首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
4-Aminobutyraldehyde Dehydrogenase Activity in Rat Brain   总被引:4,自引:2,他引:2  
Abstract: An enzyme with NAD+-dependent 4-aminobutyraldehyde dehydrogenase activity was purified about 360-fold from rat brain extract. AMP-Sepharose chromatography was effective in separating the enzyme from other NAD+-dependent aldehyde dehydrogenases included in the extract. The K ms for the substrates NAD+ and 4-aminobutyraldehyde were 4.8 × 10−4 and 8.3 × 10−5 M , respectively. The pH optimum for the enzyme was about 8.0. The ratio of activities toward 4-aminobutyraldehyde, propionaldehyde, succinate semialdehyde, and benzaldehyde was 1.00:0.17:0.24:0.09:0.03 when the activity toward 4-aminobutyraldehyde was set equal to 1.00. The enzyme activity in subcellular fractions of rat brain was localized in cytosol.  相似文献   

2.
Properties of glutamate dehydrogenase from developing maize endosperm   总被引:2,自引:0,他引:2  
Glutamate dehydrogenase (EC 1.4.1.3) activity was assayed in homogenates of maize ( Zea mays L. inbred lines Oh43 and Oh43o2) endosperm during development. During the period 20–35 days after pollination anabolic (aminative) activities were higher than catabolic (deaminating) ones. In order to study the regulation of GDH activity, glutamine or glutamate were injected into the ear peduncle before sample harvesting. The amination and deamination reactions showed similar behaviour with different nitrogen sources: glutamine increased, whereas glutamate decreased, both aminative and deaminative reactions. Partially purified enzyme was active with NADH and NADPH in a ratio 9:1. In Tris-HCl buffer a broad optimum at pH 7.6–8.9 and pH 6.8–8.9 was observed with NADH and NADPH, respectively, NADH activity was activated by Ca2+. Saturation curves for (NH4)2SO4 and NADH showed normal Michaelis-Menten kinetics in the presence of 1 m M Ca2+, but substrate inhibition occurred without Ca2+. The enzyme was inactivated by EDTA. The effect of EDTA was reversed by Ca2+ and Mn2+, but not by Cu2+ and Mg2+.  相似文献   

3.
The effects of 0.01 to 5 m M salicyclic acid on the increase in nitrite reductase or glutamate dehydrogenase activities in maize roots by nitrate or ammonium respectively, were examined. Nitrite reductase activity was inhibited by the highest concentration of the acid. The activity of NADH-glutamate dehydrogenase was stimulated slightly (but consistently) by the lowest concentration and was inhibited by higher concentrations. Total protein content was also inhibited at high concentrations. When the crude enzyme extract was stored at 25°C in light, the glutamate dehydrogenase activity in the control decreased after 4 h of incubation. Low concentrations of the acid had no effect on this decrease but higher concentration accelerated the process. The divalent cations Caz2+, Mn2+, Mg2+ and Zn2+ protected against loss of enzyme activity during storage, both in the absence and presence of the acid. The inhibitory effect of 5 m M salicylic acid on glutamate dehydrogenase activity is apparent due to interference with the activity of the enzyme rather than with its synthesis.  相似文献   

4.
NADP+-malic enzyme ( l -malate: NADP+ oxidoreductase, decarboxylating EC 1.1.1.40) from pod walls of chickpea was purified 51-fold by ammonium sulphate fractionation, DEAE- cellulose chromatography and gel filtration through Sepharose 4B. The purified enzyme required a divalent cation, either Mn2+ or Mg2+, for its activity. Km values at pH 7.8 for malate, NADP+ and Mn2+ were 4.0, 0.031 and 0.71 m M , respectively. Mn2+-dependent activity was inhibited by heavy metal ions such as Cd2+, Zn2+, Hg2+, and to a lesser extent by Pb2+ and Al3+. Among the organic acids examined, sodium salts of oxalate and oxaloacetate were inhibitory. Kinetics of the reaction mechanism showed sequential binding of malate and NADP+ to the enzyme. Products of reaction, viz. pyruvate, bicarbonate and NADPH, inhibited the enzyme activity. At limiting concentrations of NADP+, pyruvate and bicarbonate induced a positive cooperative effect by malate. It is proposed that the activity of NADP+-malic enzyme is controlled by intracellular concentrations of substrates and products.  相似文献   

