167. The structure of the complex includes 2290 protein and 143 solvent atoms. Eglin c is bound to the cognate enzyme through interactions involving 11 residues of the inhibitor (sites P5-P4' in the reactive site loop, P10' and P23') and 17 residues from chymotrypsin. Binding of eglin c to the enzyme causes a contained hinge-bending movement around residues P4 and P4' of the inhibitor. The tertiary structure of chymotrypsin is little affected, with the exception of the 10-13 region, where an ordered structure for the polypeptide chain is observed. The overall binding mode is consistent with those found in other serine proteinase-protein-inhibitor complexes, including those from different inhibition families. Contained, but significant differences are observed in the establishment of intramolecular hydrogen bonds and polar interactions stabilizing the structure of the intact inhibitor, if the structure of eglin c in its complex with chymotrypsin is compared with that of other eglin c-serine proteinase complexes.  相似文献   

8.
The three-dimensional structure of the Bacillus stearothermophilus "maltogenic" alpha-amylase, Novamyl, has been determined by X-ray crystallography at a resolution of 1.7 A. Unlike conventional alpha-amylases from glycoside hydrolase family 13, Novamyl exhibits the five-domain structure more usually associated with cyclodextrin glycosyltransferase. Complexes of the enzyme with both maltose and the inhibitor acarbose have been characterized. In the maltose complex, two molecules of maltose are found in the -1 to -2 and +2 to +3 subsites of the active site, with two more on the C and E domains. The C-domain maltose occupies a position identical to one previously observed in the Bacillus circulans CGTase structure [Lawson, C. L., et al. (1994) J. Mol. Biol. 236, 590-600], suggesting that the C-domain plays a genuine biological role in saccharide binding. In the acarbose-maltose complex, the tetrasaccharide inhibitor acarbose is found as an extended hexasaccharide species, bound in the -3 to +3 subsites. The transition state mimicking pseudosaccharide is bound in the -1 subsite of the enzyme in a 2H3 half-chair conformation, as expected. The active site of Novamyl lies in an open gully, fully consistent with its ability to perform internal cleavage via an endo as opposed to an exo activity.  相似文献   

9.
Nucleoside analog inhibition studies have been conducted on thyroidal purine nucleoside phosphorylase (purine-nucleoside:orthophosphate ribosyltransferase, EC 2.4.2.1) which catalyzed an ordered bi-bi type mechanism where the first substrate is inorganic phosphate and the last product is ribose 1-phosphate. Heterocyclic- and carbohydrate-modified nucleoside inhibitors demonstrate mixed type inhibition suggesting such analogs show an affinity (Ki) for the free enzyme. A kinetic model is proposed which supports the observed inhibition patterns. These studies together with alternate substrate studies indicate that nucleoside binding requires a functional group capable of hydrogen bonding at the 6-position of the purine ring and that the orientation of the bound substrate may be syn. Proper geometry of the phosphate is dependent upon the 3'-substituent to the orientated below the furanose ring. The 5'-hydroxyl group is required for substrate activity. The proposed rate limiting step of the phosphorylase mechanism is the enzymatic protonation of the 7-N position of the nucleoside.  相似文献   

10.
1H NMR spectra of a GDP/GTP-binding domain of human c-Ha-ras gene product (residues 1-171) in which glutamine-61 was replaced by leucine [ras(L61/1-171) protein] were analyzed. By one-dimensional and two-dimensional homonuclear Hartmann-Hahn spectroscopy and nuclear Overhauser effect (NOE) spectroscopy of the complex of the ras(L61/1-171) protein and GDP, the ribose H1', H2', H3', and H4' proton resonances of the bound GDP were identified. The guanine H8 proton resonance of the bound GDP was identified by substituting [8-2H]GDP for GDP. The dependences of the H1' and H8 proton resonance intensities on the duration of irradiation of the H1', H2', H3', and H8 protons were measured. By numerical simulation of these time-dependent NOE profiles, the conformation of the protein-bound GDP was elucidated; the guanosine moiety takes the anti form about the N-glycosidic bond with a dihedral angle of chi = -124 +/- 2 degrees and the ribose ring takes the C2'-endo form. Such an analysis of the conformation of a guanine nucleotide as bound to a GTP-binding protein will be useful for further studies on the molecular mechanism of the conformational activation of ras proteins on ligand substitution of GDP with GTP.  相似文献   

