首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Studies of processing of the Alzheimer β-amyloid precursor protein (βAPP) have been performed to date mostly in continuous cell lines and indicate the existence of two principal metabolic pathways: the "β-secretase" pathway, which generates β-amyloid (Aβ1–40/42; ∼4 kDa), and the "α-secretase" pathway, which generates a smaller fragment, the "p3" peptide (Aβ17–40/42; ∼3 kDa). To determine whether similar processing events underlie βAPP metabolism in neurons, media were examined following conditioning by primary neuronal cultures derived from embryonic day 17 rats. Immunoprecipitates of conditioned media derived from [35S]methionine pulse-labeled primary neuronal cultures contained 4- and 3-kDa Aβ-related species. Radiosequencing analysis revealed that the 4-kDa band corresponded to conventional Aβ beginning at position Aβ(Asp1), whereas both radio-sequencing and immunoprecipitation-mass spectrometry analyses indicated that the 3-kDa species in these conditioned media began with Aβ(Glu11) at the N terminus, rather than Aβ(Leu17) as does the conventional p3 peptide. Either activation of protein kinase C or inhibition of protein phosphatase 1/2A increased soluble βAPPα release and decreased generation of both the 4-kDa Aβ and the 3-kDa N-truncated Aβ. Unlike results obtained with continuously cultured cells, protein phosphatase 1/2A inhibitors were more potent at reducing Aβ secretion by neurons than were protein kinase C activators. These data indicate that rodent neurons generate abundant Aβ variant peptides and emphasize the role of protein phosphatases in modulating neuronal Aβ generation.  相似文献   

2.
Abstract: Amyloid β protein (Aβ) deposition in the cerebral arterial and capillary walls is one of the major characteristics of brains from patients with Alzheimer's disease and hereditary cerebral hemorrhage with amyloidosis-Dutch type (HCHWA-D). Vascular Aβ deposition is accompanied by degeneration of smooth muscle cells and pericytes. In this study we found that Aβ1–40 carrying the "Dutch" mutation (HCHWA-D Aβ1–40) as well as wild-type Aβ1–42 induced degeneration of cultured human brain pericytes and human leptomeningeal smooth muscle cells, whereas wild-type Aβ1–40 and HCHWA-D Aβ1–42 were inactive. Cultured brain pericytes appeared to be much more vulnerable to Aβ-induced degeneration than leptomeningeal smooth muscle cells, because in brain pericyte cultures cell viability already decreased after 2 days of exposure to HCHWA-D Aβ1–40, whereas in leptomeningeal smooth muscle cell cultures cell death was prominent only after 4–5 days. Moreover, leptomeningeal smooth muscle cell cultures were better able to recover than brain pericyte cultures after short-term treatment with HCHWA-D Aβ1–40. Degeneration of either cell type was preceded by an increased production of cellular amyloid precursor protein. Both cell death and amyloid precursor protein production could be inhibited by the amyloid-binding dye Congo red, suggesting that fibril assembly of Aβ is crucial for initiating its destructive effects. These data imply an important role for Aβ in inducing perivascular cell pathology as observed in the cerebral vasculature of patients with Alzheimer's disease or HCHWA-D.  相似文献   

3.
β-amyloid peptide 1–42 (Aβ1–42) and hyperphosphorylated tau are associated with neurodegeneration in Alzheimer's disease. Emerging evidence indicates that Aβ1–42 can potentiate hyperphosphorylation of tau in cell lines and in transgenic mice, but the underlying mechanism(s) remains unclear. In this study, Aβ1–42-induced tau phosphorylation was investigated in differentiated PC12 cells. Treatment of cells with Aβ1–42 increased phosphorylation of tau at serine-202 as detected by AT8 antibody. This Aβ1–42-induced tau phosphorylation paralleled phosphorylation of glycogen synthase kinase-3β (GSK-3β) at tyrosine-216 (GSK-3β-pY216), which was partially inhibited by the GSK-3β inhibitor, CHIR98023. Aβ1–42-induced tau phosphorylation and increase in GSK-3β-pY216 phosphorylation were also partially attenuated by α7 nicotinic acetylcholine receptor (α7 nAChR) selective ligands including agonist A-582941 and antagonists methyllycaconitine and α-bungarotoxin. The α7 nAChR agonist and the GSK-3β inhibitor had no additive effect. These observations suggest that α7 nAChR modulation can influence Aβ1–42-induced tau phosphorylation, possibly involving GSK-3β. This study provides evidence of nAChR mechanisms underlying Aβ1–42 toxicity and tau phosphorylation, which, if translated in vivo , could provide additional basis for the utility of α7 nAChR ligands in the treatment of Alzheimer's disease.  相似文献   

