首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mate choice for novel partners should evolve when remating with males of varying genetic quality provides females with fitness‐enhancing benefits. We investigated sequential mate choice for same or novel mating partners in females of the cellar spider Pholcus phalangioides (Pholcidae) to understand what drives female remating in this system. Pholcus phalangioides females are moderately polyandrous and show reluctance to remating, but double‐mated females benefit from a higher oviposition probability compared to single‐mated females. We exposed mated females to either their former (same male) or a novel mating partner and assessed mating success together with courtship and copulatory behaviours in both sexes. We found clear evidence for mate discrimination: females experienced three‐fold higher remating probabilities with novel males, being more often aggressive towards former males and accepting novel males faster in the second than in the first mating trial. The preference for novel males suggests that remating is driven by benefits derived from multiple partners. The low remating rates and the strong last male sperm precedence in this system suggest that mating with novel partners that represent alternative genotypes may be a means for selecting against a former mate of lower quality.  相似文献   

2.
Males can change their copulatory or sperm transfer patterns in response to sperm competition risk. Schizocosa malitiosa performs long copulations, which include two consecutive patterns (Patterns 1 and 2). Virgin females are very sexually receptive, but mated females diminish their receptiveness. Female unreceptivity has been attributed to the action of receptivity-inhibiting substances, mainly transferred during Pattern 1. We tested: (1) if females who mated only with Pattern 1 were immediately unreceptive; (2) male and female behaviours when the copulating couple was exposed to another male. For (1), we interrupted mating when Pattern 1 finished and immediately exposed the female to a second male. For (2), we introduced a second male when the couple was starting (Ei) or finishing copulation (Li). Females were unreceptive immediately after finishing Pattern 1. Males from Ei and Li dismounted and approached the second males. Ei males diminished the frequencies of insertion after perceiving the presence of a second male and dismounted less frequently when copulating with heavy females. The study provides insights about the timing of sexual unreceptivity in S. malitiosa under possibilities of sperm competition, discussing male adjustment of copulatory behaviour in the presence of rival males. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
In polyandrous species, male reproductive success will at least partly be determined by males' success in sperm competition. To understand the potential for post‐mating sexual selection, it is therefore important to assess the extent of female remating. In the lekking moth Achroia grisella, male mating success is strongly determined by female choice based on the attractiveness of male ultrasonic songs. Although observations have indicated that some females will remate, only little is known about the level of sperm competition. In many species, females are more likely to remate if their first mating involved an already mated male than if the first male was virgin. Potentially, this is because mated males are less well able to provide an adequate sperm supply, nutrients, or substances inhibiting female remating. This phenomenon will effectively reduce the strength of pre‐copulatory sexual selection because attractive males with high mating success will be more susceptible to sperm competition. We therefore performed an experiment designed both to provide a more precise estimate of female remating probability and simultaneously to test the hypothesis that female remating is influenced by male mating history. Overall, approximately one of five females remated with a second male. Yet, although females mated to non‐virgin males were somewhat more prone to remate, the effect of male mating history was not significant. The results revealed, however, that heavier females were more likely to remate. Furthermore, we found that females' second copulations were longer, suggesting that, in accordance with theory, males may invest more sperm in situations with an elevated risk of sperm competition.  相似文献   

