首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Degenerative and regenerative changes in the ductal architecture of the ventral and dorsolateral prostates (VP and DLP) of the adult mouse were investigated in microdissected specimens over a time-course of 14 days following castration and subsequently during 14 days of administration of testosterone propionate. After castration, about 35% of the ductal tips and branch-points were lost in distal regions (usually near the capsule) in both prostatic lobes. By contrast, in more proximal regions of the prostate (closer to the urethra), the ducts survived in an atrophic condition. The ductal morphology that had been lost in the distal regions completely regenerated after testosterone propionate was administered to the castrated males. In the VP, androgen replacement simply returned the gland to its former size with moderate ductal distension; in the DLP, excessive epithelial infoldings and ductal distension were elicited in the distal regions of the ducts after 14 days of treatment with testosterone propionate. These results suggest that androgenic responsiveness and dependency are different in distal versus proximal ducts. Distal ducts are exquisitely androgen-dependent and androgen-sensitive; in proximal regions, androgen-dependency is not as strict.  相似文献   

2.
Ventral and dorsolateral prostatic lobes (VP and DLP), obtained from mice at different ages and at different intervals after castration or treatment of castrated males with testosterone propionate (TP), were microdissected into two-dimensional arrays and incubated in vitro with 14C-thymidine. Labeled whole-mount specimens were fixed and dried onto glass slides, dipped into photographic emulsion, and processed autoradiographically. The morphological pattern of DNA synthetic activity was similar in the VP and DLP. During early postnatal periods (10-15 days after birth), DNA synthetic activity was highest at the distal ductal tips (near the capsule) and considerably lower in proximal ducts (near the urethra). At 30 days of age, DNA synthesis was almost totally confined to the distal ducts, with exceedingly low labeling in the proximal ductal areas. In the prostate of the intact or castrated adult, DNA synthesis was nearly absent throughout the gland, but silver grains were still observed on the ductal tips. During androgen-induced prostatic regeneration, DNA synthesis was detectable only in distal ducts 24 h after TP was administered. Labeling intensity reached a maximum on the third day of TP treatment in both distal and proximal ductal areas, thereafter, it subsided to focal labeling confined mostly to distal ducts. These results demonstrate that levels of DNA synthetic activity vary considerably within the prostate on a regional basis. Explanation of this heterogeneity in DNA synthetic activity within the prostate gland is fundamental to understanding the mechanism of androgenic regulation of prostatic growth and development.  相似文献   

3.
The rat ventral prostate is a complex gland composed of numerous ducts. The epithelial cells that line the lumen of the ducts are surrounded by stromal cells. The epithelial cells display a characteristic morphology that is dependent on their anatomical location within the ducts; the cells that line the lumen in the region of the ducts close to the urethra (the proximal region) are cuboidal, while those in the distal regions of the ducts are tall columnar cells. We have examined the regional expression of two genes that are expressed in the prostate: prostate steroid-binding protein (PSBP; a marker for androgen-dependent protein synthesis) and TRPM-2 (a marker for programmed cell death). We have demonstrated that the expression of PSBP, in the presence of androgens, and TRPM-2, in the absence of androgens, is restricted to the luminal epithelial cells in the distal regions of the prostatic ducts. Neither of the genes is expressed in the proximal regions of the ducts. In view of the probable effects of the epithelial-stromal interactions in the gland we have also characterized the cytokeratin composition of the epithelial cells lining the prostatic ducts. We have established that the basal epithelial cells of the prostate are primarily localized in the proximal region of the ducts. We propose that these cells may attenuate the influence of the stromal cells on the luminal epithelium and exert a negative influence on the cytodifferentiation of the secretory epithelial cells. The results also suggest that PSBP, which has been considered to be an androgen-dependent gene may, in fact, be a sequence that is constitutively expressed in the luminal cells that die in the absence of androgens. This has significant implications on the mechanism of androgen action in the rat ventral prostate.  相似文献   

4.
We have previously shown that prostatic stem cells are located in the proximal region of mouse prostatic ducts. Here, we show that this region responds differently to transforming growth factor (TGF)-beta than the distal ductal region and that under physiological conditions androgens and TGF-beta are crucial overall regulators of prostatic tissue homeostasis. This conclusion is supported by the observations showing that high levels of TGF-beta signaling are present in the quiescent proximal region of ducts in an androgen-replete animal and that cells in this region overexpress Bcl-2, which protects them from apoptosis. Moreover, androgen ablation reverses the proximal-distal TGF-beta signaling gradient, leading to an increase in TGF-beta signaling in the unprotected distal region (low Bcl-2 expression). This reversal of TGF-beta-mediated signaling accompanies apoptosis of cells in the distal region and gland involution after androgen withdrawal. A physiological TGF-beta signaling gradient (high proximally and low distally) and its functional correlates are restored after androgen replenishment. In addition to highlighting the regulatory role of androgens and TGF-beta, these findings may have important implications for the deregulation of the stem cell compartment in the etiology of proliferative prostatic diseases.  相似文献   