4.
The mechanism of the effect of docosahexaenoic acid (DHA; C22:6, n -3), one of the essential brain nutrients, on in vitro fibrillation of amyloid β (Aβ1–42), Aβ1–42-oligomers and its toxicity imparted to SH-S5Y5 cells was studied with the use of thioflavin T fluorospectroscopy, laser confocal microfluorescence, and transmission electron microscopy. The results clearly indicated that DHA inhibited Aβ1–42-fibrill formation with a concomitant reduction in the levels of soluble Aβ1–42 oligomers. The polymerization (into fibrils) of preformed oligomers treated with DHA was inhibited, indicating that DHA not only obstructs their formation but also inhibits their transformation into fibrils. Sodium dodecyl sulfate–polyacrylamide gel electrophoresis (12.5%), Tris–Tricine gradient(4–20%) gel electrophoresis and western blot analyses revealed that DHA inhibited at least 2 species of Aβ1–42 oligomers of 15–20 kDa, indicating that it hinders these on-pathway tri/tetrameric intermediates during fibrillation. DHA also reduced the levels of dityrosine and tyrosine intrinsic fluorescence intensity, indicating DHA interrupts the microenvironment of tyrosine in the Aβ1–42 backbone. Furthermore, DHA protected the tyrosine from acrylamide collisional quenching, as indicated by decreases in Stern–Volmer constants. 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide-reduction efficiency and immunohistochemical examination suggested that DHA inhibits Aβ1–42-induced toxicity in SH-S5Y5 cells. Taken together, these data suggest that by restraining Aβ1–42 toxic tri/tetrameric oligomers, DHA may limit amyloidogenic neurodegenerative diseases, Alzheimer's disease.  相似文献   

5.
Abstract: The frequency of the ε4 allele of apolipoprotein E(apoE) is increased in late-onset and sporadic forms of Alzheimer's disease (AD). ApoE also binds to β-amyloid (Aβ) and both proteins are found in AD plaques. To further investigate the potential interaction of apoE and Aβ in the pathogenesis of AD, we have determined the binding, internalization, and degradation of human apoE isoforms in the presence and absence of Aβ peptides to rat primary hippocampal neurons. We demonstrate that the lipophilic Aβ peptides, in particular Aβ1–42, Aβ1–40, and Aβ25–35, increase significantly apoE-liposome binding to hippocampal neurons. For each Aβ peptide, the increase was significantly greater for the apoE4 isoform than for the apoE3 isoform. The most effective of the Aβ peptides to increase apoE binding, Aβ25–35, was further shown to increase significantly the internalization of both apoE3- and apoE4-liposomes, without affecting apoE degradation. Conversely, Aβ1–40 uptake by hippocampal neurons was shown to be increased in the presence of apoE-liposomes, more so in the presence of the apoE4 than the apoE3 isoform. These results provide evidence that Aβ peptides interact directly with apoE lipoproteins, which may then be transported together into neuronal cells through apoE receptors.  相似文献   