4.
Reproductive success of male insects commonly hinges both on their ability to secure copulations with many mates and also on their ability to inseminate and inhibit subsequent sexual receptivity of their mates to rival males. We here present the first investigation of sperm storage in Queensland fruit flies (Tephritidae: Bactrocera tryoni; a.k.a. 'Q-flies') and address the question of whether remating inhibition in females is directly influenced by or correlated with number of sperm stored from their first mates. We used irradiation to disrupt spermatogenesis and thereby experimentally reduce the number of sperm stored by some male's mates while leaving other aspects of male sexual performance (mating probability, latency until copulating, copula duration) unaffected. Females that mated with irradiated rather than normal males were less likely to store any sperm at all (50% vs. 89%) and, if some sperm were stored, the number was greatly reduced (median 11 vs. 120). Despite the considerable differences in sperm storage, females mated by normal males and irradiated males were similarly likely to remate at the next opportunity, indicating (1) number of sperm stored does not directly drive female remating inhibition and (2) factors actually responsible for remating inhibition are similarly expressed in normal and irradiated males. While overall levels of remating were similar for mates of normal and irradiated males, factors responsible for female remating inhibition were positively associated with presence and number of sperm stored by mates of normal but not irradiated males. We suggest seminal fluids as the most likely factor responsible for remating inhibition in female Q-flies, as these are likely to be transported in proportion to number of sperm in normal males, be uninfluenced by irradiation, and be transported without systematic relation to sperm number in irradiated males.  相似文献   

5.
We determined the temporal pattern of female remating in the Mediterranean fruit fly, Ceratitis capitata, and how mating with sterile males affects remating. In addition, we examined the hypotheses that sterile male nutrition and age affect the subsequent receptivity of their mates. Temporally, female receptivity varied significantly throughout the experimental period. Relatively high levels of remating (14%) on the days following the first copulation were followed by a decline, with a significantly low point (4.1%) 2 weeks after mating. Subsequently, receptivity is gradually restored (18%) 3 and 4 weeks after the initial copulation. When females were first mated to sterile males, significantly higher remating percentages were recorded. The ability of sterile males to inhibit receptivity of both wild and laboratory reared females on the day of first mating was significantly improved when they were fed a nutrient rich diet. Male age at first mating also affected female receptivity: sterile males of intermediate age (11 days old) inhibited female remating significantly more than younger or older flies. Although further studies are needed to determine the relative roles of natural and sexual selection in modulating patterns of female sexual receptivity, the Sterile Insect Technique may be improved by releasing well nourished, older sterile males.  相似文献   

6.
Methoprene (an analogue of juvenile hormone) application and feeding on a protein diet is known to enhance male melon fly, Bactrocera cucurbitae Coquillett (Diptera: Tephritidae), mating success. In this study, we investigated the effect of these treatments on male B. cucurbitae's ability to inhibit female remating. While 14‐d‐old females were fed on protein diet, 6‐d‐old males were exposed to one of the following treatments: (i) topical application of methoprene and fed on a protein diet; (ii) no methoprene but fed on a protein diet; (iii) methoprene and sugar‐fed only; and (iv) sugar‐fed, 14‐d‐old males acted as controls. Treatments had no effect on a male's ability to depress the female remating receptivity in comparison to the control. Females mated with protein‐deprived males showed higher remating receptivity than females first mated with protein‐fed males. Methoprene and protein diet interaction had a positive effect on male mating success during the first and second mating of females. Significantly more females first mated with sugar‐fed males remated with protein‐fed males and females first mated with methoprene treated and protein‐fed males were more likely to remate with similarly treated males. Females mating latency (time to start mating) was significantly shorter with protein‐fed males, and mating duration was significantly longer with protein‐fed males compared with protein‐deprived males. These results are discussed in the context of methoprene and/or dietary protein as prerelease treatment of sterile males in area‐wide control of melon fly integrating the sterile insect technique (SIT).  相似文献   

