首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Summary In a mature, even aged stand of mixed chaparral, Rhus laurina (facultative resprouter) had consistently higher water potentials and deeper roots than Ceanothus spinosus (facultative resprouter) and Ceanothus megacarpus (obligate seeder). For two years following a wildfire, the same stand of chaparral had resprouts with higher survivorships, predawn water potentials, stomatal conductances, photosynthetic rates and shoot elongation rates than seedlings. Supplemental irrigation of seedlings during summer months removed differences between resprouts and seedlings suggesting that the cause of such differences was limited water availability to the shoot tissues of seedlings. After two years of postfire regrowth, mean seedling survivorship for the obligate seeder (C. megacarpus) was 42%, whereas seedling survivorship for facultative resprouters was only 18% (C. spinosus) and 0.01% (R. laurina). Our results are consistent with the hypothesis that lack of resprouting ability among obligate seeders is offset by an enhanced ability to establish seedlings after wildfire, allowing obligate seeders to maintain themselves in mixed populations through many fire cycles.  相似文献   

2.
Summary We compared the tissue water relations among resprouts and seedlings of three chaparral species during the first summer drought after wildfire. Two of the species, Rhus laurina and Ceanothus spinosus recover after fire by a combination of resprouting and seedling establishment (facultative resprouters), whereas a third species, Ceanothus megacarpus recovers by seedling establishment alone (obligate seeder). Our objectives were to document any differences in tissue water characteristics that might arise between resprouts and seedlings and to test the hypothesis that seedlings of obligate seeders develop more drought tolerant characteristics of their tissues than seedlings of facultative resprouters. We found that resprouts had much higher predawn values of water potential, osmotic potential, and turgor potentials than seedlings. Predawn turgor potentials of resprouts were 1.5 MPa through July and August when turgor potentials for seedlings remained near 0 MPa. During summer months, midday water potentials were 2 to 3 MPa higher for resprouts than seedlings and midday conductances of resprouts were two to five fold greater than those of seedlings. Even though resprouts did not experience severe water stress like seedlings, their tissue water characteristics, as determined by pressure-volume curve analyses, were similar by the peak of the drought in August. Further-more, the tissue water characteristics of seedlings from the obligate seeder, C. megacarpus, were similar to those of facultative resprouters — R. laurina, and C. spinosus. We attribute the observed differences in plant water status between resprouts and seedlings to differences in rooting depths and access to soil moisture reserves during summer drought. We conclude that the higher growth rates, photosynthetic performance, and survivorship of postfire resprouts are primarily a result of higher water availability to resprouting tissues during summer months. It appears that the greater seedling survivorship during summer drought observed for the obligate seeder, C. megacarpus, is not associated with more favorable tissue water characteristics.  相似文献   

3.
The recent increase in wildfire frequency in the Santa Monica Mountains (SMM) may substantially impact plant community structure. Species of Chaparral shrubs represent the dominant vegetation type in the SMM. These species can be divided into three life history types according to their response to wildfires. Nonsprouting species are completely killed by fire and reproduce by seeds that germinate in response to a fire cue, obligate sprouting species survive by resprouting from dormant buds in a root crown because their seeds are destroyed by fire, and facultative sprouting species recover after fire both by seeds and resprouts. Based on these assumptions, we developed a set of nonlinear difference equations to model each life history type. These models can be used to predict species survivorship under varying fire return intervals. For example, frequent fires can lead to localized extinction of nonsprouting species such as Ceanothus megacarpus while several facultative sprouting species such as Ceanothus spinosus and Malosma (Rhus) laurina will persist as documented by a longitudinal study in a biological preserve in the SMM. We estimated appropriate parameter values for several chaparral species using 25 years of data and explored parameter relationships that lead to equilibrium populations. We conclude by looking at the survival strategies of these three species of chaparral shrubs under varying fire return intervals and predict changes in plant community structure under fire intervals of short return. In particular, our model predicts that an average fire return interval of greater than 12 years is required for 50 % of the initial Ceanothus megacarpus population and 25 % of the initial Ceanothus spinosus population to survive. In contrast, we predict that the Malosma laurina population will have 90 % survivorship for an average fire return interval of at least 6 years.  相似文献   

