首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Bovine chromaffin secretory granules were purified by isopycnic Metrizamide gradient centrifugation and their Ca2+ sequestration pathways were characterized. The rate of Ca2+ sequestration at 37°C was first order, with a maximal uptake of 26.9 ±0.46 (mean ± S.D., n = 3) nmol Ca2+/mg protein and a first order rate constant (k) of 0.046 ± 0.002 min–1. At 4°C the rate of uptake was substantially attenuated, with only 2.47 ± 0.2 (mean ± S.D, n = 3) nmol Ca2+/mg protein sequestered in 60 min. Ca2+ sequestration was 93% inhibited by 180 mM NaCl [I50% of 78.7 ± 9.3 mM NaCl (mean ± S.D., n = 11)] but only slightly inhibited by KCl or MgCl2. Ca 2+ sequestration was not stimulated by incubation with MgATP but was inhibited by 57% after incubation with 30 M monensin. Ca 2+ sequestration was dependent on extravesicular Ca 2+ with half-maximal sequestration at pCa2+ 6.81 ± 0.028 (mean ± S.D., n = 3). Sequestered Ca2+ could be exchanged with external 45Ca2+, the exchange rate was first order (k of 0.042 ± 0.004: mean ± S.D., n = 3) and saturated at 27.7 ± 1.1 nmol Ca2+/mg (mean ± S.D., n = 3). The Ca2+/Ca2+ exchange system was totally inhibited by NaCl or KCl but only slightly by MgCl2. About 75% of sequestered 45Ca2+ could be released by incubation with NaCl, but only 8% was released by incubation with KCI. Half-maximal release of sequestered 45Ca2+ required 69.3 ± 12.2 mM NaCl (mean ± S.D., n = 3). The Na+-induced release of sequestered 45Ca2+ was rapid, t0.5 of 2.80 ± 0.63 min (mean ± S.D., n = 3) and inhibited at 4°C. The concurrent incubation of chromaffin granules with 45Ca2+ and either annexin proteins V or VI resulted in attenuated uptake of 45Ca2+. These results suggest that Ca2+ uptake in adrenal chromaffin granules is regulated by Na+ and Ca2+ gradients and also possibly by annexins V and VI.Abbreviations EGTA ethylene glycol bis (-aminoethyl ether)-N,-N,N,N-tetraacetic acid - SDS Sodium dodecyl sulphate - PAGE Polyacrylamide gel electrophoresis - BSA bovine serum albumin - AI Annexin I - AIIt Annexin II tetramer - AIII Annexin III - AIV Annexin IV - AV Annexin V - AVI Annexin VI - k first order rate constant - AT total extent of Ca2+ uptake (nmol) - BufferA 300 mM sucrose, 10 mM potassium phosphate (pH 7.0), 5 mM EGTA - Buffer B 300 mM sucrose, 10 mM potassium phosphate (pH 7.0) and 1 mM EGTA - Buffer C 300 mM sucrose, 10 mM potassium phosphate (pH 7.0) - Buffer D 300 mM sucrose, 10 mM potassium phosphate (pH 7.0), 0.5 mM EGTA and 0.65 MM CaCl2 - Buffer E 300 mM sucrose, 10 mM potassium phosphate (pH 7.0), 0.25 mM EGTA and 0.325 mM CaCl2  相似文献   

2.
Unfractionated and low buoyant density sarcoplasmic reticulum vesicles released calcium spontaneously after ATP- or acetyl phosphate-supported calcium uptake when internal Ca2+ was stabilized by the use of 50 mM phosphate as calcium-precipitating anion. This spontaneous calcium release could not be attributed to falling Ca2+ concentration outside the vesicles (Ca02+), substrate depletion, ADP accumulation, nonspecific membrane deterioration or the attainment of a high vesicular calcium content. Instead, spontaneous calcium release was directly proportional to Ca02+ at the time that calcium content was maximal. A causal relationship between high Ca02+ and spontaneous calcium release was suggested by the finding that elevation of Ca02+ from less than 1 μM to 3–5 μM increased the rate and extent of calcium release.The spontaneous calcium release was due both to acceleration of calcium efflux and slowing of calcium influx that was not accompanied by a significant change in the rate of ATP hydrolysis. Neither reversal of the transmembrane KCl gradient nor incubation with cation and proton ionophores abolished the spontaneous calcium release. The persistence of calcium release under conditions where the membrane was permeable to both anions and cations makes it unlikely that this phenomenon is due to a changing transmembrane potential.  相似文献   