6.
Abstract: H2O2 and free radical-mediated oxidative stresses have been implicated in mediating amyloid β(1–40) [Aβ(1–40)] neurotoxicity to cultured neurons. In this study, we confirm that addition of the H2O2-scavenging enzyme catalase protects neurons in culture against Aβ-mediated toxicity; however, it does so by a mechanism that does not involve its ability to scavenge H2O2. Aβ-mediated elevation in intracellular H2O2 production is suppressed by addition of a potent H2O2 scavenger without any significant neuroprotection. Three intracellular biochemical markers of H2O2-mediated oxidative stress were unchanged by Aβ treatment: (a) glyceraldehyde-3-phosphate dehydrogenase activity, (b) hexose monophosphate shunt activity, and (c) glucose oxidation via the tricarboxylic acid cycle. Ionspray mass spectra of Aβ in the incubation medium indicated that Aβ itself is an unlikely source of reactive oxygen species. In this study we demonstrate that intracellular ATP concentration is compromised during the first 24-h exposure of neurons to Aβ. Our results challenge a pivotal role for H2O2 generation in mediating Aβ toxicity, and we suggest that impairment of energy homeostasis may be a more significant early factor in the neurodegenerative process.  相似文献   

7.
Abstract: Cerebrovascular amyloid β-protein (Aβ) deposition is a key pathological feature of Alzheimer's disease and hereditary cerebral hemorrhage with amyloidosis-Dutch type (HCHWA-D). Aβ1–40 containing the E22Q HCHWA-D mutation, but not wild-type Aβ1–40, potently induces several pathologic responses in cultured human cerebrovascular smooth muscle cells, including cellular degeneration and a robust increase in the levels of cellular Aβ precursor. In the present study, we show by several quantitative criteria, including thioflavin T fluorescence binding, circular dichroism spectroscopy, and transmission electron microscopic analysis, that at a concentration of 25 µ M neither HCHWA-D Aβ1–40 nor wild-type Aβ1–40 appreciably assembles into β-pleated sheet-containing fibrils in solution over a 6-day incubation period. In contrast, at the same concentrations, HCHWA-D Aβ1–40, but not wild-type Aβ1–40, selectively binds and assembles into abundant fibrils on the surfaces of cultured human cerebrovascular smooth muscle cells. The simultaneous addition of an equimolar concentration of the dye Congo red prevents the cell surface fibril assembly of HCHWA-D Aβ1–40. Moreover, Congo red effectively blocks the key pathologic responses induced by HCHWA-D Aβ1–40 in these cells. The present findings suggest that the surface of human cerebrovascular smooth muscle cells may selectively orchestrate the assembly of pathogenic Aβ fibrils and that cell surface Aβ fibril formation plays an important role in causing the pathologic responses in these cells.  相似文献   

8.
Abstract: There is mounting evidence that at least some of the neurotoxicity associated with Alzheimer's disease (AD) is due to proteolytic fragments of the β-amyloid precursor protein (βAPP). Most research has focused on the amyloid β protein (Aβ), which has been shown to possess ion channel activity. However, the possible role of other cleaved products of the βAPP is less clear. We have investigated the ability of various products of βAPP to induce membrane ion currents by applying them to Xenopus oocytes, a model system used extensively for investigating electrophysiological aspects of cellular, including neuronal, signalling. We focussed on the 105-amino-acid C-terminal fragment (CT105) (containing the full sequence Aβ), which has previously been found to be toxic to cells, although little is known about its mode of action. We have found that CT105 is exceedingly potent, with a threshold concentration of 100–200 n M , in inducing nonselective ion currents when applied from either outside or inside the oocyte and is more effective than either βAPP or the Aβ fragments, β25–35 or β1–40. The ion channel activity of CT105 was concentration dependent and blocked by a monoclonal antibody to Aβ. These results suggest the possible involvement of CT105 in inducing the neural toxicity characteristic of AD.  相似文献   