4.
Water transport from the roots to leaves in chaparral shrubs of California occurs through xylem vessels and tracheids. The formation of gas bubbles in xylem can block water transport (gas embolism), leading to shoot dieback. Two environmental factors that cause gas embolism formation in xylem conduits are drought and freezing air temperatures. We compared the differential vulnerabilities of Rhus laurina and Ceanothus megacarpus, co-dominant shrub species in the coastal regions of the Santa Monica Mountains of southern California, to both water stress-induced and freezing-induced embolism of their xylem. Rhus laurina has relatively large xylem vessel diameters, a deep root system, and a large basal burl from which it vigorously resprouts after wildfire or freezing injury. In contrast, Ceanothus megacarpus has small-diameter vessels, a shallow root system, no basal burl and is a non-sprouter after shoot removal by wildfire. We found that R. laurina became 50% embolized at a water stress of –3 MPa and 100% embolized by a freeze–thaw cycle at all hydration levels. In contrast, C. megacarpus became 50% embolized at a water stress of –9 MPa and 100% embolized by freeze–thaw events only at water potentials lower than –3 MPa. Reducing thaw rates from 0·8 °C min?1 to 0·08 °C min?1 (the normal thaw rate measured in situ) had no effect on embolism formation in R. laurina but significantly reduced embolism occurrence in well-hydrated C. megacarpus (embolism reduced from 74 to 35%). These results were consistent with the theory of gas bubble formation and dissolution in xylem sap. They also agree with field observations of differential shoot dieback in these two species after a natural freeze–thaw event in the Santa Monica Mountains.  相似文献   

5.
Comstock  J. P.  Mahall  B. E. 《Oecologia》1985,65(4):531-535
Summary Predawn xylem pressure potentials were measured on two California chaparral shrubs, Ceanothus megacarpus and Ceanothus crassifolius, throughout the winter and spring growing season and into the summer drought. On the days xylem pressure potentials were measured, leaf orientation measurements were made on a population of marked leaves from the same shrubs. Predawn xylem pressure potentials decreased from -0.1 MPa in both species to -7.8 and -6.6 MPa in C. megacarpus and C. crassifolius, respectively, between May and August, 1981. Leaf inclinations became more vertical during this period with the greatest change observed in C. crassifolius. This change in leaf inclination was reversible, and, in the late winter and early spring, one year old leaves became more horizontal. Leaf azimuths were random and did not change seasonally. Simulations of solar radiation interception indicated that the increase in leaf inclination associated with summer drought reduced the absorption of solar radiation in August by 6% for C. megacarpus and 20% for C. crassifolius. Standard leaf energy budget calculations suggest that steep leaf inclinations would result in slightly lower leaf temperatures and transpiration rates under summer conditions.  相似文献   

6.
The Santa Monica Mountains are home to many species of chaparral shrubs that provide vegetative cover and whose deep roots contribute to the stability of the steep slopes. Recently, native chaparral have been threatened by an unprecedented drought and frequent wildfires in Southern California. Besides the damage from the wildfires themselves, there is the potential for subsequent structural losses due to erosion and landslides. In this paper, we develop a mathematical model that predicts the impact of drought and frequent wildfires on chaparral plant community structure. We begin by classifying chaparral into two life history types based on their response to wildfires. Nonsprouters are completely killed by a fire, but their seeds germinate in response to fire cues. Facultative sprouters survive by resprouting but also rely on seed germination for post-fire recovery. The individual-based model presented here simulates the growth, seed dispersal, and resprouting behavior of individual shrubs across two life history types as they compete for space and resources in a rectangular domain. The model also incorporates varying annual rainfall and fire frequency as well as the competition between plants for scarce resources. The parameters were fit using seedling and resprout survivorship data as well as point quarter sampling data from 1986 to 2014 at a biological preserve within the natural landscape of the Malibu campus of Pepperdine University. The simulations from our model reproduce the change in plant community structure at our study site which includes the local extinction of the nonsprouter Ceanothus megacarpus due to shortened fire return intervals. Our simulations predict that a combination of extreme drought and frequent wildfires will drastically reduce the overall density of chaparral, increasing the likelihood of invasion by highly flammable exotic grasses. The simulations further predict that the majority of surviving shrubs will be facultative sprouting species such as Malosma laurina.  相似文献   