3.
ATP-dependent Sr2+ transport was examined in vitro using basolateral membrane (BLM) vesicles isolated from rat renal cortex to clarify the discrimination mechanisms between strontium (Sr) and calcium (Ca) in renal tubules during reabsorption. ATP-dependent Sr2+ uptake and Ca2+ uptake were observed in renal BLM vesicles and were inhibited by vanadate. Hill plots indicate similar kinetic behavior for Ca2+ and Sr2+ uptake. The apparentK m andV max of ATP-dependent Sr2+ uptake were both higher than those for Ca2+ uptake. ATP-dependent Sr2+ uptake by BLM vesicles diminished in the presence of 0.1 μM Ca2+ and was more markedly inhibited by 1 μM Ca2+. Hill plots of Sr2+ uptake data with and without 0.1 μM Ca2+ showed that the cooperative behavior of Sr2+ uptake was not changed by Ca2+. In the presence of 0.1 μM Ca2+, the affinity of the transport system for Sr2+ and the velocity of Sr2+ uptake in the BLM were both decreased. However, the rate of Ca2+ uptake was not diminished by Sr2+ concentrations of <1.6 μM. These results suggest that Ca2+ is preferentially transported in the renal cortex BLM when Ca2+ and Sr2+ are present at the same time.  相似文献   

4.
Calcium regulation in the freshwater-adapted mummichog   总被引:2,自引:0,他引:2  
In light of recent findings of an unusual pattern of ionoregulation (high Na+ uptake and negligible Cl- uptake) in the freshwater-adapted mummichog Fundulus heteroclitus, the pattern of Ca2+ regulation was examined. Under control conditions (water Ca2+= 200μEq l-1), unidirectional Ca2+ influx was 11 ± 4 nEq g-1 h-1. Acute variation of external Ca2+ levels revealed a saturable Ca2+ uptake system with a relatively high affinity (Km= 125 ± 36 μEq 1-1) and a transport capacity (Jmax= 31 ± 4 nEq g-1 h-1) comparable to those of other teleosts. Lanthanum (equimolar to [Ca2+]) significantly blocked Ca2+ uptake by 67% whereas magnesium had no effect. Chronic low Ca2+ exposure (50 μEq 1-1) stimulated Ca2+ uptake almost three-fold above control values, whereas chronic high Ca2+ exposure (20000 μEq 1-1) had no effect. Lanthanum and chronic low Ca2+ treatments disturbed the normally positive Ca2+ and Na+ balances of the animals whereas acid-base balance and ammonia excretion were undisturbed. The results indicate that Ca2+ regulation by the mummichog conforms to the model for freshwater Ca2+ transport whereby chloride cells on the gills take up Ca2+ actively from the water. However, the absence of extra-intestinal Cl- uptake and the recent demonstration of significant Ca2+ uptake by opercular epithelia raise questions about the relative roles of branchial and opercular epithelial chloride cells in freshwater F. heteroclitus.  相似文献   

5.
Recent research from our laboratory indicates that aluminium (Al) and calcium (Ca) transport interactions may play an important role in the mechanisms of Al phytotoxicity. In this study, we investigated the effects of Al on Ca2+ transport in intact roots of winter wheat (Triticum aestivum L.) cultivars (Al-tolerant Atlas 66 and Al-sensitive Scout 66). We used both a vibrating Ca2+-microelectrode technique and 45Ca2+ to monitor Ca2+ influx in intact roots. Root apical Ca2+ uptake was immediately inhibited, when roots were exposed to Al levels that ultimately decreased root growth in Al-sensitive Scout 66. The Al-tolerant cultivar was able to resist this Al inhibition of Ca2+ uptake, and to resist Al inhibition of 45Ca2+ translocation from roots to shoots. We also studied Ca2+ transport in right-side out plasmalemma vesicles isolated from roots of Al-sensitive and tolerant wheat cultivars. Calcium influx into the vesicles was mediated by a voltage-gated Ca2+ channel. Aluminium blocks the Ca2+ channel equally well in the plasmalemma vesicles isolated from Al-sensitive and Al-tolerant wheat roots. The results indicate that the differential response observed in intact roots is not due to differences in Ca2+ channels. The Al-tolerant wheat cultivar may have an ability to reduce Al3+ activity in the rhizosphere, thus reducing the Al-inhibition of Ca2+ influx.  相似文献   