5.
Characteristics of membrane-associated ATPase from commercial Hawaiian varieties of sugarcane ( Saccharum spp. hybrids) were investigated in preparations from sugarcane cell suspension culture and from stalk tissues of the intact plant. In order to examine comparable preparations, protoplasts and vacuoles, in turn, were obtained from both sources. ATPase from preparations of crude protoplast membranes and tonoplast had a pH optimum of 6 to 6.5. The relative effectiveness of divalent cations in stimulating ATPase was Mg2+ > Mn2+≥ Co2+ > Ca2+≥ Zn2+. Enzyme activity was not stimulated by K+, nor by other monovalent cations. Protoplasts and vacuoles from both sources showed significant acid phosphatase activity. Acid phosphatase activity was inhibited by molybdate, but ATPase activity was unaffected. Membrane preparations from protoplasts contained inorganic pyrophosphatase, but enzyme activity was low or not present in tonoplast preparations. Cell suspension and stalk tissue preparations hydrolyzed a large number of nucleoside di- and triphosphates. The hydrolysis is most likely due to a series of enzymes rather than a single enzyme. ATPase from protoplast and tonoplast preparations was inhibited 30–50% by diethylstilbestrol and sodium ortho-vanadate and was unaffected by ionophores. This study illustrates the complexity of phosphohydrolase activities in membrane preparations from sugarcane. The study, however, also illustrates substantial similarity in the behavior of these enzymes, whether they are derived from the plant itself or from cell cultures originating from comparable tissues of the plant.  相似文献   

6.
Abstract Inducible (1 R ,2 S )-1,2-dihydroxy-3,5-cyclohexadiene-l,4-dicarboxylate (diene-diol) dehydrogenase was found in extracts of Comamonas testosteroni T-2 grown in p -toluate-or terephthalate-salts medium and it was purified using anion exchange, hydrophobic interaction and gel filtration chromatography. The enzyme is a homodimer with subunit M r 39000. It had a specific activity of 500 mkat/kg of protein and was activated by the addition of Fe2+. The dehydrogenase converted 1 mol diene-diol and 1 mol NAD+ to 1 mol protocatechuic acid, 1 mol NADH and 1 mol CO2. Apparent K m-values of 43 μM (NAD+) and about 90 μM (diene-diol) were determined. The hydride ion was transferred to the si face of NAD+.  相似文献   

7.
The reductive carboxylation of α-ketoglutarate by purified NADP+-isocitrate dehydrogenase (EC 1.1.1.42) from maturing castor bean seeds ( Ricinus communis L. ) has been characterized. The optimum pH for the reaction was 6.5, whereas pH 8.5 was optimum for oxidation of isocitrate (forward reaction). The enzyme utilized NADH as well as NADPH as the reducing agent in the reverse reaction, but only NADP+ in the forward reaction. The Km values for NADPH and NADH were 0.044 and 2.8 m M respectively, and for α-ketoglutarate and HCO3 4.1 and 3.7 m M. The enzyme was activated by various cations including Mg2+, Mn2+, Co2+, Zn2+, Ni2+ and Co2+. Km values for Mg2+ Mn2+, Co2+ and Zn2+ were 12, 34, 37 and 49μ M respectively.  相似文献   

8.
Characterization of phytochelatin synthase from tomato   总被引:11,自引:0,他引:11  
The enzyme that synthesizes Cd-binding phytochelatins (PCs), PC synthase, has been studied in tomato ( Lycopersicon esculentum ) cell cultures and plants. This enzyme transfers γ-GluCys from GSH or PC to either GSH or an existing polymer of (γ-GluCys)nGly. PC synthase from tomato requires GSH or PCs as substrates but cannot utilise γ-GluCys or GSSG. PC synthase is activated both in vivo and in vitro by a variety of heavy metal ions, including Cd2+, Ag+, Cu2+, Au+, Zn2+, Fe2+, Hg2+ and Pb2+. In crude protein extracts from tomato cells the enzyme has an apparent Km of 7.7 m M for GSH in the presence of 0.5 m M Cd2+, and exhibits maximum activity at pH 8.0 and 35°C. PC synthase is present in tomato cells grown in the absence of Cd. The level of enzyme activity is regulated during the cell culture cycle, with the highest activity occurring 3 days after subculture. Cadmium-resistant tomato cells growing in medium containing 6 m M CdCl2 have a 65% increase in PC synthase activity compared to unselected cells. PC synthase is also present in roots and stems of tomato plants, but not in leaves or fruits. The distribution of the enzyme in tomato plants and regulation of PC synthase activity in tomato cells indicate that PC synthase, and PCs, may have additional functions in plant metabolism that are not directly related to the formation of Cd-PC complexes in response to cadmium.  相似文献   