9.
Increase in oxidative stress has been postulated to play an important role in the pathogenesis of a number of neurodegenerative diseases including Alzheimer's disease. There is evidence for involvement of amyloid-β peptide (Aβ) in mediating the oxidative damage to neurons. Despite yet unknown mechanism, Aβ appears to exert action on the ionotropic glutamate receptors, especially the N-methyl-D-aspartic acid (NMDA) receptor subtypes. In this study, we showed that NMDA and oligomeric Aβ1–42 could induce reactive oxygen species (ROS) production from cortical neurons through activation of NADPH oxidase. ROS derived from NADPH oxidase led to activation of extracellular signal-regulated kinase 1/2, phosphorylation of cytosolic phospholipase A2α (cPLA2α), and arachidonic acid (AA) release. In addition, Aβ1–42-induced AA release was inhibited by d (−)-2-amino-5-phosphonopentanoic acid and memantine, two different NMDA receptor antagonists, suggesting action of Aβ through the NMDA receptor. Besides serving as a precursor for eicosanoids, AA is also regarded as a retrograde messenger and plays a role in modulating synaptic plasticity. Other phospholipase A2 products such as lysophospholipids can perturb membrane phospholipids. These results suggest an oxidative-degradative mechanism for oligomeric Aβ1–42 to induce ROS production and stimulate AA release through the NMDA receptors. This novel mechanism may contribute to the oxidative stress hypothesis and synaptic failure that underline the pathogenesis of Alzheimer's disease.  相似文献   

10.
Aggregation of amyloid-β (Aβ) peptides is a central phenomenon in Alzheimer's disease. Zn(II) and Cu(II) have profound effects on Aβ aggregation; however, their impact on amyloidogenesis is unclear. Here we show that Zn(II) and Cu(II) inhibit Aβ42 fibrillization and initiate formation of non-fibrillar Aβ42 aggregates, and that the inhibitory effect of Zn(II) (IC50 = 1.8 μmol/L) is three times stronger than that of Cu(II). Medium and high-affinity metal chelators including metallothioneins prevented metal-induced Aβ42 aggregation. Moreover, their addition to preformed aggregates initiated fast Aβ42 fibrillization. Upon prolonged incubation the metal-induced aggregates also transformed spontaneously into fibrils, that appear to represent the most stable state of Aβ42. H13A and H14A mutations in Aβ42 reduced the inhibitory effect of metal ions, whereas an H6A mutation had no significant impact. We suggest that metal binding by H13 and H14 prevents the formation of a cross-β core structure within region 10–23 of the amyloid fibril. Cu(II)-Aβ42 aggregates were neurotoxic to neurons in vitro only in the presence of ascorbate, whereas monomers and Zn(II)-Aβ42 aggregates were non-toxic. Disturbed metal homeostasis in the vicinity of zinc-enriched neurons might pre-dispose formation of metal-induced Aβ aggregates, subsequent fibrillization of which can lead to amyloid formation. The molecular background underlying metal-chelating therapies for Alzheimer's disease is discussed in this light.  相似文献   

11.
Administration of small oligomeric β-amyloid (Aβ)1–42 45 min before one-trial bead discrimination learning in day-old chicks abolishes consolidation of learning 30 min post-training (Gibbs et al. Neurobiol. Aging , in press). Administration of the β3-adrenergic agonist CL316243, which specifically stimulates astrocytic but not neuronal glucose uptake, rescues Aβ impaired memory. Weakly reinforced training can be consolidated by various metabolic substrates and we have demonstrated neuronal dependence on oxidative metabolism of glucose soon after training versus astrocytic glucose dependence 20 min later. Based on these findings we examined whether different metabolic substrates were able to counteract memory inhibition by Aβ1–42. Although lactate, the medium-chain fatty acid octanoate, and the ketone body β-hydroxybutyrate consolidated weakly reinforced training when injected close to learning, none of them were able to salvage Aβ-impaired memory; at this early time. All three metabolites and the astrocytic-specific acetate consolidated weak learning and rescued Aβ-impaired memory when injected 10–20 min post-training. However, neither glucose nor insulin rescued memory when injected at 20 min. Rescue of memory by providing astrocytes with alternative substrates for oxidative metabolism suggests that Aβ1–42 exerts its amnestic effects specifically by impairing astrocytic glycolysis.  相似文献   