6.
A ROLE FOR DIVALENT CATIONS IN THE UPTAKE OF NORADRENALINE BY SYNAPTOSOMES   总被引:9,自引:7,他引:2  
–The effects of divalent cations on the initial rates of noradrenaline uptake by synaptosomes were determined using Millipore filtration to terminate the reaction. The removal of either Ca2+ or Mg2+ from the incubation medium had no effect on uptake, but when both Ca2+ and Mg2+ were removed, uptake was reduced. Uptake was also diminished when Ca2+ was absent and 1 mm -EGTA added to the medium. It appeared that Ca2+ was required for optimal uptake but that Mg2+ could partially substitute for Ca2+ in this regard. The reduction in the rate of uptake when both Ca2+0 and Mg2+ were absent could be rapidly and completely reversed by restoring Ca2+, Mg2+, or both Ca2+ and Mg2+ to the incubation medium. Of the divalent cations tested, Ca2+ and Mg2+, but not Mn2+, supported noradrenaline uptake. When the kinetics of uptake were examined, it was found that removing both Ca2+ and Mg2+ from the medium resulted in a reduction of the Vmax for noradrenaline uptake. It is apparent from these results that, in addition to facilitating the release of noradrenaline from noradrenergic terminals, Ca2+ may also play a role in the uptake of noradrenaline by presynaptic nerve-endings in the CNS.  相似文献   

7.
In the present study we examine the effects of Al on the uptake of Ca2+ and H2PO-4 in beech (Fagus sylvatica L.) grown in inorganic nutrient solutions and nutrient solutions supplied with natural fulvic acids (FA). All the solutions used were chemically well characterized. The uptake of Al by roots of intact plants exposed to solutions containing 0, 0.15 or 0.3 mM AlCl3 for 24 h, was significantly less if FA (300 mg l−1) were also present in the solutions. The Ca2+(45Ca2+) uptake was less affected by Al in solutions supplied with FA than in solutions without FA. There was a strong negative correlation between the Al and Ca2+ uptake (r2=0.98). When the Al and Ca2+ (45Ca2+) uptake were plotted as a function of the Al3+ activity (or concentration of inorganic mononuclear Al), almost the same response curves were obtained for the -FA and +FA treatments. We conclude that FA-complexed Al was not available for root uptake and therefore could not affect the Ca2+ uptake. The competitive effect of Al on the Ca2+ uptake was also shown in a 5-week cultivation experiment, where the Ca concentration in shoots decreased at an AlCl3 concentration of 0.3 mM. The effect of Al on H2PO4 uptake was more complex. The P content in roots and shoots was not significantly affected, compared with the control, by cultivation for 5 weeks in a solution supplied with 0.3 mM AlCl3, despite a reduction of the H2PO4 concentration in the nutrient solution to about one-tenth. At this concentration Al obviously had a positive effect on H2PO4 uptake. The presence of FA decreased 32P-phosphate uptake by more than 60% during 24 h, and the addition of 0.15 or 0.3 mM AlCl3 to these solutions did not alter the uptake of 32P-phosphate.  相似文献   

