首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Two independently isolated temperature-sensitive autolysis-defective mutants of Escherichia coli LD5 (thi lysA dapD) were characterized. The mutants were isolated by screening the survivors of a three-step enrichment process involving sequential treatments with bactericidal concentrations of D-cycloserine, benzyl-penicillin, and D-cycloserine at 42 degrees C. Cultures of the mutants underwent autolysis during beta-lactam treatment, D-cycloserine treatment, or diaminopimelic acid deprivation at 30 degrees C. The same treatments at 42 degrees C inhibited growth but did not induce lysis of the mutants. The minimum inhibitory concentrations of selected beta-lactam antibiotics and D-cycloserine were identical for the parent and mutant strains at both 30 and 42 degrees C. Both mutants failed to form colonies at 42 degrees C, and both gave rise to spontaneous temperature-resistant revertants. The revertants exhibited the normal lytic response when treated with D-cycloserine and beta-lactams or when deprived of diaminopimelic acid at 42 degrees C. The basis for the autolysis-defective phenotype of these mutants could not be determined. However, a nonspecific in vitro assay for peptidoglycan hydrolase activity in cell-free extracts indicated that both mutants were deficient in a peptidoglycan hydrolase. Both mutations were localized to the 56- to 61-min region of the E. coli chromosome by F' complementation.  相似文献   

2.
Temperature-sensitive beta-lactam-tolerant mutants of Escherichia coli   总被引:5,自引:0,他引:5  
Seven temperature-sensitive penicillin-tolerant mutants of Escherichia coli strain LD5 (thi lysA dapD) were isolated and characterized. Treatment with beta-lactams caused lysis of the mutants at 30 degrees C. Although growth of the mutants at 42 degrees C was inhibited by beta-lactams, no lysis occurred. The mutants were also slightly tolerant to D-cycloserine at 42 degrees C but lysed readily when deprived of diaminopimelate or when treated with moenomycin. The minimum inhibitory concentrations of various antibiotics were the same for the mutants and their parent. The mutations conferring penicillin tolerance were phenotypically suppressed in the presence of a variety of compounds which may act as chaotropic or antichaotropic agents. No defects in penicillin-binding proteins and peptidoglycan hydrolases were detected. Temperature-resistant revertants of the mutants were no longer tolerant to penicillin-induced autolysis at 42 degrees C. The mutations in five isolates were localized to the 56 to 61 min region of the E. coli linkage map and to the 44 to 51 min region in the case of two other isolates.  相似文献   

3.
Escherichia coli VC30 is a temperature-sensitive mutant which is defective in autolysis. Strain VC30 lyses at 30 degrees C when treated with beta-lactam antibiotics or D-cycloserine or when deprived of diaminiopimelic acid. The same treatments inhibit growth of the mutant at 42 degrees C but do not cause lysis. Strain VC30 was used here to investigate the mechanism of host cell lysis induced by bacteriophage phi X 174. Strain VC30 was transformed with plasmid pUH12, which carries the cloned lysis gene (gene E) of phage phi X174 under the control of the lac operator-promoter, and with plasmid pMC7, which encodes the lac repressor to keep the E gene silent. Infection of strain VC30(pUH12)(pMC7) with phage phi X174 culminated in lysis at 30 degrees C. At 42 degrees C, intracellular phage development was normal, but lysis did not occur unless a temperature downshift to 30 degrees C was imposed. Similarly, induction of the cloned phi X174 gene E with isopropyl-beta-D-thiogalactoside resulted in lysis at 30 degrees C but not at 42 degrees C. Temperature downshift of the induced culture to 30 degrees C resulted in lysis even in the presence of chloramphenicol. These results indicate that host cell lysis by phage phi X174 is dependent on a functional cellular autolytic enzyme system.  相似文献   