12.
Soluble amyloid-β peptide (Aβ) exists in the form of monomers and oligomers, and as complexes with Aβ-binding molecules, such as low-density lipoprotein receptor-related protein-1 (LRP-1) ligands. The present study investigated the effect of self-aggregation and LRP-1 ligands on the elimination of human Aβ(1–40) [hAβ(1–40)] from the rat brain across the blood–brain barrier. Incubation of [125I]hAβ(1–40) monomer resulted in time-dependent and temperature-dependent dimer formation, and the apparent elimination rate of [125I]hAβ(1–40) dimer was significantly decreased by 92.7% compared with that of [125I]hAβ(1–40) monomer. Pre-incubation with LRP-1 ligands, such as activated α2-macroglobulin (α2M), apolipoprotein E2 (apoE2), apoE3, apoE4, and lactoferrin, reduced the elimination of [125I]hAβ(1–40). By contrast, pre-administration of the same concentration of these molecules in the rat brain did not significantly inhibit [125I]hAβ(1–40) monomer elimination. Purified [125I]hAβ(1–40)/activated α2M complex and [125I]activated α2M were not significantly eliminated from the rat brain up to 60 min. MEF-1 cells, which have LRP-1-mediated endocytosis, exhibited uptake of [125I]activated α2M, and enhancement of [125I]hAβ(1–40) uptake upon pre-incubation with apoE, suggesting that [125I]activated α2M and [125I]hAβ(1–40)/apoE complex function as LRP-1 ligands. These findings indicate that dimerization and LRP-1-ligand complex formation prevent the elimination of hAβ(1–40) from the brain across the blood–brain barrier.  相似文献   

13.
F-spondin is associated with the regulation of axonal growth and the development of the nervous system. Its mechanism of action, however, is not clearly understood. In this study, we found that murine neuroblastoma Neuro-2a cells expressed a significant level of IL-6, but only trace amounts of IL-12, tumor necrosis factor α and nitric oxide. Knock-down of F-spondin mRNA in murine neuroblastoma NB41A3 and Neuro-2a cells using small interfering RNAs led to decreased IL-6 levels along with lower resistance to serum starvation and cytotoxic amyloid β1–42 (Aβ1–42) peptide. Restoring decline of F-spondin or IL-6 induced by F-spondin knock-down through adding exogenous F-spondin, IL-6 or over-expressing F-spondin reversed the cell death induced by Aβ1–42 peptide or serum starvation. The decrease of IL-6 level was positively correlated with decrease of NF-κB and inhibition of p38 mitogen-activated protein kinase (MAPK). Over-expressing MEKK, a kinase activator of the p38 MAPK pathway, increased IL-6 production, restored the decrease of p38 induced by F-spondin knock-down, and rescued the cells from death caused by Aβ1–42 peptide. Taken together, these results suggest that F-spondin may play a critical role in murine neuroblastoma survival under adverse conditions by maintaining IL-6 level via a MEKK/p38 MAPK/NF-κB-dependent pathway.  相似文献   

14.
Abstract: The effects of synthetic β-amyloid (Aβ1–42) on cell viability and cellular Ca2+ homeostasis have been studied in the human neuron-like NT2N cell, which differentiates from a teratocarcinoma cell line, NTera2/C1.D1, by retinoic acid treatment. NT2N viability was measured using morphological criteria and fluorescent live/dead staining and quantified using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide metabolism. Aβ1–42 dose-dependently caused NT2N cell death when it was present in the cell culture for 14 days but had no effect on viability when it was present for 4 days. The lowest effective concentration was 4 µ M , and the strongest effect was produced by 40 µ M . Control NT2N cells produced spontaneous cytosolic Ca2+ oscillations under basal conditions. These oscillations were inhibited dose-dependently (0.4–40 µ M ) by Aβ1–42 that was present in the cell culture for 1 or 4 days. Ca2+ wave frequency was decreased from 0.21 ± 0.02 to 0.05 ± 0.02/min, amplitude from 88 ± 8 to 13 ± 4 n M , and average Ca2+ level from 130 ± 8 to 58 ± 3 n M . The Ca2+ responses to 30 m M K+ and 100 µ M glutamate were not different between control and Aβ-treated cells. Thus, the results do not support the hypothesis that cytosolic early Ca2+ accumulation mediates Aβ-induced NT2N cell death.  相似文献   