8.
Abstract: Rat brain microsomes accumulate Ca2+ at the expense of ATP hydrolysis. The rate of transport is not modulated by the monovalent cations K+, Na+, or Li+. Both the Ca2+ uptake and the Ca2+-dependent ATPase activity of microsomes are inhibited by the sulfated polysaccharides heparin, fucosylated chondroitin sulfate, and dextran sulfate. Half-maximal inhibition is observed with sulfated polysaccharide concentrations ranging from 0.5 to 8.0 µg/ml. The inhibition is antagonized by KCl and NaCl but not by LiCl. As a result, Ca2+ transport by the native vesicles, which in the absence of polysaccharides is not modulated by monovalent cations, becomes highly sensitive to these ions. Trifluoperazine has a dual effect on the Ca2+ pump of brain microsomes. At low concentrations (20–80 µM) it stimulates the rate of Ca2+ influx, and at concentrations >100 µM it inhibits both the Ca2+ uptake and the ATPase activity. The activation observed at low trifluoperazine concentrations is specific for the brain Ca2+-ATPase; for the Ca2+-ATPases found in blood platelets and in the sarcoplasmic reticulum of skeletal muscle, trifluoperazine causes only a concentration-dependent inhibition of Ca2+ uptake. Passive Ca2+ efflux from brain microsomes preloaded with Ca2+ is increased by trifluoperazine (50–150 µM), and this effect is potentiated by heparin (10 µg/ml), even in the presence of KCl. It is proposed that the Ca2+-ATPase isoform from brain microsomes is modulated differently by polysaccharides and trifluoperazine when compared with skeletal muscle and platelet isoforms.  相似文献   

9.
A venacin, the resistance factor in oat roots against Ophiobolus graminis var. graminis, and a related triterpeneglycoside, aescin, inhibited the uptake of K+ and Mg2+ in the fungal mycelium both in phosphate and succinate buffers. The uptake of the cations in Neurospora crassa was similarly inhibited when the inhibitors were dissolved in phosphate or acetatebuffer, while no decrease in the uptake of K+ and Mg2+ was observed when the inhibitors were dissolved in succinate buffer. The uptake of cations in Aspergillus niger and Pythium irregulare was more or less unaffected by aescin. The uptake of inorganic phosphate was in no case inhibited, but some decrease of the accumulation of inorganic phosphate in Ophiobolus graminis and Ncurospora crassa due to inhibitor treatment in phosphate buffer was observed. No accumulation of Ca2+ was observed in any of the tested fungi.  相似文献   

10.
Summary Rabbit aortic smooth muscle cells were prepared by enzymatic digestion of the aortic smooth muscle layer. The cells were subcultured up to Passage 22 starting from a cryogenically preserved stock (approximately 1010cells, Passage 8) and characterized morphologically and for45Ca++ uptake. Microscopically the cells demonstrated the characteristics of vascular smooth muscle cells.45Ca++ uptake by the cells plated on tissue culture flasks (25 cm2) was determined at 25°C in physiological salt solution (PSS) containing45Ca++ in low (5 mM) or high (50mM) KCl concentrations. At the end of the incubation period (0 to 30 min), PSS was aspirated and the cells quickly washed, digested with 0.5N NaOH, and counted for45Ca++. High K+ increased the45Ca++ uptake by 100% or more compared to the low K+ uptake of45Ca++. This K+-induced45Ca++ uptake was eliminated in osmotically shocked cells, and inhibited by nifedipine, verapamil, and diltiazem, in a dose-dependent manner. The extent of45Ca++ uptake and the inhibitory activity of nifedipine were retained up to Passage 22. It is concluded that the developed methodology for scaled-up cultures of rabbit aortic smooth muscle cells provides morphologically intact and biochemically functioning cells suitable for calcium channel studies.  相似文献   