7.
Abstract.  The first objective of the present study is to test the hypothesis that the decrease in the number of eupyrene spermatozoa in the spermatheca is directly associated with the resumption of sexual receptivity in female moths, an aspect that has not been examined in previous studies. The obliquebanded leafroller, Choristoneura rosaceana , is used and females mated with previously mated males have a shorter refractory period than those mated with virgins. This difference is associated with a faster rate of movement of sperm from the spermatheca. Overall, the length of the female refractory period coincides with the mean time required for the number of eupyrene sperm in the spermatheca to drop to approximately 3000, regardless of male mating history. Although such a decline in sperm numbers may be a factor responsible for the resumption of sexual receptivity, this is clearly not the only one because more than 40% of females remate even though sperm numbers in the spermatheca are well above this threshold. Virgin males do not vary the mass or the content of their ejaculate as a function of the female's reproductive status and this may increase the risk of sperm competition if the female is previously mated. The second objective of this study is to examine the effect of previous male mating history on female reproductive potential. Females mated with previously mated males have a significantly lower fecundity than those mated with virgin males. However, in all treatments, remating increases both female longevity and lifetime fecundity. There is also a significant effect of female mass on the length of the refractory period and on lifetime fecundity, with large females resuming sexual receptivity sooner and laying more eggs than small ones, regardless of male mating history.  相似文献   

8.
Sexes' roles in post‐copulatory processes have important effects on individual fitness and are promising to study in species showing complex mating behaviours. In the spider Schizocosa malitiosa, males perform two different copulatory patterns, pattern 1 includes 80% of total pedipalp insertions and pattern 2 includes 20%. Both patterns produce similar number of offspring, but pattern 1 induces higher female reluctance to remating than pattern 2. We hypothesised that the complex copulatory patterns are linked to post‐copulatory sexual selection, affecting males' sperm transfer and the resulting sperm storage by females. First, we examined amounts of sperm in males and live females from uninterrupted (pattern 1 + 2) and interrupted matings (pattern 1, pattern 2). Second, in order to disentangle male and female actions, we induced males to mate with dead females and examined amounts of sperm. Males transfer in total 71% of the sperm available in their pedipalps, being higher but not significant in pattern 1 than in pattern 2. Females drastically reduced the amount of sperm stored in their spermathecae and such control is stronger in pattern 1 compared to pattern 2 matings. We propose that cryptic female control is a main factor driving males to strengthen sperm transfer. Active female reduction in ejaculate most probably diminished her reluctance to remate.  相似文献   

9.
Mechanisms producing inhibition of remating in mated female Mediterranean fruit flies Ceratitis capitata, were investigated by matings with surgically altered males. Comparison of remating by females mated with either intact control males or males with a shortened penis, showed that ejaculate or a physical stimulus of penis insertion caused remating inhibition for at least 10 days after first mating. Remating frequency at two days after mating was significantly higher in females mated to castrated (spermless) males than in females mated to sham-operated control males. This difference disappeared by day four after mating, indicating that sperm cause a shorter-term inhibition of remating than does a normal first mating. Other factors in addition to sperm must therefore play a role in inhibition of remating.  相似文献   

10.
Male wolf spiders are capable of recognising sexual signals associated with female silk threads. In the wolf spider Schizocosa malitiosa variations in female receptivity have been studied, but changes in female silk attractiveness remain unknown. We analysed the sexual responses of adult males (leg shaking, papal drumming and searching) exposed to silk cues from subadult, virgin and mated females of different ages, and females that were or were not carrying an egg-sac. Penultimate and recently moulted adult females elicited low levels of male sexual behaviour, while those of virgin females (21–40 days old) were the most attractive. Silk threads slowly became less attractive after mating. Cues from females carrying an egg-sac as well as females in the inter egg-sac period were fairly attractive. The low attractiveness of recently moulted females disagrees with their high sexual receptivity. In contrast, females continued to elicit strong male responses during a 10-day period after mating, despite the fact that they immediately become sexually reluctant, suggesting strong selection for male searching ability. Low attractiveness during the egg-carrying period could reflect the fact that females do not require any further sperm. Concordances and discordances between attractiveness and sexual receptivity suggest that they respond to different physiological mechanisms.  相似文献   