11.
Two inhibitors, acarbose and cyclodextrins (CD), were used to investigate the active site structure and function of barley alpha-amylase isozymes, AMY1 and AMY2. The hydrolysis of DP 4900-amylose, reduced (r) DP18-maltodextrin and maltoheptaose (catalysed by AMY1 and AMY2) was followed in the absence and in the presence of inhibitor. Without inhibitor, the highest activity was obtained with amylose, kcat/Km decreased 103-fold using rDP18-maltodextrin and 10(5) to 10(6)-fold using maltoheptaose as substrate. Acarbose is an uncompetitive inhibitor with inhibition constant (L1i) for amylose and maltodextrin in the micromolar range. Acarbose did not bind to the active site of the enzyme, but to a secondary site to give an abortive ESI complex. Only AMY2 has a second secondary binding site corresponding to an ESI2 complex. In contrast, acarbose is a mixed noncompetitive inhibitor of maltoheptaose hydrolysis. Consequently, in the presence of this oligosaccharide substrate, acarbose bound both to the active site and to a secondary binding site. alpha-CD inhibited the AMY1 and AMY2 catalysed hydrolysis of amylose, but was a very weak inhibitor compared to acarbose.beta- and gamma-CD are not inhibitors. These results are different from those obtained previously with PPA. However in AMY1, as already shown for amylases of animal and bacterial origin, in addition to the active site, one secondary carbohydrate binding site (s1) was necessary for activity whereas two secondary sites (s1 and s2) were required for the AMY2 activity. The first secondary site in both AMY1 and AMY2 was only functional when substrate was bound in the active site. This appears to be a general feature of the alpha-amylase family.  相似文献   

12.
The conformation of the synthetic renin inhibitor CP-69,799, bound to the active site of the fungal aspartic proteinase endothiapepsin (EC 3.4.23.6), has been determined by X-ray diffraction at 1.8 A resolution and refined to the crystallographic R factor of 16%. CP-69,799 is an oligopeptide transition--state analogue inhibitor that contains a new dipeptide isostere at the P1-P1' position. This dipeptide isostere is a nitrogen analogue of the well-explored hydroxyethylene dipeptide isostere, wherein the tetrahedral P1' C alpha atom has been replaced by trigonal nitrogen. The inhibitor binds in the extended conformation, filling S4 to S3' pockets, with hydroxyl group of the P1 residue positioned symmetrically between the two catalytic aspartates of the enzyme. Interactions between the inhibitor and the enzyme include 12 hydrogen bonds and extensive van der Waals contacts in all the pockets, except for S3'. The crystal structure reveals a bifurcated orientation of the P2 histidine side chain and an interesting relative rotation of the P3 phenyl ring to accommodate the cyclohexyl side chain at P1. The binding of the inhibitor to the enzyme, while producing no large distortions in the enzyme active site cleft, results in small but significant change in the relative orientation of the two endothiapepsin domains. This structural change may represent the action effected by the proteinase as it distorts its substrate towards the transition state for proteolytic cleavage.  相似文献   