11.
In our previous study vesamicol, an inhibitor of the acetylcholine transporter of the cholinergic vesicles, inhibited veratridine-evoked external Ca2+-dependent acetylcholine release from striatal slices but did not influence acetylcholine release observed in Ca2+-free medium (4). Here we examined if the effect of veratridine on membrane potential, Ca2+ uptake, and intracellular Ca2+ concentration of synaptosomes was altered by vesamicol in parallel with the inhibition of acetylcholine release. The depolarizing effect of 10 M veratridine (from 67±2.3 mV resting membrane potential to 50.7±2.5 mV) was not significantly influenced by vesamicol (1–20 M). Vesamicol (1–20 M) had no effect on either the overall curve of the veratridine-evoked45Ca2+ uptake or the amount of Ca2+ taken up by synaptosomes. Veratridine caused a rise in intrasynaptosomal Ca2+ concentration as measured by Fura2 fluorescence, and the same increase both in characteristics and in magnitude was observed in the presence of vesamicol (20 M). The K+-evoked (40 mM) increase of Ca2+ uptake and of intracellular calcium concentration were also unaltered by vesamicol. In high concentration (50 M) vesamicol inhibited both the fall in membrane potential and the elevated Ca2+ uptake by veratridine, indicating a possible nonspecific effect on potential-dependent Na+ channels at this concentration. Vesamicol, in lower concentration (20 M) when neither of the above parameters was changed, completely prevented veratridine-evoked increase of [14C]acetylcholine release. This was observed only when vesamicol was present in the media throughout the experiment after loading the preparation with [14C]choline. The results suggest that vesamicol does not interfere with veratridine-induced changes in isolated nerve terminals other than with the release of acetylcholine, thus further supporting the involvement of a vesamicol-sensitive vesicular transmitter pool in Ca2+-dependent veratridine-elicited acetylcholine release.  相似文献   

12.
We studied the peculiarities of permeability with respect to the main extracellular cations, Na+ and Ca2+, of cloned low-threshold calcium channels (LTCCs) of three subtypes, Cav3.1 (α1G), Cav3.2 (α 1H), and Cav3.3 (α1I), functionally expressed in Xenopus oocytes. In a calcium-free solution containing 100 mM Na+ and 5 mM calcium-chelating EGTA buffer (to eliminate residual concentrations of Ca2+) we observed considerable integral currents possessing the kinetics of inactivation typical of LTCCs and characterized by reversion potentials of −10 ± 1, −12 ± 1, and −18 ± 2 mV, respectively, for Cav3.1, Cav3.2, and Cav3.3 channels. The presence of Ca2+ in the extracellular solution exerted an ambiguous effect on the examined currents. On the one hand, Ca2+ effectively blocked the current of monovalent cations through cloned LTCCs (K d = 2, 10, and 18 μM for currents through channels Cav3.1, Cav3.2, and Cav3.3, respectively). On the other hand, at the concentration of 1 to 100 mM, Ca2+ itself functioned as a carrier of the inward current. Despite the fact that the calcium current reached the level of saturation in the presence of 5 mM Ca2+ in the external solution, extracellular Na+ influenced the permeability of these channels even in the presence of 10 mM Ca2+. The Cav3.3 channels were more permeable with respect to Na+ (P Ca/P Na ∼ 21) than Cav3.1 and Cav3.2 (P Ca/P Na ∼ 66). As a whole, our data indicate that cloned LTCCs form multi-ion Ca2+-selective pores, as these ions possess a high affinity for certain binding sites. Monovalent cations present together with Ca2+ in the external solution modulate the calcium permeability of these channels. Among the above-mentioned subtypes, Cav3.3 channels show the minimum selectivity with respect to Ca2+ and are most permeable for monovalent cations. Neirofiziologiya/Neurophysiology, Vol. 38, No. 3, pp. 183–192, May–June, 2006.  相似文献   

13.
Investigations of the energy-dependent accumulation of orthophosphate by the blue-green alga Anacystis nidulans have established: 1. The transport through the cell membrane is the rate-limiting step in the incorporation of phosphate.-2. This transport is facilitated by a carrier that can be activated by Ca2+ and Mg2+ and inhibited by EDTA.-3. The activation of the carrier in the light is associated with changes of the cytoplasmic Mg2+ content.-4. Intracellular phosphate is shown to be present in bound form.-5. The energy-dependent accumulation of orthophosphate within the cell depends strictly on the cytoplasmic pH and not on the energy conversion at the thylakoid membrane which is responsible for the energy supply. The cytoplasmic pH is different in the light, in the dark, and in the presence of the uncoupler carbonyl cyanide m-chlorophenylhydrazone (CCCP). Orthophosphate accumulation can most readily be explained in terms of a pH dependent precipitation into a complex with bivalent cations rather than by an active transport against a concentration gradient.Abbreviation CCCP Carbonyl cyanide m-chlorophenylhydrazone  相似文献   