4.
Several mutants of Streptococcus pneumoniae were isolated that appeared tolerant, to varying extents, to the lytic and bactericidal effects of some antibiotics that inhibit peptidoglycan synthesis, but were not deficient in autolytic activity. The method used to select the mutants was based on the survival of tolerant mutants during treatment with either bacitracin, benzylpenicillin, D-cycloserine plus beta-chloro-D-alanine, or vancomycin. Most (60 to 80%) of the surviving isolates were found to be deficient in autolytic activity, and these were rejected. The smaller proportion that had wild-type sensitivity to deoxycholate-induced lysis was studied further with respect to tolerance to the other antibiotics used in the selection procedures. Two of these mutants (selected by treatment with benzylpenicillin) were tolerant to either benzylpenicillin or D-cycloserine plus beta-chloro-D-alanine, but were supersusceptible, in terms of initiation of lysis, to either bacitracin or vancomycin. The minimal inhibitory concentration values of several antibiotics for these two mutants were identical to those for the wild-type strain. Moreover, the interaction of radioactive benzylpenicillin with the penicillin-binding proteins, examined in whole organisms, also appeared the same as previously found for either wild-type or autolytic-deficient strains of S. pneumoniae.  相似文献   

5.
M V Norgard  K Keem  J J Monahan 《Gene》1978,3(4):279-292
The susceptibility of E. coli strain chi1776 to transformation by pBR322 plasmid DNA was examined and optimized. Maximum transformation to tetracycline (Tc) resistance was achieved when cells were harvested from L broth at 5.0--6.0 . 10(7) cfu/ml, followed by washing twice in cold 0.1 M NaCl + 5 mM MgCl2 + 5 mM Tris, pH 7.6. Cells grown in the presence of D-cycloserine (Cyc) rather than nalidixic acid (Nx) transformed markedly better. The presence of 5 mM Mg2+ ions in washing and CaCl2 solutions stimulated transformation about 2-fold. Optimal conditions for transformation included a pH range of 7.25-7.75 and a cell-to-DNA ratio of about 1.6 . 10(8) cfu/ng plasmid DNA. The frequency of transformation was highest when cells were exposed to 100 mM CaCl2 in 250 mM KCl + 5 mM MgCl2 + 5 mM Tris, pH 7.6, before mixing with DNA. A 60 min incubation period for cell + DNA mixtures held on ice produced the maximum number of Tcr transformants. In our hands, heat shocks at 37 degrees C or 42 degrees C for various times all decreased transformation to about one-half of optimal levels. Furthermore, the recovery of transformants was best when cell + DNA mixtures were plated on precooled (4 degrees C) Tc agar plates. The efficiency of plating was optimum when only 5 microliter of cell + DNA mixture was spread per plate, suggesting that non-viable background chi1776 cells on selective medium inhibited the recovery of transformants. It was also found that the presence of linear DNA molecules in cell + DNA mixtures markedly inhibited the transformation of chi1776 by pBR322 plasmid DNA. On the basis of these findings, a new procedure for the plasmid-specific transformation of E. coli chi1776 by pBR322 plasmid DNA is proposed. The use of this technique has allowed us to attain transformation frequencies in excess of 10(7) transformants/microgram pBR322 plasmid DNA.  相似文献   

6.
A mutant of Escherichia coli with a thermosensitive defect, possibly in the outer membrane (omsA mutant), was isolated from E. coli K-12 by mutagenization and selection for thermosensitivity and beta-lactam supersensitivity of growth. The mutant also showed very high sensitivity to other antibiotics, such as macarbomycin, midecamycin, rifampin, and bacitracin. The mutation was recessive to the wild type and was mapped at about 4 min on the E. coli chromosome between fhuA and metD. The mutation caused rapid release into the medium of periplasmic enzymes such as RTEM penicillinase but practically no cytoplasmic enzyme when cells grown at 30 degrees C were transferred to 37 or 42 degrees C. Electron microscopic observations showed many large double-layered vesicles attached to the surface of cells incubated at 42 degrees C. We conclude that the mutant had a mutation that caused a temperature-dependent defect in the outer membrane structure or its assembly (named an oms mutation). The omsA mutant may be useful for production of periplasmic proteins, which it releases into the culture medium on shift up of temperature.  相似文献   