11.
Male physiological condition can affect his ability to modulate female sexual receptivity. Thus, studying this aspect can have biological and practical implications. Here, we examine how male nutritional status affected the amount of sperm stored, remating rate and refractory period of the tephritid fruit fly Anastrepha fraterculus (Wiedemann) females. Both wild and laboratory flies were evaluated. We also examine female sperm storage patterns. Experiments were carried out by manipulating male adult diet and exposing these males to virgin females. Females mated with differently treated males were either dissected to count the amount of sperm stored or exposed to virgin males to determine remating rate and the length of the refractory period. We found that male nutritional status affected the amount of the sperm stored and the renewal of sexual receptivity in wild flies. For laboratory flies, male nutritional status affected the length of the refractory period but not the amount of sperm stored by females. In addition, we report that the ventral receptacle is not an important organ of sperm storage in this species. We conclude that male nutritional condition influences the ability to modulate female sexual receptivity, possibly through a combination of the quantity and quality of the ejaculate. From an applied perspective, providing males with an enriched diet will likely result in increased efficacy of the sterile insect technique.  相似文献   

12.
Males and females have conflicting interests on the frequency and outcomes of mating interactions. Males maximize their fitness by mating with as many females as possible, whereas choosy females often reduce receptivity following copulation. Alternative male mating tactics can be adaptive in their expression to a variety of mating contexts, including interactions with a relatively unreceptive mated female. Male Rabidosa punctulata wolf spiders can adopt distinctive mating tactics when interacting with a female, a complex courtship display, and/or a more coercive direct mount tactic that often involves grappling with females for copulation. In this study, we set up female mating treatments with initial trials and then paired mated and unmated females with males to observe both female remating frequencies and the male mating tactics used during the interactions. Males adopted different mating tactics depending on the mating status of the female they were paired with. Males were more likely to adopt a direct mount tactic with already-mated females and courtship with unmated females. Already-mated females were considerably less receptive to males during experimental trials, although they did remate 34% of the time, the majority of which were with males using a direct mount tactic. Whereas males adjusting to these contextual cues were able to gain more copulations, the observation of multiple mating in female R. punctulata introduces the potential for sperm competition. We discuss this sexual conflict in terms of the fitness consequences of these mating outcomes for both males and females.  相似文献   

13.
Apparently stimulatory male copulatory behaviour (MCB) is widespread among arthropods and it could help males to increase their fitness by inducing favourable behavioural and physiological changes in females. The empirical study of female responses to MCB is hindered because its experimental manipulation is difficult. We have developed a technique for reducing, with minimal disturbance, the frequency of MCB in the true bug Stenomacra marginella. Here, we test the idea that, in a polygamous species like S. marginella, sexual selection favours males whose MCB induces females to increase copula duration (thereby increasing the amount of sperm and accessory substances transferred), reduce their sexual receptivity to additional males and increase their rate of oviposition. Males prevented from performing MCB increased their rate of attempts to perform MCB. Copulations with previously mated females were of longer duration than those with virgin females, probably as a male adaptation for sperm competition, and MCB could have played a role in inducing this effect. Partial or total experimental reduction of MCB frequency had no effect on remating rates, because most females accepted remating at the first opportunity (1 day after their first copula). The probability of egg laying was reduced in females whose first mate was partially prevented from performing copulatory courtship, but not in females whose first mate was completely prevented from performing copulatory courtship. This is an intriguing result and further experiments are needed to understand its causes. We hypothesize that MCB evolved as a result of sexual selection.  相似文献   

14.
When both sexes mate with multiple partners, theory predicts that males should adjust their investment in ejaculates in response to the risk and/or intensity of sperm competition. Here, we demonstrate that, in the harlequin beetle riding pseudoscorpion, Cordylochernes scorpioides, males use cues deposited on females by previous males to distinguish between virgin, once‐mated, and multiply‐mated females and adjust sperm allocation accordingly. Sperm number declined in direct proportion to the number of previous males, with virgin females receiving nearly three times more sperm than females exposed to three previous males. Given the lack of first‐male sperm precedence in C. scorpioides, this pattern is not consistent with current sperm competition models and appears best explained by a significant risk of wasting ejaculates on deceitful, mated females. In C. scorpioides, males transfer sperm indirectly to females via a stalked spermatophore deposited on the substrate. Mated females often feign sexual receptivity and cooperate throughout mating, only to reject the sperm packet produced by the male. While indirect sperm transfer facilitates a high level of female deceit and control, females of many species are able to influence the number and fate of sperm transferred during copulation and are likely to conceal their sexual unreceptivity to minimize male retaliation. If males cannot accurately assess female receptivity, increased risk of sperm rejection by mated females could outweigh the risk of sperm competition and favor greater sperm allocation to virgin females.  相似文献   