14.
Right-side-out plasma membrane vesicles isolated from Zea mays roots were used to study membrane potential (ΔΨ)-dependent Ca2+ transport. Membrane potentials were imposed on the vesicles using either K+ concentration gradients and valinomycin or SCN concentration gradients, and the size of the imposed ΔΨ was measured with [14C]tetraphenylphosphonium. Uptake of 45Ca2+ into the vesicles was stimulated by inside-negative ΔΨ. The rate of transport increased to a maximum at a ΔΨ of about -80 mV and then declined at more negative ΔΨ. When extravesicular Ca2+ concentration was varied, uptake was maximal in the range 100–200 μM Ca2+. Neither dihydropyridine nor phenylalkylamine Ca2+ channel blockers had any effect on Ca2+ uptake but 30 μM ruthenium red was completely inhibitory with half maximal inhibition at 10–15 μM ruthenium red. Calcium transport was also inhibited by inorganic cations. Zn2+, Gd3+ and Mg2+ inhibited by a maximum of 30% while La3+, Nd3+ and Mn2+ inhibited by 70%. The inhibitory effects of La3+ and Gd3+ were additive. Lanthanum-insensitive Ca2+ five Ca2+ transport was totally inhibited by 80 μM Gd3+ and showed maximum activity at a ΔΨ of -60 mV, with less uptake at both higher and lower ΔΨ. Lanthanum and Gd3+ also inhibited Ca2+ uptake into protoplasts isolated from Zea roots and their individual and combined effects were similar in extent to those observed with plasma membrane vesicles. It is concluded that maize root plasma membrane contains two Ca2+-permeable channels that can be distinguished by their susceptibility to inhibition by La3+ and Gd3+. Both are inhibited by ruthenium red but not by other organic Ca2+ channel blockers.  相似文献   

15.
Treating carrot (Daucus carota L.) discs with ice-cold NaCl solutions for 30 minutes caused three effects that appear to be functionally related: the exchange of tissue Ca2+ and Mg2+ for Na+, the release of protein, and the suppression of active uptake of glucose and orthophosphate. Cyclosis continued apparently unabated after treatment with NaCl at concentrations of up to 0.25 m, so the cells remained viable and energetically competent. The correlation between the release of Ca2+ and Mg2+ and release of protein, and between these effects and the suppression of glucose and orthophosphate uptake, supports the hypothesis that divalent cations maintain, and monovalent cations disrupt, linkages between the outer cell surface and proteins required for active solute uptake. Calcium preserved uptake activity only when it was added in time to prevent the release of protein. Cells gradually recovered some glucose uptake activity after it had been completely inactivated by treatment with 0.25 m NaCl. This recovery occurred in the absence of added Ca2+. It was inhibited by puromycin and so appears to require some protein synthesis. Beet (Beta vulgaris L.) discs were more resistant than carrot discs to treatment with NaCl solutions, thus reflecting the difference in tolerance of the two species to sodicity.  相似文献   

16.
The large inner membrane electrochemical driving force and restricted volume of the matrix confer unique constraints on mitochondrial ion transport. Cation uptake along with anion and water movement induces swelling if not compensated by other processes. For mitochondrial Ca2+ uptake, these include activation of countertransporters (Na+/Ca2+ exchanger and Na+/H+ exchanger) coupled to the proton gradient, ultimately maintained by the proton pumps of the respiratory chain, and Ca2+ binding to matrix buffers. Inorganic phosphate (Pi) is known to affect both the Ca2+ uptake rate and the buffering reaction, but the role of anion transport in determining mitochondrial Ca2+ dynamics is poorly understood. Here we simultaneously monitor extra- and intra-mitochondrial Ca2+ and mitochondrial membrane potential (ΔΨm) to examine the effects of anion transport on mitochondrial Ca2+ flux and buffering in Pi-depleted guinea pig cardiac mitochondria. Mitochondrial Ca2+ uptake proceeded slowly in the absence of Pi but matrix free Ca2+ ([Ca2+]mito) still rose to ∼50 μm. Pi (0.001–1 mm) accelerated Ca2+ uptake but decreased [Ca2+]mito by almost 50% while restoring ΔΨm. Pi-dependent effects on Ca2+ were blocked by inhibiting the phosphate carrier. Mitochondrial Ca2+ uptake rate was also increased by vanadate (Vi), acetate, ATP, or a non-hydrolyzable ATP analog (AMP-PNP), with differential effects on matrix Ca2+ buffering and ΔΨm recovery. Interestingly, ATP or AMP-PNP prevented the effects of Pi on Ca2+ uptake. The results show that anion transport imposes an upper limit on mitochondrial Ca2+ uptake and modifies the [Ca2+]mito response in a complex manner.  相似文献   