15.
Abstract: The amyloid protein (βA4) is found in the CNS of patients with Alzheimer's disease; however, the pathogenic role of this protein is not known. In the present study, a peptide fragment of βA4βA4 25–35; Gly-Ser-Asn-Lys-Gly-Ala-Ile-Ile-Gly-Leu-Met-NH2), which contains the conserved C-terminal sequence of substance P (X-Gly-Leu-Met-NH2), and the neuropeptide substance P (SP) were examined for their ability to modulate nicotine-evoked secretion from cultured bovine adrenal chromaffin cells. Secretion of the released endogenous catecholamines was monitored by electrochemical detection after separation by HPLC. Secretion induced by 10−5 M nicotine was inhibited by SP and βA4 25–35. The IC50 of SP and βA4 25–35 was 3 × 10−6 and 3 × 10−5 M , respectively. SP and βA4 25–35 both protected against nicotinic receptor desensitization. However, βA4 25–35 was ∼ 10-fold less effective than SP in its protective effect. The present work shows that βA4 25–35 can mimic the modulatory actions of SP on the nicotinic response of cultured bovine chromaffin cells, i.e., inhibition of the nicotinic response and protection against nicotinic desensitization. These modulatory actions may be associated with changes in nicotinic receptor levels reported to occur in Alzheimer's disease.  相似文献   

16.
Abstract: Transgenic Caenorhabditis elegans animals have been engineered to express wild-type and single-amino acid variants of a long form of human β-amyloid peptide (Aβ 1–42). These animals express high levels (∼300 ng of Aβ/mg of total protein) of apparently full-length peptide, as determined by quantitative immunoblot. Expression of wild-type Aβ in these animals leads to rapid production of amyloid deposits reactive with Congo red and thioflavin S. This model system has been used to examine the effect of Leu17Pro, Leu17Val, Ala30-Pro, Met35Cys, and Met35Leu substitutions on the in vivo production of amyloid deposits. We find that the Leu17Pro and Met35Cys substitutions completely block the formation of thioflavin S-reactive deposits, implicating these as key residues for in vivo amyloid formation. We have also constructed transgenic strains expressing a novel Aβ variant, the single-chain dimer. Animals expressing high levels of this variant also fail to produce thioflavin S-reactive deposits.  相似文献   

17.
Abstract: Clusterin is a secreted glycoprotein that is markedly induced in many disease states and after tissue injury. In the CNS, clusterin expression is elevated in neuropathological conditions such as Alzheimer's disease (AD), where it is found associated with amyloid-β (Aβ) plaques. Clusterin also coprecipitates with Aβ from CSF, suggesting a physiological interaction with Aβ. Given this interaction with Aβ, the goal of this study was to determine whether clusterin could modulate Aβ neurotoxicity. A mammalian recombinant source of human clusterin was obtained by stable transfection of hamster kidney fibroblasts with pADHC-9, a full-length human cDNA clone for clusterin. Recombinant clusterin obtained from this cell line, as well as a commercial source of native clusterin purified from serum, afforded dose-dependent neuroprotection against Aβ(1–40) when tested in primary rat mixed hippocampal cultures. Clusterin afforded substoichiometric neuroprotection against several lots of Aβ(1–40) but not against H2O2 or kainic acid excitotoxicity. These results suggest that the elevated expression of clusterin found in AD brain may have effects on subsequent amyloid-β plaque pathology.  相似文献   