15.
Nephilid spiders are known for gigantic females and tiny males. Such extreme sexual dimorphism and male-biased sex ratios result in fierce male–male competition for mates. Intense sperm competition may be responsible for behaviors such as mate guarding, mate binding, opportunistic mating, genital mutilation, mating plugs and male castration (eunuchs). We studied the mating biology of two phylogenetically, behaviorally and morphologically distinct south-east Asian nephilid spider species ( Herennia multipuncta, Nephila pilipes ) in nature and in the laboratory. Specifically, we established the frequencies and effectiveness of plugging (a plug is part of the male copulatory organ), and tested for male and female copulatory organ reuse. Both in nature and in the laboratory, plug frequencies were higher in H. multipuncta (75–80% females plugged) compared with N. pilipes (45–47.4%), but the differences were not significant. Plugs were single and effective (no remating) in H. multipuncta but multiple and ineffective (remating possible) in N. pilipes . In Herennia , the males plugged when the female was aggressive and in Nephila plugging was more likely when mating with previously mated and larger females. Further differences in sexual biology are complete palpal removal and higher sexual aggressiveness in Herennia (sexual cannibalism recorded for the first time), and mate binding in Nephila . Thus, we propose the following evolutionary hypothesis: nephilid plugging was ancestrally successful and enabled males to monopolize females, but plugging became ineffective in the phylogenetically derived Nephila . If the evolution of nephilid sexual mechanisms is driven by sexual conflict, then the male mechanism to monopolize females prevailed in a part of the phylogeny, but the female resistance to evade monopolization ultimately won the arms race.  相似文献   

16.
Natural selection and post‐copulatory sexual selection, including sexual conflict, contribute to genital diversification. Fundamental first steps in understanding how these processes shape the evolution of specific genital traits are to determine their function experimentally and to understand the interactions between female and male genitalia during copulation. Our experimental manipulations of male and female genitalia in red‐sided garter snakes (Thamnophis sirtalis parietalis) reveal that copulation duration and copulatory plug deposition, as well as total and oviductal/vaginal sperm counts, are influenced by the interaction between male and female genital traits and female behaviour during copulation. By mating females with anesthetized cloacae to males with spine‐ablated hemipenes using a fully factorial design, we identified significant female–male copulatory trait interactions and found that females prevent sperm from entering their oviducts by contracting their vaginal pouch. Furthermore, these muscular contractions limit copulatory plug size, whereas the basal spine of the male hemipene aids in sperm and plug transfer. Our results are consistent with a role of sexual conflict in mating interactions and highlight the evolutionary importance of female resistance to reproductive outcomes.  相似文献   

17.
Selection pressures influencing the way in which males stimulate females during copulation are not well understood. In mammals, copulatory stimulation can influence female remating behaviour, both via neuroendocrine mechanisms mediating control of sexual behaviour, and potentially also via effects of minor injury to the female genital tract. Male adaptations to increase copulatory stimulation may therefore function to reduce sperm competition risk by reducing the probability that females will remate. This hypothesis was tested using data for primates to explore relationships between male penile anatomy and the duration of female sexual receptivity. It was predicted that penile spines or relatively large bacula might function to increase copulatory stimulation and hence to reduce the duration of female sexual receptivity. Results of the comparative analyses presented show that, after control for phylogenetic effects, relatively high penile spinosity of male primates is associated with a relatively short duration of female sexual receptivity within the ovarian cycle, although no evidence was found for a similar relationship between baculum length and duration of female sexual receptivity. The findings presented suggest a new potential function for mammalian penile spines in the context of sexual selection, and add to growing evidence that sperm competition and associated sexual conflict are important selection pressures in the evolution of animal genitalia.  相似文献   