17.
Calcium Homeostasis in Digitonin-Permeabilized Bovine Chromaffin Cells   总被引:6,自引:6,他引:0  
The regulation of cytosolic calcium was studied in digitonin-permeabilized chromaffin cells. Accumulation of 45Ca2+ by permeabilized cells was measured at various Ca2+ concentrations in the incubation solutions. In the absence of ATP, there was a small (10–15% of total uptake) but significant increase in accumulation of Ca2+ into both the vesicular and nonvesicular pools. In the presence of ATP, the permeabilized cells accumulated Ca2+ into carbonyl cyanide m-chlorophenyl hydrazone (CCCP)-sensitive and -insensitive pools. The CCCP-sensitive pool—mainly mitochondria—was active when the calcium concentration was > 1 μM and was not saturated at 25 μM. The Ca2+ sequestered by the CCCP-insensitive pool could be inhibited by vanadate and released by inositol trisphosphate, a combination suggesting that this pool was the endoplasmic reticulum. The CCCP-insensitive pool had a high affinity for calcium, with an EC50 of ~1 μM. When the Ca2+ concentration was adjusted to the level in the cytoplasm of resting cells (0.1 μM), the presumed endoplasmic reticulum pool was responsible for ~90% of the ATP-stimulated calcium uptake. At a calcium level similar to the acetylcholine-stimulated level in intact cells (5–10 μM), most of the Ca2+ (>95%) went into the CCCP-sensitive pool.  相似文献   

18.
In order to evaluate the contribution of pinocytosis to basal (no agonist) and lanthanide-insensitive store-activated Ca2+ inflow in freshly-isolated rat hepatocytes, the uptake of extracellular fluid by pinocytosis was measured at 20°C and used to predict the amount of extracellular Ca2+ taken up by pinocytosis. This was compared with the measured rate of Ca2+ uptake in the basal state, and with the measured lanthanide-insensitive component of divalent cation uptake stimulated by 2,5-di-tert-butylhydroquinone (DBHQ), an inhibitor of the smooth endoplasmic reticulum (Ca2+ + Mg2+)ATP-ase. Fluid uptake by pinocytosis was measured using [14C]sucrose. In hepatocytes incubated at 20°C, DBHQ increased the initial rate of sucrose uptake by about 35%. The data for sucrose uptake were used to calculate the volume of extracellular fluid taken up by pinocytosis which, in turn, was used to predict the amount of extracellular Ca 2+ taken up through pinocytosis in the basal and DBHQ-stimulated states. Rates of divalent cation inflow in the basal state were determined at 20°C by measuring the uptake of 45Ca2+. The degree of stimulation of Ca2+ inflow by DBHQ and the lanthanide-insensitive component of DBHQ-stimulated divalent cation inflow were determined by measuring the rate of Mn2+-induced quenching of intracellular quin-2 in the absence of an agonist, and in the presence of DBHQ or DBHQ plus Gd3+. It was calculated that the process of pinocytosis accounts for at least 15% of Ca2+ uptake in the basal (no agonist) state, and for about 10% of DBHQ-stimulated lanthanide-insensitive Ca2+ uptake. It is concluded that in isolated hepatocytes (i) the release of Ca2+ from intracellular stores stimulates pinocytosis and (ii) the process of pinocytosis can account for a substantial proportion of basal Ca2+ inflow and a small proportion of DBHQ-stimulated lanthanide-insensitive Ca2+ inflow.Abbreviations RACC receptor-activated Ca2+ channel - DBHQ 2,5-di-tert-butylhydroquinone - [Ca2+] intracellular free Ca2+ concentration  相似文献   