7.
Summary Laurel Sumac (Rhus laurina) is a dominant member of the coastal chaparral community of southern California that survives periodic burning by wildfires by resprouting from a lignotuber (root crown). We investigated the physiological basis for resprouting by comparing shoot elongation, leaf nitrogen content, tissue water status, leaf conductance to water vapor diffusion, and photosynthetic rates of post-fire R. laurina to those of adjacent unburned shrubs. Resprouts had higher rates of shoot elongation, leaf conductance, and photosynthesis than mature, unburned shrubs. Leaf nitrogen contents were elevated in burned shrubs even though their leaves developed interveinal chlorosis. A comparison of soil water potential to predawn water potential indicated that roots of R. laurina remain active below 2 m during the first summer drought after wildfire. Our results support the hypothesis that lignotubers not only contain dormant buds that develop into aerial shoots after wildfire but they also supply nutrient resources that enhance shoot elongation. Because R. laurina is relatively sensitive to drought, yet very successful in its rapid recovery after fire, maintaining an active root system after shoot removal may be the primary function of the massive lignotuber formed by this species.  相似文献   

8.
Invasion by the alien succulent,Carpobrotus edulis, has become a common occurrence after fire in maritime chaparral in coastal California, USA. We studied post-burnCarpobrotus establishment in chaparral that lackedCarpobrotus plants before the fire and compared seedbank and field populations in adjacent burned and unburned stands.Carpobrotus seeds were abundant in deer scat and in the soil before burning. Burning did not enhance germination: many seeds were apparently killed by fire and seed bank cores taken after fire revealed no germinable seeds. Laboratory tests showed that temperatures over 105°C for five minutes killedCarpobrotus seeds. In a field experiment involving use of herbivore exclosures, we found that herbivory was an important source of mortality for seedlings in both burned and unburned chaparral. All seedlings, however, died outside of the burn regardless of the presence of cages. Establishment there is apparently limited by factors affecting plant physiology. In the burned area, seedlings that escaped herbivory grew very rapidly. Overall, it appears that herbivory limited seedling establishment in both burned and unburned sites but that the post-burn soil environment supportedCarpobrotus growth in excess of herbivore use, thus promoting establishment.  相似文献   

9.
The occurrence of mature individuals of Pseudotsuga menziesii in stands of Arctostaphylos species mark the initial stages of mixed evergreen forest invasion into chaparral in central coastal California. We planted two cohorts of P. menziesii seeds at three sites under stands of two Arctostaphylos species and Adenostoma fasciculatum in order to determine whether first-year seedling emergence and survival, particularly during the regular summer drought, underlie the spatial distribution of mature trees observed in chaparral. Regardless of the chaparral species they were planted under, P. menziesii seeds that were not protected from vertebrate predation displayed very little emergence and no survival. In contrast, emergence of P. menziesii that were protected from vertebrate predators was much higher but still did not significantly differ among the three chaparral species. However, survival of protected seedlings under Arctostaphylos glandulosa was much greater than under A. fasciculatum, with intermediate survival under Arctostaphylos montana. While mortality of protected seedlings due to insect herbivory, fungal infection, and disturbance displayed no consistent patterns, summer drought mortality appeared to drive the patterns of survival of P. menziesii under the different chaparral species. These emergence, mortality, and survival data suggest that spatial patterns of P. menziesii recruitment in chaparral are driven by first-year summer drought seedling mortality, but only in years when seeds and seedlings are released from vertebrate predation pressure. Because the first-year drought mortality and survival patterns of P. menziesii seedlings differed strongly depending on the chaparral species, we examined the additional hypothesis that these patterns are associated with differences in the availability of soil moisture under different chaparral species. Both higher survival and lower drought mortality of P. menziesii seedlings were associated with higher soil water potential under Arctostaphylos stands during the summer drought, especially in the subsurface soil. The data suggest that Arctostaphylos stands, particularly stands of A. glandulosa, ameliorate xeric summer conditions to a degree that facilitates first-year establishment of P. menziesii and strongly influences spatial distribution of mature trees. Received: 18 September 1998 / Accepted: 23 December 1998  相似文献   