9.
Abstract: The kinetic and regulatory properties of a partly purified preparation of ox brain NAD+-dependent isocitrate dehydrogenase have been studied at pH 7.5. The enzyme exhibits rate cooperativity with respect to isocitrate but shows normal hyperbolic kinetics with respect to NAD+. ADP activates the enzyme by decreasing the substrate concentrations that are necessary to give half-maximal velocity, but it has no effect on the Hill constant for isocitrate unless Mg2+ ions are replaced by Mn2+ ions in the reaction mixture. Citrate and tricarballylate activate the enzyme in a similar fashion to ADP. Higher concentrations of citrate cause inhibition but this could be overcome by raising the concentration of Mg2+ ions, suggesting that the inhibition by this compound might be due to its acting as a chelating agent. NADH and NADPH were competitive inhibitors with respect to NAD+ but the product, 2-oxoglutarate, was not inhibitory. γ-Aminobutyrate and a number of other compounds involved in the γ-aminobutyrate pathway had no significant effect on the activity of the enzyme.  相似文献   

10.
Abstract: Soluble and membrane fractions of bovine adrenal medulla contain several substrates for the Ca2+/ phospholipid-dependent and cyclic AMP-dependent protein kinases. The phosphorylation of soluble proteins (36 and 17.7 kilodaltons) and a membrane protein (22.5 kilo-daltons) showed an absolute requirement for the presence of both Ca2+ and phosphatidylserine; other substrates showed less stringent phosphorylation requirements and many of these proteins were specific for each of the protein kinases. The Ca2+/phospholipid-dependent phosphorylation was rapid, with effects seen as early as at 30 s of incubation. Measurement of enzyme activities with histone HI as an exogenous substrate demonstrated that the Ca2+/phospholipid-dependent protein kinase was equally distributed between the soluble and membrane fractions whereas the cyclic AMP-dependent enzyme was predominantly membrane-bound in adrenal medulla and chromaffin cells. The activity of the soluble Ca2+/phos-pholipid-dependent protein kinase of adrenal medulla was found to be about 50% of the enzyme level present in rat brain, a tissue previously shown to contain a very high enzyme activity. These results suggest a prominent role for the Ca2+/phospholipid-dependent protein kinase in chromaffin cell function.  相似文献   

11.
Xanthine dehydrogenase (XDH, EC 1.2.1.37) of Chlamydomonas reinhardtii (Sager) 6145c wild strain has been isolated and characterized for the first time in a unicellular green alga. The enzyme has an Mr of 330 kDa, and FAD, molybdenum and iron are cofactors required for its activity as deduced from results obtained using specific inhibitors, 59Fe-labelling experiments, activity protection by FAD, physiological responses in vivo to iron and molybdenum deficiencies in the culture medium and work with mutants lacking molybdenum cofactor. Xanthine dehydrogenase exhibited Mi-chaelian kinetics typical for a bisubstrate enzyme with apparent Km values for NAD +, hypoxanthine and xanthine of 35, 160 and 70 μ M , respectively. Under phototrophic conditions enzyme activity was repressed by ammonium, but xanthine was not required for the enzyme to be induced, since high levels of enzyme activity were found in cells grown on ammonium and transferred to either N-frec media or media containing either of the nitrogen sources adenine, urea, urate, xanthine, hypoxanthine and guanine.  相似文献   

12.
NADP+-dependent malic enzyme (L-malate : NADP+ oxidoreductase, decarboxylating, EC 1.1.1.40) was extracted from the leaves of yellow lupine. The purification procedure included fractionation with (NH4)2SO4 and Sephadex G-25 chromatography, followed by purification on DEAE-cellulose and Sephadex G-200 columns. The enzyme was purified 122-fold. The enzyme affinity towards L-malate was found to be significantly higher with Mn2+ than with Mg2+. The Hill coefficient for Mg2+ depended on concentration and was 1.6 for the lower and 3.9 for the higher concentrations. The dependence of the enzyme activity on NADP+ followed a hyperbolic curve. Km values and Hill coefficients for NADP+ were similar with both Mn2+ and Mg2+. The enzyme activity was strictly dependent on divalent cations and followed a sigmoidal curve at least for Mg2+. The enzyme had 4-fold higher affinity towards Mn2+ than towards Mg2+, the Km values being 0.3 and 1.15 m M respectively. Of several tested organic acids, oxalate was the most effective inhibitor followed by oxaloacetate while succinate was the strongest activator.  相似文献   