19.
The effects of aluminum on the concentration-dependent kinetics of Ca2+ uptake were studied in two winter wheat (Triticum aestivum L.) cultivars, Al-tolerant Atlas 66 and Al-sensitive Scout 66. Seedlings were grown in 100 M CaCl2 solution (pH 4.5) for 3 d. Subsequently, net Ca2+ fluxes in intact roots were measured using a highly sensitive technique, employing a vibrating Ca2+-selective microelectrode. The kinetics of Ca2+ uptake into cells of the root apex, for external Ca2+ concentrations from 20 to 300 M, were found to be quite similar for both cultivars in the absence of external Al; Ca2+ transport could be described by Michaelis-Menten kinetics. When roots were exposed to solutions containing levels of Al that were toxic to Al-sensitive Scout 66 but not to Atlas 66 (5 to 20 M total Al), a strong correlation was observed between Al toxicity and Al-induced inhibition of Ca2+ absorption by root apices. For Scout 66, exposure to Al immediately and dramatically inhibited Ca2+ uptake over the entire Ca2+ concentration range used for these experiments. Kinetic analyses of the Al-Ca interactions in Scout 66 roots were consistent with competitive inhibition of Ca2+ uptake by Al. For example, exposure of Scout 66 roots to increasing Al levels (from 0 to 10 M) caused the K m for Ca2+ uptake to increase with each rise in Al concentration, from approx. 100 M in the absence of Al to approx. 300 M in the presence of 10 M Al, while having no effect on the V max. The same Al exposures had little effect on the kinetics of Ca2+ uptake into roots of Atlas 66. The results of this study indicate that Al disruption of Ca2+ transport at the root apex may play an important role in the mechanisms of Al toxicity in Al-sensitive wheat cultivars, and that differential Al tolerance may be associated with the ability of Ca2+-transport systems in cells of the root apex to resist disruption by potentially toxic levels of Al in the soil solution.We would like to thank Dr. Lionel F. Jaffe, Director of the National Vibrating Probe Facility, Marine Biological Laboratory, Woods Hole, Mass., USA, for making his calcium-selective vibrating-mi-croelectrode system available for a portion of this work. The research presented here was supported in part by USDA/NRI Competitive Grant number 91-37100-6630 to Leon Kochian. Contribution from the USDA-ARS, U.S. Plant, Soil and Nutrition Laboratory, Cornell University, Ithaca, N.Y. This research was part of the program of the Center for Root-Soil Research, Cornell University, Ithaca, N.Y. Department of Soil, Crop and Atmosphere Science, paper No. 1741.  相似文献   

20.
The properties of calcium channels were studied at the period of neurogenesis in the early embryonic chick retina. The whole neural retina was isolated from embryonic day 3 (E3) chick and loaded with a Ca2+-sensitive fluorescent dye (Fura-2). The retinal cells were depolarized by puff application of high-K+ solutions. Increases in intracellular Ca2+ concentrations were evoked by the depolarization through calcium channels. The type of calcium channel was identified as l-type by the sensitivity to dihydropyridines. The Ca2+ response was completely blocked by 10 μM nifedipine, whereas it was remarkably enhanced by 5 μM Bay K 8644. Then we sought a factor to activate the calcium channel and found that GABA could activate it by membrane depolarization at the E3 chick retina. Puff application of 100 μM GABA raised intracellular Ca2+ concentrations, and this Ca2+ response to GABA was also sensitive to the two dihydropyridines. Intracellular potential recordings verified clear depolarization by bath-applied 100 μM GABA. The Ca2+ response to GABA was mediated by GABAA receptors, since the GABA response was blocked by 10 μgM bicuculline or 50 μM picrotoxin, and mimicked by muscimol but not by baclofen. Neither glutamate, kainate, nor glycine evoked any Ca2+ response. We conclude that l-type calcium channels and GABAA receptors are already are already expressed before differentiation of retinal cells and synapse formation in the chick retina. A possibility is proposed that GABA might act as a trophic factor by activating l-type calcium channels via GABAA receptors during the early period of retinal neurogenesis. © 1993 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号