13.
This work describes in-depth NMR characterization of a unique low-barrier hydrogen bond (LBHB) between an active site residue from the enzyme and a bound inhibitor: the complex between secreted phospholipase A(2) (sPLA(2), from bee venom and bovine pancreas) and a transition-state analog inhibitor HK32. A downfield proton NMR resonance, at 17-18 ppm, was observed in the complex but not in the free enzyme. On the basis of site-specific mutagenesis and specific 15N-decoupling, this downfield resonance was assigned to the active site H48, which is part of the catalytic dyad D99-H48. These results led to a hypothesis that the downfield resonance represents the proton (H(epsilon 2) of H48) involved in the H-bonding between D99 and H48, in analogy with serine proteases. However, this was shown not to be the case by use of the bovine enzyme labeled with specific [15N(epsilon 2)]His. Instead, the downfield resonance arises from H(delta1) of H48, which forms a hydrogen bond with a non-bridging phosphonate oxygen of the inhibitor. Further studies showed that this proton displays a fractionation factor of 0.62(+/-0.06), and an exchange rate protection factor of >100 at 285 K and >40 at 298 K, which are characteristic of a LBHB. The pK(a) of the imidazole ring of H48 was shown to be shifted from 5.7 for the free enzyme to an apparent value of 9.0 in the presence of the inhibitor. These properties are very similar to those of the Asp em leader His LBHBs in serine proteases. Possible structural bases and functional consequences for the different locations of the LBHB between these two types of enzymes are discussed. The results also underscore the importance of using specific isotope labeling, rather than extrapolation of NMR results from other enzyme systems, to assign the downfield proton resonance to a specific hydrogen bond. Although our studies did not permit the strength of the LBHB to be accurately measured, the data do not provide support for an unusually strong hydrogen bond strength (i.e. >10 kcal/mol).  相似文献   

14.
The structure of human HGPRT bound to the transition-state analog immucillinGP and Mg2+-pyrophosphate has been determined to 2.0 A resolution. ImmucillinGP was designed as a stable analog with the stereoelectronic features of the transition state. Bound inhibitor at the catalytic site indicates that the oxocarbenium ion of the transition state is stabilized by neighboring-group participation from MgPPi and O5'. A short hydrogen bond forms between Asp 137 and the purine ring analog. Two Mg2+ ions sandwich the pyrophosphate and contact both hydroxyls of the ribosyl analog. The transition-state analog is shielded from bulk solvent by a catalytic loop that moves approximately 25 A to cover the active site and becomes an ordered antiparallel beta-sheet.  相似文献   

15.
The enzyme ribonuclease T1 (RNase T1) isolated from Aspergillus oryzae was cocrystallized with the specific inhibitor guanylyl-2',5'-guanosine (2',5'-GpG) and the structure refined by the stereochemically restrained least-squares refinement method to a crystallographic R-factor of 14.9% for X-ray data above 3 sigma in the resolution range 6 to 1.8 A. The refined model consists of 781 protein atoms, 43 inhibitor atoms in a major site and 29 inhibitor atoms in a minor site, 107 water oxygen atoms, and a metal site assigned as Ca. At the end of the refinement, the orientation of His, Asn and Gln side-chains was reinterpreted on the basis of two-dimensional nuclear magnetic resonance data. The crystal packing and enzyme conformation of the RNase T1/2',5'-GpG complex and of the near-isomorphous RNase T1/2'-GMP complex are comparable. The root-mean-square deviation is 0.73 A between equivalent protein atoms. Differences in the unit cell dimensions are mainly due to the bound inhibitor. The 5'-terminal guanine of 2',5'-GpG binds to RNase T1 in much the same way as in the 2'-GMP complex. In contrast, the hydrogen bonds between the catalytic center and the phosphate group are different and the 3'-terminal guanine forms no hydrogen bonds with the enzyme. This poor binding is reflected in a 2-fold disorder of 2',5'-GpG (except the 5'-terminal guanine), which originates from differences in the pucker of the 5'-terminal ribose. The pucker is C2'-exo for the major site (2/3 occupancy) and C1'-endo for the minor site (1/3 occupancy). The orientation of the major site is stabilized through stacking interactions between the 3'-terminal guanine and His92, an amino acid necessary for catalysis. This might explain the high inhibition rate observed for 2',5'-GpG, which exceeds that of all other inhibitors of type 2',5'-GpN. On the basis of distance criteria, one solvent peak in the electron density was identified as metal ion, probably Ca2+. The ion is co-ordinated by the two Asp15 carboxylate oxygen atoms and by six water molecules. The co-ordination polyhedron displays approximate 4m2 symmetry.  相似文献   