10.
Abstract. Demographic structure of 12 chaparral sites unburned for 56 to 120 years was investigated. All sites were dominated by vigorous shrub populations and, although there was colonization by seedlings of woodland tree species in several stands, successional replacement of chaparral was not imminent. Although successional changes in community composition were evident, there was no indication of a decline in species diversity. Non-sprouting species of Ceanothus suffered the greatest mortality at most, but not all, sites. Sprouting shrubs, such as Quercus and Heteromeles had very little mortality, even in stands more than a century old. All postfire resprouting species had multiple stems of different ages indicating these shrubs were capable of continuously regenerating their canopy from basal sprouts. Ceanothus populations were highly clumped and there was a significant correlation across all sites between variance/mean ratio and percentage mortality. As Ceanothus populations thinned, they became less clumped. In mixed chaparral stands, Quercus and Heteromeles were significantly taller than associated Ceanothus shrubs and overtopped the Ceanothus; at two sites, the density of live Quercus per plot was correlated with the density of dead Ceanothus. Thus, mortality of Ceanothus stems is likely related to both intra and interspecific interations. Seedling recruitment was observed for most shrub species that regenerate after fire by resprouting; seedling and sapling densities ranging from 1000–36 500 ha-1 were recorded for Quercus dumosa, Rhamnus crocea, Prunus ilicifolia, Heteromeles arbutifolia and Cercocarpus betuloides. For all but the last species, seedlings and saplings were most abundant beneath the canopy cover and not in gaps. Across all sites, recruitment was significantly correlated with depth and bio-mass of the litter layer. Cercocarpus betuloides was present in several stands, but seedling establishment was found only in one very open, disturbed stand. Regardless of stand age, taxa such as Adenostoma, Arctostaphylos and Ceanothus, which recruit seedlings after fire, had no significant seedling production.  相似文献   

11.
Succession of chaparral shrubs was studied for the first 4 years after fire on the four major slope faces at three elevations in southern California. Although total cover fluctuated from year to year, shrub cover increased annually through the third year. There was little or no increase in shrub cover between the third and fourth years. Four years after fire the shrubs covered 55% ground surface at the highest elevation site but only 28% at the lowest elevation site. Shrub cover was similar between slope faces with one exception; at the lowest elevation site shrub cover was twice as great on the north and east-facing slopes as on the south and west-facing slopes. Post-fire recovery of shrubs was by seedlings and/or resprouts. Yucca whipplei was an exception in that it did not resprout once the aboveground parts were killed nor did seedlings establish after fire, however the aboveground parts of many Y. whipplei survived the fire. Species which reproduced entirely by seed did so in the first post-fire year from soil-stored seed with the exception of Ceanothus greggii at the highest elevation site. This species was entirely absent the first year after fire but abundant in the second year. Species producing both resprouts and seedlings varied from site to site in the proportion of resprouts:seedlings. Between 83–100% of the post-fire populations of Cercocarpus betuloides, Arctostaphylos glandulosa, and Xylococcus bicolor were resprouts whereas 12–13% of Ceanothus tomentosus were resprouts. For Adenostoma fasciculatum, resprouts constituted 27–54% of the population at the lowest elevation and 65–94% at the highest elevation; whereas, the Quercus dumosa population was 100% resprouts at the lowest elevation and 31–67% resprouts at the highest elevation. Data are presented on the height of resprouts and seedlings for all species at the end of the first post-fire year.  相似文献   