5.
Androgen-induced prostatic development encompasses many individual processes such as ductal branching morphogenesis, cellular proliferation, and secretory cytodifferentiation. Previous studies of ductal morphogenesis (Y. Sugimura, G.R. Cunha, and A.A. Donjacour, 1986, Biol. Reprod. 34, 961-971) demonstrated that the majority (approximately 70%) of ductal tips and branchpoints in the mouse prostate is generated before 15 days of age. Since circulating androgen levels are low during this neonatal period, it is possible that ductal branching morphogenesis may not require the continuous presence of androgens. To test this hypothesis mice were castrated within 24 hr of birth, and prostates from these mice were microdissected at various ages from 5 to 120 days of age to assess the number of ductal tips and branchpoints; wet weight and DNA content were also determined. In intact males wet weight and DNA content increased rapidly between 15 and 60 days of age, after most of the prostatic ductal architecture had been laid down. Neonatal castration considerably reduced the number of tips and branchpoints in both the ventral and dorsolateral prostate, yet both lobes still underwent significant branching morphogenesis in the absence of testes. The administration of anti-androgens to neonatal castrates did not suppress ductal branching to any greater extent than did neonatal castration alone. Androgen replacement immediately following neonatal castration resulted in precocious attainment of the adult number of tips and branchpoints, but caused only modest increases in wet weight. In contrast, when androgen replacement was delayed until adulthood, prostatic wet weight increased to normal adult levels, but the number of ductal tips and branchpoints did not. These experiments show that neonatal prostatic ductal morphogenesis is sensitive to, but does not require, chronic androgen stimulation.  相似文献   

6.
This review on normal and neoplastic growth of the prostate emphasizes the importance of epithelial-mesenchymal/stromal interactions. Accordingly, during prostatic development urogenital sinus mesenchyme (a) specifies prostatic epithelial identity, (b) induces epithelial bud formation, (c) elicits prostatic bud growth and regulates ductal branching, (d) promotes differentiation of a secretory epithelium, and (e) specifies the types of secretory proteins expressed. In reciprocal fashion, prostatic epithelium induces smooth muscle differentiation in the mesenchyme. Epithelial-mesenchymal interactions during development continue postnatally into adulthood as stromal-epithelial interactions which play a homeostatic role and in so doing reciprocally maintain epithelial and stromal differentiation and growth-quiescence. Prostatic carcinogenesis involves perturbation of these reciprocal homeostatic cell-cell interactions. The central role of mesenchyme in prostatic epithelial development has been firmly established through analysis of tissue recombinants composed of androgen-receptor-positive wild-type mesenchyme and androgen-receptor-negative epithelium. These studies revealed that at the very least ductal morphogenesis, epithelial cytodifferentiation, epithelial apoptosis and epithelial proliferation are regulated by stromal and not epithelial androgen receptors. Likewise, progression from non-tumorigenesis to tumorigenesis elicited by testosterone plus estradiol proceeds via paracrine mechanisms. Thus, stromal-epithelial interactions play critical roles in the hormonal, cellular, and molecular regulation of normal and neoplastic prostatic development.  相似文献   

7.
The prostatic gland is androgen-dependent. The role of androgens in the development, function and pathology of the prostatic gland (benign hypertrophy or cancer) derives from: direct evidence, resulting from experimental models (in vitro–in vivo) or from the biological analysis of normal and pathological human prostatic tissues. These data make it possible to describe the current point of our knowledge concerning the molecular, cellular, and tissular mechanisms involved; indirect data resulting from epidemiologic and clinical studies describing the impact of androgen suppression or supplementation on the prostatic gland. At the experimental level, it is generally allowed that the growth of prostate is controlled by androgens (testosterone and its metabolites). A suitable circulating testosterone level is necessary to maintain the growth, development, differentiation and function of the prostatic gland. Bilateral orchidectomy induces programmed cellular death (apoptosis) and the gland involution; exogenic testosterone administration is then able to induce the prostatic growth up to the normal level. The same applies when an impubescent animal is treated. The response of prostate to exogenic testosterone thus does not produce a growth beyond the normal volume, which is maintained by balance between proliferation and cellular death in the presence of physiological levels of androgens. The study of the mechanisms of regulation of the prostatic growth provides a fundamental justification to the chemical and hormonal treatments used by the urologists in the treatment of prostate benign hypertophy and cancer. Within the framework of the androgenic deficit related to age, a doubt persists about a potentially harmful action of the substitute androgenic treatment on prostate.  相似文献   