16.
Polychlorinated biphenyls (PCBs) are a family of 209 isomers (congeners) with a wide range of toxic effects. In structural terms, they are of two types: those with and those without chlorines at the ortho positions (2, 2', 6 and 6'). Only 20 congeners have no ortho chlorines. Three of these are bound by the aryl hydrocarbon receptor and are one to four orders of magnitude more toxic than all others. A monoclonal antibody, S2B1, and its recombinant Fab have high selectivity and nanomolar binding affinities for two of the most toxic non-ortho-chlorinated PCBs, 3,4,3',4'-tetrachlorobiphenyl and 3,4,3',4',5'-pentachlorobiphenyl. To investigate the basis for these properties, we built a three-dimensional structure model of the S2B1 variable fragment (Fv) based on the high-resolution crystallographic structures of antibodies 48G7 and N1G9. Two plausible conformations for the complementarity-determining region (CDR) H3 loop led to two putative PCB-binding pockets with very different shapes (models A and B). Docking studies using molecular mechanics and potentials of mean force (PMF) indicated that model B was most consistent with the selectivity observed for S2B1 in competition ELISAs. The binding site in model B had a deep, narrow pocket between V(L) and V(H), with a slight constriction at the top that opened into a wider pocket between CDRs H1 and H3 on the antibody surface. This binding site resembles those of esterolytic antibodies that bind haptens with phenyl rings. One phenyl ring of the PCB fits into the deep pocket, and the other ring is bound in the shallower one. The bound PCB is surrounded by the side chains of TyrL91, TyrL96 and TrpH98, and it has a pi-cation interaction with ArgL46. The tight fit of the binding pocket around the ortho positions of the bound PCBs indicates that steric hindrance of ortho chlorines in the binding site, rather than induced conformational change of the PCBs, is responsible for the selectivity of S2B1.  相似文献   

17.
We have measured the Raman spectrum of GDP bound to the elongation factor protein, EF-Tu, and the c-Harvey-ras protein, p21, two proteins of the guanine nucleotide binding family. In order to separate the Raman spectrum of the nucleotide from the much more intense protein spectrum, we investigate the feasibility of "tagging" the normal modes of the nucleotide by isotopic substitution, here by incoporating deuterium-labeled guanine at the C8 position into the active site. A difference spectrum between the labeled and unlabeled protein-nucleotide complex shows the changes in the Raman spectrum of the bound nucleotide that arise from the isotopic exchange. We find that surprisingly good Raman spectra of bound ligands can be obtained with this method and that the method can be easily generalized to other systems. The data show that the guanine amino group of the nucleotide interacts differently with both EF-Tu and p21 than it does with water, showing a change in hydrogen-bonding properties upon binding. On the other hand, no change in hydrogen bonding is observed at guanine's N7. The data strongly suggest that the conformation of the nucleotide when bound to EF-Tu and that p21 is the C2' endo pucker of the ribose ring and anti about the glycosidic bond. These results are compared to previous structural and chemical studies.  相似文献   

18.
Hydrolysis of p-nitrophenyl-beta-D-glucoside by cytosolic beta-glucosidase proceeds with retention of the anomeric configuration. Whereas inactivation of the enzyme by the glucosidase inhibitor conduritol B epoxide (CBE) was extremely slow (ki(max)/Ki 0.57 M-1 min-1) it reacted 130 times more rapidly with 6-bromo-6-deoxy-CBE (Br-CBE). The beta-glucosidase could be labeled with [3H]Br-CBE; incorporation of 1 mol inhibitor/mol enzyme resulted in complete loss of activity. Most of the bound inhibitor was released after denaturation and treatment with ammonia as (1,3,4/2,5,6)-6-bromocyclohexanepentol, thus demonstrating the formation of an ester bond with an active site carboxylate by trans-diaxial opening of the epoxide ring. It was concluded from the Ki values for the epoxide inhibitors and for coduritol B with the cytosolic enzyme and corresponding data for the lysosomal beta-glucosidase that the unusually low reactivity with CBE and Br-CBE is probably due to the inability of the cytosolic enzyme to effectively donate a proton to the epoxide oxygen. An extremely rapid inactivation of the cytosolic beta-glucosidase was caused by bromoconduritol F ((1,2,4/3)-1-bromo-2,3,4-trihydroxycyclohex-5-ene) with ki(max)/Ki 10(5) M-1 min-1. In contrast with the Br-CBE-inhibited enzyme the beta-glucosidase inhibited by bromoconduritol F was subject to spontaneous reactivation with t1/2 approximately 20 min.  相似文献   