12.
We investigated the hypothesis that maritime climatic factors associated with summer fog and low cloud stratus (summer marine layer) help explain the compositional diversity of chaparral in the coast range of central California. We randomly sampled chaparral species composition in 0.1‐hectare plots along a coast‐to‐interior gradient. For each plot, climatic variables were estimated and soil samples were analyzed. We used Cluster Analysis and Principle Components Analysis to objectively categorize plots into climate zone groups. Climate variables, vegetation composition and various diversity measures were compared across climate zone groups using ANOVA and nonmetric multidimensional scaling. Differences in climatic variables that relate to summer moisture availability and winter freeze events explained the majority of variance in measured conditions and coincided with three chaparral assemblages: maritime (lowland coast where the summer marine layer was strongest), transition (upland coast with mild summer marine layer influence and greater winter precipitation), and interior sites that generally lacked late summer water availability from either source. Species turnover (β‐diversity) was higher among maritime and transition sites than interior sites. Coastal chaparral differs from interior chaparral in having a higher obligate seeder to facultative seeder (resprouter) ratio and by being dominated by various Arctostaphylos species as opposed to the interior dominant, Adenostoma fasciculatum. The maritime climate influence along the California central coast is associated with patterns of woody plant composition and β‐diversity among sites. Summer fog in coastal lowlands and higher winter precipitation in coastal uplands combine to lower late dry season water deficit in coastal chaparral and contribute to longer fire return intervals that are associated with obligate seeders and more local endemism. Soil nutrients are comparatively less important in explaining plant community composition, but heterogeneous azonal soils contribute to local endemism and promote isolated chaparral patches within the dominant forest vegetation along the coast.  相似文献   

13.
Leaf death due to freezing was examined for four, co-occurring species of chaparral shrubs from the Santa Monica Mountains of southern California, Rhus laurina (= Malosma laurina), R. ovata, Ceanothus megacarpus, and C. spinosus. Measurements were made on seedlings vs. adults for all species, and for Rhus spp. in winter vs. summer, and at a warm vs. a cold site. We used four methods to determine the temperature for 50% change in activity or cell death (LT(50)) of leaves: (1) electrical conductivity (electrolyte leakage into a bathing solution), (2) photosynthetic fluorescent capacity (Fv/Fm), (3) percentage of palisade mesophyll cells stained by fluorescein diacetate vital stain, and (4) visual score of leaf color (Munsell color chart). In all four species seedlings were found to be more sensitive to freezing temperatures than were adults by 1°-3°C. For adults the LT(50) ranged from -5°C for Rhus laurina in the summer to -16°C for Rhus ovata in the winter. The LT(50) of R. ovata located at a colder inland site was 4C lower than R. ovata at the warmer coastal site just 4 km apart, suggesting ecotypic differences between R. ovata at the two sites. Both R. laurina and R. ovata underwent significant winter hardening. At the cold site, R. ovata acclimated by 6°C on average, while R. laurina acclimated by only 3°C. These results were consistent with species distributions and with field observations of differential shoot dieback between these two congeneric species after a natural freeze-thaw event in the Santa Monica Mountains.  相似文献   

14.
Summary This paper discusses the interactions among prefire shrub abundance, soil moisture, and plant and animal species on postfire seedling establishment in mixed chparral in southern California. Postfire germination and survival of seedlings in a stand dominated by a facultative seeder (Adenostoma fasciculatum) and by an obligate seeder (Ceanothus greggii) were monitored for 2 years. Relative to prefire abundance, germination of C. greggii was higher than that of A. fasciculatum. Survival during the first year was also higher in C. greggii than in A. fasciculatum. During the second year, however, mortality of C. greggii was greater than that of A. fasciculatum, mostly due to a psyllid infection. Germination of A. fasciculatum was negatively related to prefire shrub abundance. C. greggii germination was not associated with prefire shrub abundance. Seedling mortality of both species was very strongly related to the depletion of soil moisture the first few months after germination. A. fasciculatum was more sensitive than C. greggii to the drying of the soil, especially in the upper levels. C. greggii seedlings had longer roots, greater root/shoot biomass ratios, higher water potentials, and a later peak in seasonal growth activity compared to A. fasciculatum. Herbs promoted greater survival of A. fasciculatum. Our results indicate that the obligate seeder species, C. greggii, is better adapted to establish seedling in chaparral by producing greater relative germination and greater seedling survival than the facultative seeder species A. fasciculatum. The greater adaptability of C. greggii to the physical environment is counteracted by interspecific interference by plant and animal interactions which tend to favor A. fasciculatum over C. greggii.  相似文献   