18.
Abstract: Amyloid β-peptides (Aβ) may alter the neuronal membrane lipid environment by changing fluidity and inducing free radical lipid peroxidation. The effects of Aβ1–40 and Aβ25–35 on the fluidity of lipids adjacent to proteins (annular fluidity), bulk lipid fluidity, and lipid peroxidation were determined in rat synaptic plasma membranes (SPM). A fluorescent method based on radiationless energy transfer from tryptophan of SPM proteins to pyrene and pyrene monomer-eximer formation was used to determine SPM annular fluidity and bulk fluidity, respectively. Lipid peroxidation was determined by the thiobarbituric acid assay. Annular fluidity and bulk fluidity of SPM were increased significantly ( p ≤ 0.02) by Aβ1–40. Similar effects on fluidity were observed for Aβ25–35 ( p ≤ 0.002). Increased fluidity was associated with lipid peroxidation. Both Aβ peptides significantly increased ( p ≤ 0.006) the amount of malondialdehyde in SPM. The addition of a water-soluble analogue of vitamin E (Trolox) inhibited effects of Aβ on lipid peroxidation and fluidity in SPM. The fluidizing action of Aβ peptides on SPM may be due to the induction of lipid peroxidation by those peptides. Aβ-induced changes in neuronal function, such as ion flux and enzyme activity, that have been reported previously may result from the combined effects of lipid peroxidation and increased membrane fluidity.  相似文献   

19.
Abstract: We investigated the potential role of different proteases in the death of cultured rat hippocampal pyramidal neurons induced by β-amyloid(Aβ) (25–35). Both Aβ(25–35)- and staurosporine-induced death of these neurons appeared to involve apoptosis, as indicated using Hoechst 33342 and terminal dUDP nick end labeling staining, whereas NMDA-induced death appeared more complex. Two irreversible inhibitors of the interleukin-1β converting enzyme (ICE) and related proteases, Z-Val-Ala-Asp-CH2F and acetyl-Tyr-Val-Ala-Asp-chloromethyl ketone, blocked neuronal death produced by Aβ(25–35), staurosporine, and NMDA to differing extents. Furthermore, MDL 28,170, a selective inhibitor of the calcium-regulated protease calpain, also inhibited death induced by all agents. Aβ(25–35) and staurosporine stimulated the breakdown of the protein spectrin, a calpain substrate. Spectrin breakdown was inhibited by MDL 28,170 but not by ICE inhibitors. Leupeptin was only effective in preventing NMDA-induced death. These results support the role of apoptosis in neuronal death due to Aβ(25–35) treatment and also suggest a role for calcium-regulated proteases in this process.  相似文献   

20.
Abstract: Amyloid β protein (Aβ), the central constituent of senile plaques in Alzheimer's disease (AD) brain, is known to exert toxic effects on cultured neurons. The role of the voltage-sensitive Ca2+ channel (VSCC) in β(25–35) neurotoxicity was examined using rat cultured cortical and hippocampal neurons. When L-type VSCCs were blocked by application of nimodipine, β(25–35) neurotoxicity was attenuated, whereas application of ω-conotoxin GVIA (ω-CgTX-GVIA) or ω-agatoxin IVA (ω-Aga-IVA), the blocker for N- or P/Q-type VSCCs, had no effects. Whole-cell patch-clamp studies indicated that the Ca2+ current density of β(25–35)-treated neurons is about twofold higher than that of control neurons. Also, β(25–35) increased Ca2+ uptake, which was sensitive to nimodipine. The 2',7'-dichlorofluorescin diacetate assay showed the ability of β(25–35) to produce reactive oxygen species. Nimodipine had no effect on the level of free radicals. In contrast, vitamin E, a radical scavenger, reduced the level of free radicals, neurotoxicity, and Ca2+ uptake. These results suggest that β(25–35) generates free radicals, which in turn, increase Ca2+ influx via the L-type VSCC, thereby inducing neurotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号