7.
The thermostability of the penicillin-binding proteins (PBPs) of 31 temperature-sensitive cell division mutants of Escherichia coli has been examined. Two independent cell division mutants have been found that have highly thermolabile PBP3. Binding of [(14)C]benzylpenicillin to PBP3 (measured in envelopes prepared from cells grown at the permissive temperature) was about 30% of the normal level at 30 degrees C, and the ability to bind [(14)C]benzylpenicillin was rapidly lost on incubation at 42 degrees C. The other PBPs were normal in both mutants. At 30 degrees C both mutants were slightly longer than their parents and on shifting to 42 degrees C they ceased dividing, but cell mass and deoxyribonucleic acid synthesis continued and long filaments were formed. At 42 degrees C division slowly recommenced, but at 44 degrees C this did not occur. The inhibition of division at 42 degrees C was suppressed by 0.35 M sucrose, and in one of the mutants it was partially suppressed by 10 mM MgCl(2). PBP3 was not stabilized in vitro at 42 degrees C by these concentrations of sucrose or MgCl(2). Revertants that grew as normal rods at 42 degrees C regained both the normal level and the normal thermostability of PBP3. The results provide extremely strong evidence that the inactivation of PBP3 at 42 degrees C in the mutants is the cause of the inhibition of cell division at this temperature and identify PBP3 as an essential component of the process of cell division in E. coli. It is the inactivation of this protein by penicillins and cephalosporins that results in the inhibition of division characteristic of low concentrations of many of these antibiotics.  相似文献   

8.
Nongrowing bacteria evade the bactericidal activity of beta-lactam antibiotics. We sought to determine if slow growth rate also alters bactericidal activity. The bactericidal activity of two beta-lactams on Escherichia coli grown in glucose limited chemostats was compared for generation times ranging from 0.7 to 12 h. The degree of killing varied with drug structure and with E. coli strain. However, all killing rates were a constant function of the bacterial generation time: slowly growing bacteria became progressively more phenotypically tolerant to beta-lactam antibiotics as the generation time was extended.  相似文献   

9.
Two temperature-sensitive autolysis-defective mutants of Escherichia coli were isolated and shown to be resistant to lysis induced by seminalplasmin, an antimicrobial protein from bovine seminal plasma, as well as to lysis induced by ampicillin, D-cycloserine and nocardicin, at 37 or 42 degrees C but not at 30 degrees C. The mutants were, however, sensitive to inhibition of RNA synthesis by seminalplasmin even at the nonpermissive temperature. Temperature-resistant revertants of the mutants were sensitive to lysis induced by the various antibiotics at 37 or 42 degrees C. The mutations in both strains were mapped at 58 min on the E. coli linkage map. The lysis resistance of the mutants was phenotypically suppressed by the addition of NaCl. Partial suppression of the lysis-resistant phenotype was also observed in a relA genetic background.  相似文献   

10.
Bacillus subtilis mutants with altered penicillin-binding proteins (PBPs), or altered expression of PBPs, were isolated by screening for changes in susceptibility to beta-lactam antibiotics. Mutations affecting only PBPs 2a, 2b and 3 were isolated. Cell shape and peptidoglycan metabolism were examined in representative mutants. Cells of a PBP 2a mutant (UB8521) were usually twisted whereas PBP 2b (UB8524) and 3 (UB8525) mutants produced helices, particularly after growth at 41 degrees C. The PBP 2a mutant (UB8521) had a higher peptidoglycan synthetic activity than its parent strain whereas the opposite applied to the PBP 2b mutant UB8524. The PBP 3 mutant (UB8525) had a similar peptidoglycan synthetic activity to that of the parent strain when grown at 37 degrees C, but 40% higher activity after growth at 41 degrees C. The PBP 2a mutant (UB8521) exhibited the same wall thickening activity as the parent, but the PBP 2b and 3 mutants (UB8524 and UB8525) were partially defective in this respect. The changes in the susceptibility of PBP 2a, 2b and 3 mutants to beta-lactam antibiotics imply that these PBPs are killing targets, consistent with the fact that these PBPs are also important for shape determination and peptidoglycan synthesis.  相似文献   