13.
The thioredoxin-dependent light/dark modulation system of the chloroplast is described as a prerequisite enabling the flexible control of fluxes through the various parts of the CO2-fixation pathway. Both the rapid turnover of the reduced thiol-containing form of the respective target enzyme, and the metabolite effect upon the reductive enzyme modulation, allow rapid adjustment of the amount of active species to the actual requirements. The structural basis of the regulation of chloroplast NADP+-malate dehydrogenase (EC 1.1.1.82) is described in more detail. The modulable plastid enzyme is characterized by two sequence extensions not present in any other known NADP+- and/or NAD+-specific malate dehydrogenase. The NADP+-malate dehydrogenase of C3-plants is part of the "malate valve", which catalyzes the export of reducing equivalents in the form of malate from the chloroplast only when the NADPH to NADP+ ratio is high, thus poising the NADPH to ATP ratio required for optimal carbon reduction in the light. The mode of regulation of other light/dark modulated enzymes is discussed.  相似文献   

14.
The exposure of detached leaves of C3 plants (pea, barley) and C4 plant (maize) to 5 m M Pb (NO3)2 for 24 h caused a reduction of their photosynthetic activity by 40–60%, whereas the respiratory rate was stimulated by 20–50%. Mitochondria isolated from Pb2+-treated pea leaves oxidized substrates (glycine, succinate, malate) at higher rates than mitochondria from control leaves. The respiratory control (RCR) and the ADP/O ratio were not affected. Pb2+ caused an increase in ATP content and the ATP/ADP ratio in pea and maize leaves. Rapid fractionation of barley protoplasts incubated at low and high CO2 conditions, indicated that the increased ATP/ADP ratio in Pb2+-treated leaves resulted mainly from the production of mitochondrial ATP. The measurements of membrane potential of mitochondria with a TPP+-sensitive electrode further showed that mitochondria isolated from Pb2+-treated leaves had at least as high membrane potential as mitochondria from control leaves. The activity of NAD-malate dehydrogenase in the protoplasts from barley leaves treated with Pb2+ was 3-fold higher than in protoplasts from control leaves. The activities of photorespiratory enzymes NADH-hydroxypyruvate reductase and glycolate oxidase as well as of NAD-malic enzyme were not affected. The presented data indicate that stimulation of respiration in leaves treated by lead is in a close relationship with activation of malate dehydrogenase and stimulation of the mitochondrial ATP production. Thus, respiration might fulfil a protective role during heavy metal exposure.  相似文献   

15.
Abstract— Three different types of p -nitrophenyl phosphatases (NPPases) were solubilized by deoxycholate treatment from a membrane fraction of bovine cerebral cortex, and their characteristics were determined. Of these three NPPases (acid, Mg2+-activated, and K+, Mg2+-activated), only K-Mg NPPase was stimulated about two-fold by phospholipid and was inhibited by unsaturated neutral lipids and fatty acids. Unlike Na+-K+-Mga+-activated ATPase, the enzyme did not absolutely require phospholipid for its activity, but was similarly thermolabile and was protected by phospholipid from thermal inactivation. Acid NPPase was separable from the other two NPPases by ammonium sulphate fractionation, and partly solubilized by dialysis against ATP-mercaptoethanol solution. Hg2+ inhibited equally all three NPPases, but Ca2+ inhibited only Mg and K-Mg NPPases. Ouabain was effective on K-Mg NPPase alone.  相似文献   

16.
Abstract: The role of Ca2+ and Mn2+ in Rhodospirillum rubrum grown under different conditions with respect to nitrogen source has been studied. The results show that this phototroph does not have an absolute requirement for these cations. In vitro studies of one of the enzymes operative in the metabolic regulation of nitrogenase in Rsp. rubrum have shown that Mn2+ or Fe2+ is required for activity. This investigation indicates that Mn2+ is not required in vivo for the function of this enzyme, suggesting that either Fe2+ is functional or that the enzyme has other properties when active in the cell.  相似文献   