15.
Abstract. This study deals with a quantification of pre- and post-fire seedling establishment and microsite characteristics in two Florida sand pine scrub sites burned in May 1993. In addition, life history characteristics related to seedling establishment are described for five perennial species –Calamintha ashei, Chapmannia floridana, Eriogonum floridanum, Garberia heterophylla and Palafoxia feayi. Post-fire seedling establishment in sand pine scrub was sparse (median = 1, 12 seedling/m2), with 17 of 35 species establishing seedlings. Chapmannia, Eriogonum, Garberia and Palafoxia resprouted and flowered after fire; Eriogonum and Garberia had strong post-fire seedling establishment responses within 19 months post-fire. Calamintha individuals were killed by fire, but this species had a strong post-fire seedling establishment response, presumably from seeds in a soil seed bank. Eriogonum and Calamintha seedlings established preferentially in plots centered on conspecific adults. For these species with poor seed dispersal, spatial patterns of seedling establishment may be influenced more by pre-fire adult plant location than by post-fire microsite conditions. Post-fire seedling density in sand pine scrub was much lower than in California chaparral and South African sand plain lowland fynbos.  相似文献   

16.
Meentemeyer  Ross K.  Moody  Aaron  Franklin  Janet 《Plant Ecology》2001,156(1):19-41
We examine the degree to which landscape-scale spatial patterns of shrub-species abundance in California chaparral reflect topographically mediated environmental conditions, and evaluate whether these patterns correspond to known ecophysiological plant processes. Regression tree models are developed to predict spatial patterns in the abundance of 12 chaparral shrub and tree species in three watersheds of the Santa Ynez Mountains, California. The species response models are driven by five variables: average annual soil moisture, seasonal variability in soil moisture, average annual photosynthetically active radiation, maximum air temperature over the dry season (May–October), and substrate rockiness. The energy and moisture variables are derived by integrating high resolution (10 m) digital terrain data and daily climate observations with a process-based hydro-ecological model (RHESSys). Field-sampled data on species abundance are spatially integrated with the distributed environmental variables for developing and evaluating the species response models.The species considered are differentially distributed along topographically-mediated environmental gradients in ways that are consistent with known ecophysiological processes. Spatial patterns in shrub abundance are most strongly associated with annual soil moisture and solar radiation. Substrate rockiness is also closely associated with the establishment of certain species, such as Adenostoma fasciculatum and Arctostaphylos glauca. In general, species that depend on fire for seedling recruitment (e.g., Ceanothous megacarpus) occur at high abundance in xeric environments, whereas species that do not depend on fire (e.g., Heteromeles arbutifolia) occur at higher abundance in mesic environments. Model performance varies between species and is related to life history strategies for regeneration. The scale of our analysis may be less effective at capturing the processes that underlie the establishment of species that do not depend on fire for recruitment. Analysis of predication errors in relation to environmental conditions and the abundance of potentially competing species suggest factors not explicitly considered in the species response models.  相似文献   

17.
Possible tradeoffs between efficiency of water transport and mechanical strength were examined in stems of two congeneric pairs of co-occurring chaparral shrubs. First, since previously published results indicated that Adenostoma sparsifolium (Rosaceae) had greater specific conductivity (k s or hydraulic conductivity per xylem transverse area) than A. fasciculatum, it was hypothesized that A. sparsifolium would have greater vessel lumen area per square millimeter of xylem area, and less mechanical strength, than A. fasciculatum. Secondly, since Ceanothus megacarpus (Rhamnaceae) is a non-sprouter (unable to sprout from the root crown following fire or other major disturbance) whereas C. spinosus is a sprouter and thus able to form new stems following disturbance, it was hypothesized that C. megacarpus would have greater mechanical strength, but lower k s, than C. spinosus. Both hypotheses were supported. Based upon computer-aided image analyses, A. sparsifolum had significantly higher mean and maximum vessel diameters (16.4, 40.5 vs. 14.6, 35.7 μm), a 34% greater percent vessel lumen area, and a two-fold greater measured and theoretical k s than A. fasciculatum. This corresponded to 14% lower stem density (wet weight/volume) and less mechanical strength, with a 37% lower modulus of elasticity (MOE) and a 30% lower modulus of rupture (MOR) than A. fasciculatum. Similarly, C.␣spinosus had a significantly higher maximum vessel diameter (52.7 vs. 41.8 μm) and a 92% higher theoretical k s (and 43% higher measured k s) than C. megacarpus. This corresponded to a 9% lower stem density and 20% lower MOR than for C. megacarpus. Thus, at least within these two congeneric pairs of chaparral shrubs growing together in the same habitat, there may be tradeoffs between mechanical strength and conductive efficiency of the stem xylem which correspond to differences in transport physiology and life history traits of sprouter versus non-sprouter species.  相似文献   