11.
Therapeutic use of cephaloridine, a beta-lactam antibiotic, in humans is associated with carnitine deficiency. A potential mechanism for the development of carnitine deficiency is competition between cephaloridine and carnitine for the renal reabsorptive process. OCTN2 is an organic cation/carnitine transporter that is responsible for Na(+)-coupled transport of carnitine in the kidney and other tissues. We investigated the interaction of several beta-lactam antibiotics with OCTN2 using human cell lines that express the transporter constitutively as well as using cloned human and rat OCTN2s expressed heterologously in human cell lines. The beta-lactam antibiotics cephaloridine, cefoselis, cefepime, and cefluprenam were found to inhibit OCTN2-mediated carnitine transport. These antibiotics possess a quaternary nitrogen as does carnitine. Several other beta-lactam antibiotics that do not possess this structural feature did not interact with OCTN2. The interaction of cephaloridine with OCTN2 is competitive with respect to carnitine. Interestingly, many of the beta-lactam antibiotics that were not recognized by OCTN2 were good substrates for the H(+)-coupled peptide transporters PEPT1 and PEPT2. In contrast, cephaloridine, cefoselis, cefepime, and cefluprenam, which were recognized by OCTN2, did not interact with PEPT1 and PEPT2. The interaction of cephaloridine with OCTN2 was Na(+)-dependent, whereas the interaction of cefoselis and cefepime with OCTN2 was largely Na(+)-independent. Furthermore, the Na(+)-dependent, OCTN2-mediated cellular uptake of cephaloridine could be demonstrated by direct uptake measurements. These studies show that OCTN2 plays a crucial role in the pharmacokinetics and therapeutic efficacy of certain beta-lactam antibiotics such as cephaloridine and that cephaloridine-induced carnitine deficiency is likely to be due to inhibition of carnitine reabsorption in the kidney.  相似文献   

12.
Development of transformable vectors for thermophilic archaea requires the characterization of appropriate selectable marker genes. Many antibiotic inhibitors of protein biosynthesis are known to bind to rRNA; therefore, we screened 14 for their capacity to inhibit growth of the thermophilic archaeon Sulfolobus acidocaldarius. Carbomycin, celesticetin, chloramphenicol, puromycin, sparsomycin, tetracycline, and thiostrepton all inhibited growth by different degrees. Spontaneous drug-resistant mutants were isolated from plates containing celesticetin or chloramphenicol. Six mutants from each plate exhibited a C-2585-to-U transition in the peptidyl transferase loop of 23S rRNA (corresponding to C-2452 in Escherichia coli 23S rRNA). The single-site mutation also conferred resistance to carbomycin. The mutated 23S rRNA gene provides a potentially useful and dominant marker for a thermophilic archael vector.  相似文献   

13.
The metallo-beta-lactamase IMP-1 catalyzes the hydrolysis of a broad range of beta-lactam antibiotics to provide bacterial resistance to these compounds. In this study, 29 amino acid residue positions in and near the active-site pocket of the IMP-1 enzyme were randomized individually by site-directed mutagenesis of the corresponding codons in the bla(IMP-1) gene. The 29 random libraries were used to identify positions that are critical for the catalytic and substrate-specific properties of the IMP-1 enzyme. Mutants from each of the random libraries were selected for the ability to confer to Escherichia coli resistance to ampicillin, cefotaxime, imipenem or cephaloridine. The DNA sequence of several functional mutants was determined for each of the substrates. Comparison of the sequences of mutants obtained from the different antibiotic selections indicates the sequence requirements for each position in the context of each substrate. The zinc-chelating residues in the active site were found to be essential for hydrolysis of all antibiotics tested. Several positions, however, displayed context-dependent sequence requirements, in that they were essential for one substrate(s) but not others. The most striking examples included Lys69, Asp84, Lys224, Pro225, Gly232, Asn233, Asp236 and Ser262. In addition, comparison of the results for all 29 positions indicates that hydrolysis of imipenem, cephaloridine and ampicillin has stringent sequence requirements, while the requirements for hydrolysis of cefotaxime are more relaxed. This suggests that more information is required to specify active-site pockets that carry out imipenem, cephaloridine or ampicillin hydrolysis than one that catalyzes cefotaxime hydrolysis.  相似文献   