17.
A soil streptomycete designated as Streptomyces sp. A8 produced an extracellular collagen hydrolysing enzyme that appeared to be 'true collagenase'as it degraded native collagen under physiological conditions and cleaved the synthetic hexapeptide 4-phenylazobenzyloxycarbonyl-L-prolyl-L-leucyl-glycyl-L-prolyl-D-arginine into two tripeptides. The enzyme was purified by diethyl aminoethyl cellulose chromatography and Sephadex G-150 gel filtration. The purified enzyme had an apparent molecular weight of about 75000 by SDS-polyacrylamide gel electrophoresis. Treatment with lithium chloride did not dissociate it into subunits. A strong inhibition was observed with chelating agents such as α-α-dipyridyl and 8-hydroxyquinoline. Ethylene diamine tetracetate completely inhibited the enzyme activity. Among the cations tested only Ca2 + and Mg2 + enhanced the collagenase activity. Heavy metal ions like Pb2 +, Ag+, Cu2 + and Zn2 + strongly inhibited the enzyme. The EDTA inhibition could be reversed with Ca2 +. Cysteine and reduced glutathione caused significant reduction in enzyme activity. Parachloromercuribenzoate and iodoacetamide had no effect on the collagenase. Amino acid analysis revealed the absence of cysteine and tyrosine. Many of the properties were the same as collagenases of Clostridium histolyticum and Vibrio alginolyticus.  相似文献   

18.
M.E.FÁREZ-VIDAL, A. FERNÁNDEZ-VIVAS, F. GONZÁLEZ AND J.M. ARIAS. 1995. The extracellular amylase activity from Myxococcus coralloides D was purified by Sephacryl S-200 gel filtration and by ion-exchange chromatography on DEAE-Sephadex A-25. The molecular weight was estimated by SDS-PAGE and by gel filtration as 22.5 kDa. The optimum temperature was 45°C. The pH range of high activity was between 6.5 and 8.5, with an optimum at pH 8.0. Activity was strongly inhibited by Hg2+, Zn2+, Cu2+, Ag+, Pb2+, Fe2+ and Fe3+, EDTA and glutardialdehyde, but was less affected by Ni2+ and Cd2+. Li+, Mg2+, Ba2+, Ca2+, N -ethylmaleimide, carbodiimide and phenyl methyl sulphonyl fluoride had almost no affect. The K m (45°C, pH 8) for starch hydrolysis was 2.0 times 10-3 gl-1. Comparison of the blue value-reducing curves with the time of appearance of maltose identified the enzyme produced by M. coralloides D as an α-amylase.  相似文献   

19.
Cyclic nucleotide phosphodiesterase (3',5'-cyclic nucleotide nucleotidohydrolase, EC 3.1.4.17) activity isolated from Phaseolus vulgaris L. cv. Limberg seedlings was partially purified and characterized by fractional (NH4)2SO4 precipitation, DEAE-cellulose chromatography, chromatography on 3',5'-cAMP-agarose, gel permeation chromatography and chromatofocusing. A crude enzyme preparation, a 30–65% (NH4)2SO4 pellet, showed an acidic pH optimum. The enzyme activity was stimulated by imidazole and divalent cations such as Ca2+, Mg2+ and Mn2+, whereas NaF, PPi and Fe3+ were inhibitory. Isobutylmethylxanthine had no significant effect on the plant enzyme. An MI of 42 000 was estimated by gel permeation high performance liquid chromatography. By chromatography on 3',5'-cAMP-agarose a phosphodiesterase was resolved that produced 5'-AMP as sole reaction product.  相似文献   

20.
Abstract— The NAD+ -dependent isocitrate dehydrogenase from ox brain has been purified about 130-fold by a method involving affinity chromatography on an NAD+ -derivative of agarose. The enzyme preparation is not homogeneous but it is free from contaminating enzyme activities that could interfere with kinetic studies. The kinetic properties of the enzyme did not appear to have been altered by the purification procedure involved. The initial velocity of the reaction showed a sigmoid dependence on the concentration of isocitrate, and ADP behaved as an allosteric activator. The kinetics with NAD+ as the substrate were hyperbolic. The molecular weight of the purified enzyme was found to be 285,000 ± 25,000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号