18.
Summary Regeneration methods for coastal sage srub vegetation after fire were studied in the coastal Santa Monica Mountains of southern California. Six sites were sampled two years after a large fire of fall, 1978. The intensity of fire varied. Foliar cover and flowering incidence were recorded for individuals regenerating by resprouting or from seed. Resprouting plants contributed most to post-fire recovery, comprising 95% of the relative foliar shrub cover; 84% of resprout and 47% of seedling cover had flowered. An ANOVA of reproductive mode and fire intensity indicates that resprout total cover and individual size are significantly greater than those of seedlings, regardless of fire intensity. Among sites the average foliar cover of resprouts exceeded that of seedlings by factors ranging from 9 to 63. All coastal sage species examined resprout, although the potential vigor of resprouting appears to vary widely within genera (e.g. Encelia, Eriogonum, and Salvia) and even within species. In the second growing season following fire seedling density increased due to seeds shed by resprouted shrubs. Most of the cover on these stands of coastal sage scrub is destined to be either crown-sprouted individuals or their progeny.  相似文献   

19.
Adenostoma fasciculatum H. & A. and Ceanothus leucodermis Green in chaparral stands of the foothill zone of Sequoia National Park, California, show a rapid decline in foliage concentrations of nitrogen over the first six years following fire. This is followed by a more gradual decline over succeeding years. Phosphorus concentrations show a similar early decline, followed by an increase in older age stands. Considerable data suggest luxury consumption of nutrients in both species following fire. Following a sharp increase in aboveground nutrients per unit of Adenostoma canopy area for the first 16 years of growth, a plateau is reached. The contemporaneous occurrence of restricted net nutrient uptake and observed stand senescence suggest a possibility of a causal relationship. Natural chaparral fire frequencies promote fire-cycling of nutrients at intervals consistent with periods when nutrient availability becomes limiting. The fire-nutrient interactions are of critical importance in influencing quality and quantity of suitable browse for vertebrate herbivores.  相似文献   

20.
We quantified microscale pattern in vegetation and seed assemblages along a 24 m transect before and for two years following a controlled burn in chamise (Adenostoma fasciculatum) chaparral in central coastal California. Our objective was to document scale-dependent correlation between pre-burn seed assemblages, pre-burn canopy cover, microtopography, soil temperatures during burning, post-burn seed assemblages and post-burn vegetation. Scale-dependent correlations among pre- and post-burn seed densities, maximum soil temperatures during burning, microtopography and post-burn vegetation were measured based on two-term local covariance analysis.Seed distribution varied among species prior to fire, with seeds of some annual species concentrated in gap areas. Maximum soil temperatures during burning ranged from less than 50 °C to 225 °C, and were generally lowest in gaps in the pre-burn canopy. These gaps were associated with local topographic depressions. After burning, readily germinable seeds were concentrated in or near gaps in the pre-burn canopy. Germination of different species was variously enhanced, diminished or unchanged by the passage of fire. Post-burn vegetation was very patchy, with some areas nearly devoid of seedlings and other areas, especially pre-burn canopy gaps, supporting numerous seedlings. Seedling recruitment patterns in the second year were generally highly correlated with patterns in pre-burn seed banks and first year vegetation. Although many species exhibited similar recruitment patterns, several different mechanisms may have been responsible for the origin of those patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号