14.
Chen CC  Herzberg O 《Biochemistry》2001,40(8):2351-2358
The serine-beta-lactamases hydrolyze beta-lactam antibiotics in a reaction that proceeds via an acyl-enzyme intermediate. The double mutation, E166D:N170Q, of the class A enzyme from Staphylococcus aureus results in a protein incapable of deacylation. The crystal structure of this beta-lactamase, determined at 2.3 A resolution, shows that except for the mutation sites, the structure is very similar to that of the native protein. The crystal structures of two acyl-enzyme adducts, one with benzylpenicillin and the other with cephaloridine, have been determined at 1.76 and 1.86 A resolution, respectively. Both acyl-enzymes show similar key features, with the carbonyl carbon atom of the cleaved beta-lactam bond covalently bound to the side chain of the active site Ser70, and the carbonyl oxygen atom in an oxyanion hole. The thiadolizine ring of the cleaved penicillin is located in a slightly different position than the dihydrothiazine ring of cephaloridine. Consequently, the carboxylate moieties attached to the rings form different sets of interactions. The carboxylate group of benzylpenicillin interacts with the side chain of Gln237. The carboxylate group of cephaloridine is located between Arg244 and Lys234 side chains and also interacts with Ser235 hydroxyl group. The interactions of the cephaloridine resemble those seen in the structure of the acyl-enzyme of beta-lactamase from Escherichia coli with benzylpenicillin. The side chains attached to the cleaved beta-lactam rings of benzylpenicillin and cephaloridine are located in a similar position, which is different than the position observed in the E. coli benzylpenicillin acyl-enzyme complex. The three modes of binding do not show a trend that explains the preference for benzylpenicillin over cephaloridine in the class A beta-lactamases. Rather, the conformational variation arises because cleavage of the beta-lactam bond provides additional flexibility not available when the fused rings are intact. The structural information suggests that specificity is determined prior to the cleavage of the beta-lactam ring, when the rigid fused rings of benzylpenicillin and cephaloridine each form different interactions with the active site.  相似文献   

15.
Mutants of Streptococcus pneumoniae that contain active autolysin and yet cannot be induced to lyse during treatment with penicillin (Lyt+Tol+ mutants) have been described. We have now shown that these mutants are temperature dependent (32 degrees C); at 37 degrees C these bacteria underwent penicillin-induced lysis. In addition, mutants at the lysis-permissive temperature showed the so-called 'paradoxical response' to penicillin. Temperature shift experiments indicated that the change from tolerant to lytic response or vice versa is a fast process. No differences were detected in autolysin specific activity or in the kinetics of inhibition of protein, peptidoglycan and teichoic acid syntheses in cells treated with penicillin at 32 and 37 degrees C. The results of genetic crosses indicated that the thermosensitivity of penicillin-induced autolysis in the Lyt+Tol+ mutants is not a property of the autolytic enzyme itself. The observations suggest that the thermosensitive process in the mutants represents either a step(s) in autolysin regulation or involves some difference in the structure of the cell walls produced at 32 degrees C versus 37 degrees C.  相似文献   

16.
The heat shock proteins (HSPs) of Escherichia coli were artificially induced in cells containing the wild-type rpoH+ gene under control of a tac promoter. At 30 degrees C, expression of HSPs produced cells that were resistant to lysis by cephaloridine and cefsulodin, antibiotics that bind penicillin-binding proteins (PBPs) 1a and 1b. This resistance could be reversed by the simultaneous addition of mecillinam, a beta-lactam that binds PBP 2. However, even in the presence of mecillinam, cells induced to produce HSPs were resistant to lysis by ampicillin, which binds all the major PBPs. Lysis of cells induced to produce HSPs could also be effected by imipenem, a beta-lactam known to lyse nongrowing cells. These effects suggest the existence of at least two pathways for beta-lactam-dependent lysis, one inhibited by HSPs and one not. HSP-mediated lysis resistance was abolished by a mutation in any one of five heat shock genes (dnaK, dnaJ, grpE, GroES, or groEL). Thus, resistance appeared to depend on the expression of the complete heat shock response rather than on any single HSP. Resistance to lysis was significant in the absence of the RelA protein, implying that resistance could not be explained by activation of the stringent response. Since many environmental stresses promote the expression of HSPs, it is possible that their presence contributes an additional mechanism toward development in bacteria of phenotypic tolerance to beta-lactam antibiotics.  相似文献   