8.
In males, androgens are essential in maintaining the integrity of the prostate. Androgen-ablation induces apoptosis of the prostatic epithelium. In females, ovariectomy induces apoptosis in uterine epithelium while progesterone inhibits this process. The objective of this study was to determine whether androgen and progesterone inhibit apoptosis, respectively, in mouse prostatic and uterine epithelia via steroid receptors in the epithelium or in the stroma. To address this question, prostatic tissue recombinants were prepared with rat urogenital sinus mesenchyme plus bladder epithelium from wild-type or testicular feminization mutant (Tfm) mice. Thus, prostatic tissue was generated having androgen receptor (AR) in both epithelium and stroma or in the stroma only. Castration of hosts induced apoptosis in the AR-negative Tfm prostatic epithelium with an epithelial apoptotic index virtually identical to prostatic tissue recombinants containing wild-type epithelium. Moreover, this castration-induced prostatic epithelial apoptosis was blocked by testosterone and dihydrotestosterone in both wild-type and Tfm prostatic tissue recombinants. Likewise, uterine tissue recombinants were prepared in which epithelium and/or stroma was devoid of progesterone receptor (PR) by using uterine epithelium and stroma of wild-type and PR knockout mice. Progesterone inhibited uterine epithelial apoptosis only in tissue recombinants prepared with PR-positive stroma. The PR status of the epithelium did not affect epithelial apoptotic index. Therefore, the apoptosis in prostatic and uterine epithelia is regulated by androgen and progesterone via stromal AR and PR, respectively. In both cases, epithelial AR or PR is not required for hormonal regulation of epithelial apoptosis in prostatic and uterine epithelium.  相似文献   

9.
J S Mills  M Needham    M G Parker 《The EMBO journal》1987,6(12):3711-3717
A full length cDNA clone encoding a mouse prostatic secretory glycoprotein (p12) whose synthesis is dependent upon testicular androgens has been cloned and characterized. The predicted amino acid sequence of p12 shares extensive homology with several members of the Kazal family of secretory protease inhibitors, in particular the pancreatic secretory trypsin inhibitors. In agreement with sequence data, prostatic secretory p12, purified from mouse ventral prostate secretion, exhibits anti-trypsin activity. Steady-state levels of protease inhibitor mRNA in ventral prostate are reduced from approximately 0.06% in normal mice to undetectable after androgen withdrawal but are inducible within 4 h by re-administration of testosterone. Androgen-dependent expression of the secretory protease inhibitor mRNA was also observed in coagulating gland and seminal vesicle. In seminal vesicle, a tissue of different embryonic origin to the prostate, the kinetics of secretory protease inhibitor mRNA loss after castration are not as rapid as in the ventral prostate and coagulating gland. Low-level androgen independent expression was also observed in the pancreas. There appears to be a single gene for this secretory protease inhibitor and yet expression is markedly stimulated by testosterone in the sex accessory tissues and unaffected by this hormone in the pancreas.  相似文献   

10.
11.
12.
The fibroblast growth factor (FGF) family consists of 22 members and regulates a broad spectrum of biological activities by activating diverse isotypes of FGF receptor tyrosine kinases (FGFRs). Among the FGFs, FGF7 and FGF10 have been implicated in the regulation of prostate development and prostate tissue homeostasis by signaling through the FGFR2 isoform. Using conditional gene ablation with the Cre-LoxP system in mice, we demonstrate a tissue-specific requirement for FGFR2 in urogenital epithelial cells--the precursors of prostatic epithelial cells--for prostatic branching morphogenesis and prostatic growth. Most Fgfr2 conditional null (Fgfr2(cn)) embryos developed only two dorsal prostatic (dp) and two lateral prostatic (lp) lobes. This contrasts to wild-type prostate, which has two anterior prostatic (ap), two dp, two lp and two ventral prostatic (vp) lobes. Unlike wild-type prostates, which are composed of well developed epithelial ductal networks, the Fgfr2(cn) prostates, despite retaining a compartmented tissue structure, exhibited a primitive epithelial architecture. Moreover, although Fgfr2(cn) prostates continued to produce secretory proteins in an androgen-dependent manner, they responded poorly to androgen with respect to tissue homeostasis. The results demonstrate that FGFR2 is important for prostate organogenesis and for the prostate to develop into a strictly androgen-dependent organ with respect to tissue homeostasis but not to the secretory function, implying that androgens may regulate tissue homeostasis and tissue function differently. Therefore, Fgfr2(cn) prostates provide a useful animal model for scrutinizing molecular mechanisms by which androgens regulate prostate growth, homeostasis and function, and may yield clues as to how advanced-tumor prostate cells escape strict androgen regulations.  相似文献   