19.
Bifurcated electron transfer during ubiquinol oxidation is the key reaction of cytochrome bc1 complex catalysis. Binding of the competitive inhibitor 5-n-heptyl-6-hydroxy-4,7-dioxobenzothiazole to the Qo site of the cytochrome bc1 complex from Saccharomyces cerevisiae was analyzed by x-ray crystallography. This alkylhydroxydioxobenzothiazole is bound in its ionized form as evident from the crystal structure and confirmed by spectroscopic analysis, consistent with a measured pKa = 6.1 of the hydroxy group in detergent micelles. Stabilizing forces for the hydroxyquinone anion inhibitor include a polarized hydrogen bond to the iron-sulfur cluster ligand His181 and on-edge interactions via weak hydrogen bonds with cytochrome b residue Tyr279. The hydroxy group of the latter contributes to stabilization of the Rieske protein in the b-position by donating a hydrogen bond. The reported pH dependence of inhibition with lower efficacy at alkaline pH is attributed to the protonation state of His181 with a pKa of 7.5. Glu272, a proposed primary ligand and proton acceptor of ubiquinol, is not bound to the carbonyl group of the hydroxydioxobenzothiazole ring but is rotated out of the binding pocket toward the heme bL propionate A, to which it is hydrogen-bonded via a single water molecule. The observed hydrogen bonding pattern provides experimental evidence for the previously proposed proton exit pathway involving the heme propionate and a chain of water molecules. Binding of the alkyl-6-hydroxy-4,7-dioxobenzothiazole is discussed as resembling an intermediate step of ubiquinol oxidation, supporting a single occupancy model at the Qo site.  相似文献   

20.
Mouse BC3H1 myocytes were incubated with 32Pi before acetylcholine receptors were solubilized, immunoprecipitated, and subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis. More than 90% of the 32P found in the receptor was bound to the delta subunit. Two phosphorylation sites in this subunit were resolved by reverse phase high performance liquid chromatography after exhaustive proteolysis of the protein with trypsin. Sites 1 and 2 were phosphorylated to approximately the same level in control cells. The divalent cation ionophore, A23187, increased 32P in site 1 by 40%, but did not affect the 32P content of site 2. In contrast, isoproterenol increased 32P in site 2 by more than 60%, while increasing 32P in site 1 by only 20%. When dephosphorylated receptor was incubated with [gamma-32P]ATP and the catalytic subunit of cAMP-dependent protein kinase, the delta subunit was phosphorylated to a maximal level of 1.6 phosphates/subunit. Approximately half of the phosphate went into site 2, with the remainder going into a site not phosphorylated in cells. The alpha subunit was phosphorylated more slowly, but phosphorylation of both alpha and delta subunits was blocked by the heat-stable protein inhibitor of cAMP-dependent protein kinase. Phosphorylation of the receptor was also observed with preparations of phosphorylase kinase. In this case phosphorylation occurred in the beta subunit and site 1 of the delta subunit, neither of which were phosphorylated by cAMP-dependent protein kinase. The rate of receptor phosphorylation by phosphorylase kinase was slow relative to that catalyzed by cAMP-dependent protein kinase. Therefore, it can not yet be concluded that phosphorylase kinase phosphorylates the beta subunit and the delta subunit site 1 in cells. However, the results strongly support the hypothesis that phosphorylation by cAMP-dependent protein kinase accounts for phosphorylation of the alpha subunit and the delta subunit site 2 in response to elevations in cAMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号