17.
When pBR322 plasmid-harboring Escherichia coli strains RR1 or chi1776 were grown in the presence of 1 mg of uridine or cytidine per ml and later treated with chloramphenicol, as much as three times more plasmid deoxyribonucleic acid was recovered than would normally be obtained by routine plasmid amplification procedures.  相似文献   

18.
The cell wall degradation products released from Escherichia coli during autolysis triggered by cephaloridine or trichloroacetic acid were isolated and characterized. Murein was selectively lost from the disaccharide tetrapeptides and the bisdisaccharide tetrapeptide components. Two major autolytic products accounted for more than 85% of the released material. Compound 1 (60 to 80% of released material) was a disaccharide tetrapeptide monomer containing a 1,6-anhydromuramic acid residue. Compound 2 (15 to 30% of released material) was a mixture of a tritripeptide and a tritetrapeptide without hexosamines. Taken together the findings suggest that autolytic cell wall degradation in E. coli is selective and involves the activity of both the hydrolytic transglycosylase and an endopeptidase. Upon release, at least some of the wall components were also exposed to the activity of the N-acetylmuramic acid-L-alanine amidase.  相似文献   

19.
H T Truong  E A Pratt  G S Rule  P Y Hsue  C Ho 《Biochemistry》1991,30(44):10722-10729
A combination of site-specific mutagenesis and 19F nuclear magnetic resonance has been used to investigate the structural properties of D-lactate dehydrogenase, a membrane-associated enzyme of Escherichia coli. The protein (65,000 Da) has been labeled with 5-fluorotryptophan for 19F nuclear magnetic resonance studies. Tryptophan has been substituted for individual phenylalanine, tyrosine, isoleucine, and leucine residues at various positions throughout the enzyme molecule, and the fluorinated native and substituted tryptophan residues have been used as probes of the local environment. All 24 mutants thus generated are expressed in E. coli. Ten are fully active and purfiable following the usual procedure, while 14 either are inactive or produce low levels of activity. The amount of active enzyme produced from the low-yield mutants is dependent on the temperature at which synthesis is carried out, with more active enzyme produced at 18 degrees C than at 27, 35, or 42 degrees C. Cells grown at 27 degrees C and then incubated at 42 degrees C retain 90-100% of their activity. All of the expressed protein from the inactive mutants is Triton-insoluble, aggregated, and not readily purfiable; the inactive mutant protein appears to be improperly folded. Most of the expressed D-lactate dehydrogenase from the partially active mutants is also Triton-insoluble; a small fraction, however, is soluble in Triton and can be purified to yield active enzyme. All the purified enzymes from these low-yield mutants of D-lactate dehydrogenase have essentially normal VmaxS, and all but two have normal KmS. Once purified, the low-yield mutant enzymes are stable at 42 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
N-acetylmuramyl-L-alanine amidases are widely distributed among bacteria. However, in Escherichia coli, only one periplasmic amidase has been described until now, which is suggested to play a role in murein recycling. Here, we report that three amidases, named AmiA, B and C, exist in E. coli and that they are involved in splitting of the murein septum during cell division. Moreover, the amidases were shown to act as powerful autolytic enzymes in the presence of antibiotics. Deletion mutants in amiA, B and C were growing in long chains of unseparated cells and displayed a tolerant response to the normally lytic combination of aztreonam and bulgecin. Isolated murein sacculi of these chain-forming mutants showed rings of thickened murein at the site of blocked septation. In vitro, these murein ring structures were digested more slowly by muramidases than the surrounding murein. In contrast, when treated with the amidase AmiC or the endopeptidase MepA, the rings disappeared, and gaps developed at these sites in the murein sacculi. These results are taken as evidence that highly stressed murein cross-bridges are concentrated at the site of blocked cell division, which, when cleaved, result in cracking of the sacculus at this site. As amidase deletion mutants accumulate trimeric and tetrameric cross-links in their murein, it is suggested that these structures mark the division site before cleavage of the septum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号