13.
The budding of the urogenital sinus epithelium into the surrounding mesenchyme signals the onset of prostate morphogenesis. The epithelial and mesenchymal factors that regulate ductal budding and the ensuing process of ductal growth and branching are not fully known. We provide evidence that bone morphogenetic protein 4 (BMP4) is a mesenchymal factor that regulates ductal morphogenesis. The Bmp4 gene was most highly expressed in the male urogenital sinus from embryonic day 14 through birth, a period marked by formation of main prostatic ducts and initiation of ductal branching. From an initial wide distribution throughout the prostatic anlage of the urogenital sinus, Bmp4 expression became progressively restricted to the mesenchyme immediately surrounding the nascent prostatic ducts and branches. Exogenous BMP4 inhibited epithelial cell proliferation and exhibited a dose-dependent inhibition of ductal budding in urogenital sinus tissues cultured in vitro. Adult Bmp4 haploinsufficient mice exhibited an increased number of duct tips in both the ventral prostate and coagulating gland. Taken together, our data indicate that BMP4 is a urogenital sinus mesenchymal factor that restricts prostate ductal budding and branching morphogenesis.  相似文献   

14.
Morphological and functional heterogeneity in the rat prostatic gland.   总被引:6,自引:0,他引:6  
Ductal morphogenesis and adult ductal branching patterns were examined in the rat prostate by a microdissection method. The rat prostate consists of paired (right and left) subdivisions which correspond in large part to the classically defined lobes: ventral prostate, lateral prostate, dorsal prostate, and coagulating gland. Of particular interest was the finding that the lateral prostate consists of two different ductal zones: (1) lateral type 1 prostate with 5-7 long main ducts (resembling miniature palm trees) that extend cranially towards both the seminal vesicle and dorsal prostate to arborize near the bladder neck, and (2) lateral type 2 prostate with 5-6 short main ducts that arborize caudal to the bladder neck and give rise to compact bushy glands. Both lateral prostatic groups had a ductal-acinar organization. The adult structure of the other rat prostatic lobes was also examined, and closely resembled their mouse counterparts. The ventral prostate, which had 2-3 pairs of slender main ducts per side, and the coagulating gland, which had 1 main duct per side, was completely ductal in structure. In contrast, the dorsal prostate, which had 5-6 pairs of main ducts per side, had a ductal-acinar structure. Ductal branching morphogenesis occurred at different rates in different lobes and was essentially complete in the prostate at the 30 days. Immunocytochemical studies with an antibody to DP-1, a major secretory protein of the rat dorsal prostate, revealed that secretory function was initiated at approximately 30 days after birth in the coagulating gland, the dorsal prostate, and lateral type 1 prostate. A consistent feature of the lateral type 2 prostate was the absence of DP-1. On Western blots, DP-1 was detected in the secretion of the coagulating gland, lateral type 1 and dorsal prostate, but not in the ventral and lateral type 2 prostate. Polyacrylamide gel electrophoresis confirmed this result and demonstrated that the lateral type 2 prostate expressed several low-molecular weight secretory proteins not found in the other lobes of the prostate. On the whole, the rat prostate exhibited considerable heterogeneity both between and within lobes in developmental processes, ductal patterning, histology, and functional expression.  相似文献   