18.
Abstract. The mating system of Prokelisia dolus Wilson (Homoptera: Delphacidae) was characterized by determining: if males and females multiply mate; when transitions occur in female sexual receptivity, what triggers sexual refractoriness; and what behaviours characterize unreceptive virgins, receptive virgins, and unreceptive mated females. Males copulated with up to six females in less than 1 h, but completely inseminate, on average, only the first four females. Females rarely mated more than once, unless males were depleted of sperm due to previous copulations or if copulation was interrupted (if duration was<2 min). Male and female calling was associated (100% and 91%, respectively) with sexual receptivity and resultant matings. The transition from unreceptive virgin to receptive (calling) mature virgin occurred 48 h posteclosion, and all were mated by day 4. Females that were sexually immature and those completely inseminated did not call. Rejection of males by females included walking away from approaching males (65%), female kicking (7%), and abdominal lifting (5%). Rejection of males was observed by immature, mature and calling, and mated females. Sexual refractoriness was not triggered by acoustic and visual stimuli or mechanical stimulation of genitalia. Refractoriness was also not triggered by reception of small quantities of sperm because some females laid a few viable eggs yet calling was not terminated. Sexual refractoriness was activated by a substance in the ejaculate as demonstrated by injection into the haemocoel of male accessory glands or testes and homogenates of seminal vesicles. This is the first study that documents the role of male ejaculate in inhibiting female sexual receptivity in Hemiptera (Homoptera).  相似文献   

19.
After an initial mating, females of the Australian sheep blowfly, Lucilia cuprina(Diptera: Calliphoridae), rejected mating attempts by males for several days. Almost all (>98%) females were unreceptive 24 h after mating. When tested 9 days after mating receptivity had returned in 24% of females denied the opportunity to oviposit and 45% of females given repeated opportunities to oviposit on liver. Those mated females that regained receptivity mated as readily as virgins. Gravid first-, second-, or third-cycle females that did not oviposit when presented with liver had a higher receptivity than those that laid. These non-layers laid after remating. Injection of 1 male equivalent of an extract of male accessory reproductive glands into virgin females switched off their receptivity within 5 h for at least 8 days. An extract of testis reduced receptivity 5 h after injection but had no detectable effect 3 days after injection. Both extracts increased the tendency of virgin females to oviposit. There was no difference in the sperm stores of females that refused to lay a second egg mass and comprised a high percentage of receptive females and those given no opportunity to lay this egg mass.  相似文献   

20.
This study examines the relationship between the number of sperm in the seminal receptacle (spermatheca) and the receptivity of female remating in the bean bugRiptortus clavatus Thunberg. On the 21 st day after the first mating when receptivity to remating was > 70%, females receptive to remating had significantly fewer sperm ( < 40 on average) in the spermathecae than females reluctant to do (about 150 on average). However, averages of the number of eggs laid by receptive and reluctant females within 21 days were almost same. The proportion of fertilized eggs for receptive females at 15–21 days after copulation was significantly lower than that for reluctant females. Spermatozoa transferred from a male to a female’s spermatheca were detected 5 min after copulation and then increased continuously to about 500 with the first hour. When copulation durations were manipulated artificially, the shorter the copulation period (=females had less sperm in their spermathecae), the higher the remating rate became. Females may perceive the number of sperm in their seminal receptacles and then determine whether they copulate or not. These results support the hypothesis that females mate multiply in order to replenish inadequate sperm supplies to fertilize all eggs produced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号