15.
《The Journal of cell biology》1983,96(6):1671-1676
Adult bladder epithelium (BLE) is induced to differentiate into glandular epithelium after association with urogenital sinus mesenchyme (UGM) and subsequent in vivo growth in syngeneic male hosts. Alteration of epithelial cytodifferentiation is associated with the expression of prostate-specific antigens, histochemical and steroid metabolic activities. These observations suggest that the inductive influence of the UGM has reprogrammed both the morphological and functional characteristics of the urothelium. In this report, differences regarding the mechanisms and effects of androgenic stimulation of prostate and bladder are exploited to determine the extent to which UGM plus BLE recombinants express a prostatelike, androgen-dependent phenotype. Results from cytosolic and autoradiographic binding studies suggest that androgen binding is induced in UGM plus BLE recombinants and that this activity is accounted for by the induced urothelial cells. In UGM plus BLE recombinants, androgen-induced [3H]thymidine or [35S]-methionine uptake analyzed by two-dimensional gel electrophoresis was qualitatively and quantitatively similar to that of prostate as opposed to bladder. These studies indicate that expression within BLE of prostatic phenotype is associated with a loss of urothelial characteristics and that androgen sensitivity is presumably a function of the inductive activities of the stroma.  相似文献   

16.
The prostate gland develops from the urogenital sinus by a testosterone-dependent process of ductal morphogenesis. Sonic hedgehog (Shh) is expressed in the urogenital sinus epithelium and the time course of expression coincides with the formation of the main prostatic ducts. Expression is most abundant in the lumen of the urogenital sinus and in the contiguous proximal duct segments. The initial upregulation of Shh expression in the male urogenital sinus depends on the presence of testosterone. The function of Shh was examined in the male urogenital sinus which was transplanted under the renal capsule of an adult male host mouse. Blockade of Shh function by a neutralizing antibody interferes with Shh signaling and abrogates growth and ductal morphogenesis in the transplanted tissue. These observations show that testosterone-dependent Shh expression in the urogenital sinus is necessary for the initiation of prostate development.  相似文献   

17.
Stem cells are believed to regulate normal prostatic homeostasis and to play a role in the etiology of prostate cancer and benign prostatic hyperplasia. We show here that the proximal region of mouse prostatic ducts is enriched in a subpopulation of epithelial cells that exhibit three important attributes of epithelial stem cells: they are slow cycling, possess a high in vitro proliferative potential, and can reconstitute highly branched glandular ductal structures in collagen gels. We propose a model of prostatic homeostasis in which mouse prostatic epithelial stem cells are concentrated in the proximal region of prostatic ducts while the transit-amplifying cells occupy the distal region of the ducts. This model can account for many biological differences between cells of the proximal and distal regions, and has implications for prostatic disease formation.  相似文献   

18.
Epithelial cells from involuting rat ventral prostate (VP) express Matrilysin (MMP-7) mRNA. Herein, we investigated by immunohistochemistry the MMP-7 protein location and its association with tissue changes following castration in the VP. Normal and castrated adult male Wistar rats were sacrificed at different times after surgery. VP was examined by immunocytochemistry and immunoprecipitation. Castration promoted a shrinking of prostate ducts with an extensive stromal remodeling. In the VP from normal rats, MMP-7 immunoreactivity was found in epithelial secretory granules. Three days after castration, immunostaining for MMP-7 was found in both the epithelial secretory granules and in the stroma just below the epithelium, mainly at the distal ductal tips. At seven and 21 days after castration, the immunostaining for MMP-7 was found only in the stromal space. Immunoprecipitation confirmed the specificity of the primary antibody by rescuing a pro-enzyme form (28kDa) in the prostate extracts. The present results suggest that MMP-7 participates in the epithelial-stromal interface remodeling of the ventral prostate during the involution achieved by castration, probably in the degradation of components of the epithelial basement membrane.  相似文献   

19.
20.
Summary The fine structure of the nuclei of epithelial cells of the dorsal lobe of the rat prostate were studied 2, 3, 5, 7 and 21 days after castration. The nucleolus appears to undergo a progressive disorganisation with partial fragmentation and dispersion of its normal components.Changes in the nucleoplasm were primarily reflected by a condensation of chromatin, particularly along the nuclear membrane and adjacent to the nucleolus. Later, different types of intranuclear inclusions were observed.After 21 days, the nuclei were characterized by an irregular outline with large indentation. Within the nucleoplasm aggregates of coarse granular chromatin were found. No cell necrosis was observed, indicating that androgen deprivation results in a remodeling of the cell to a less active state with marked cellular alterations and cessation of secretion, but apparently with some of their basic functions still intact.Injections of testosterone completely reverse the castrated-induced alterations.The changes observed are assumed to be due to the withdrawal of the androgenic stimulus, with a direct influence on the secretory function of the cell. The findings support the view that the stimulating secretory effect of androgen is mediated via an intranuclear androgen receptor, probably located in the nucleolus-associated-chromatin. It is also proposed that the secretory function of the epithelial cells of the prostatic complex, initiated by androgens, may be regulated by an intranuclear secretory center.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号