首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Summary The patterns of F-actin in relation to microtubule (Mt) organization in dividing root tip cells ofAdiantum capillus veneris were studied with rhodamine-phalloidin (RP) labelling and tubulin immunofluorescence. Interphase cells display a well organized network of cortical/subcortical, endoplasmic and perinuclear actin filaments (AFs), not particularly related to the interphase Mt arrays. The cortical AFs seem to persist during the cell cycle while the large subcortical AF bundles disappear by preprophase/prophase and reappear after cytokinesis is completed. In some but not all of the preprophase cells the cortical AFs tend to form a band (AF-PPB) coincident with the preprophase band of Mts (Mt-PPB). In metaphase and anaphase cells AFs are localized in the cell cortex, around the spindle and inside it coincidently with kinetochore Mt bundles. During cytokinesis AFs are consistently found in the phragmoplast. In oryzalin treated cells neither Mt-PPBs, spindles and phragmoplasts exist, nor such F-actin structures can be observed. In cells recovering from oryzalin, AF-PPBs, AF kinetochore bundles and AF phragmoplasts reform. They show the same pattern with the reinstating respective Mt arrays. In contrast, in cells treated with cytochalasin B (CB), AFs disappear but all categories of Mt arrays form normally.These observations show that F-actin organization in root tip cells ofA. capillus veneris differs from that of root tip cells of flowering plants examined so far. In addition, Mts seem to be crucial for F-actin organization as far as it concerns the PPB, the mitotic spindle, and the phragmoplast.Abbreviations AF actin filament - CB cytochalasin B - MBS m-male-imidobenzoyl-N-hydroxysuccinimide ester - MSB microtubule stabilizing buffer - Mt microtubule - PBS phosphate buffered saline - PPB preprophase band - RP rhodamine phalloidin  相似文献   

2.
BACKGROUND: In premitotic plant cells, the future division plane is predicted by a cortical ring of microtubules and F-actin called the preprophase band (PPB). The PPB persists throughout prophase, but is disassembled upon nuclear-envelope breakdown as the mitotic spindle forms. Following nuclear division, a cytokinetic phragmoplast forms between the daughter nuclei and expands laterally to attach the new cell wall at the former PPB site. A variety of observations suggest that expanding phragmoplasts are actively guided to the former PPB site, but little is known about how plant cells "remember" this site after PPB disassembly. RESULTS: In premitotic plant cells, Arabidopsis TANGLED fused to YFP (AtTAN::YFP) colocalizes at the future division plane with PPBs. Strikingly, cortical AtTAN::YFP rings persist after PPB disassembly, marking the division plane throughout mitosis and cytokinesis. The AtTAN::YFP ring is relatively broad during preprophase/prophase and mitosis; narrows to become a sharper, more punctate ring during cytokinesis; and then rapidly disassembles upon completion of cytokinesis. The initial recruitment of AtTAN::YFP to the division plane requires microtubules and the kinesins POK1 and POK2, but subsequent maintenance of AtTAN::YFP rings appears to be microtubule independent. Consistent with the localization data, analysis of Arabidopsis tan mutants shows that AtTAN plays a role in guidance of expanding phragmoplasts to the former PPB site. CONCLUSIONS: AtTAN is implicated as a component of a cortical guidance cue that remains behind when the PPB is disassembled and directs the expanding phragmoplast to the former PPB site during cytokinesis.  相似文献   

3.
Summary The cytokinetic apparatus in microsporogenesis lacks a preprophase band of microtubules and the selection of cytokinetic planes is dependent upon disposition of nuclei which define cytoplasmic domains via post-meiotic radial systems of microtubules. Meiotic cytokinesis was investigated in hybrid moth orchids (Phalaenopsis) exhibiting irregular patterns of cytokinesis. In these polliniate orchids, spindle orientation is imprecise, and the tetrad nuclei (therefore the microspores) may be in rhomboidal, tetrahedral or linear arrangement. The hybrid Sabine Queen (section Phalaenopsis) regularly undergoes simultaneous cytokinesis, as is common in orchids. The hybrid Vista Rainbow (section Amboinenses) produces either a complete dyad wall, a partial wall, or no wall after first nuclear division. In all cases, a first division phragmoplast is initiated in the interzonal region and expands centrifugally into the peripheral cytoplasm. Fluorescence microscopy shows that the phragmoplast consists of fusiform bundles of microtubules and Factin bisected by a non-fluorescent zone. If a cell plate fails to form, a band of organelles polarized in the equatorial region effectively divides the cell into two domains. The organelles disperse when a dyad wall is complete, but tend to remain polarized around an incomplete wall. In four-nucleate coenocytes, the usual interzonal microtubules between sister nuclei (primary) form slightly in advance of secondary arrays between non-sister nuclei. Phragmoplasts are initiated in sites defined by the post-meiotic microtubule arrays.Abbreviations CLSM confocal laser scanning microscope/microscopy - DMSO dimethylsulfoxide - FITC fluorescein isothiocyanate - PPB preprophase band of microtubules - TEM transmission electron microscope/microscopy  相似文献   

4.
E. Schnepf 《Protoplasma》1984,120(1-2):100-112
Summary The microtubules (MTs) of developingSphagnum leaflets rearrange from the interphase array into the preprophase band without obvious participation of definite initiation sites. At late prophase, additional MTs appear along the nuclear envelope, with the same orientation as in the peripherally situated preprophase band. Spindle formation begins along the nuclear envelope; spindle MTs run perpendicular to preprophase band MTs and converge in several focus points with indistinct polar bodies. After cytokinesis, most spindle and phragmoplast MTs disappear. Interphase MTs reappear at first along the central part of the new cell wall, in a region which was occupied before by the initial phragmoplast; their orientation is perpendicular to the phragmoplast MTs. Also here, distinct MT organizing centers could not be observed. Then the MT spread out over the cell periphery. The observations suggest that diffuse MT organizing zones rather than definite MT organizing centers play a role in the rearrangement of the different MT arrays during the cell cycle.  相似文献   

5.
The unique cytokinetic apparatus of higher plant cells comprises two cytoskeletal systems: a predictive preprophase band of microtubules (MTs), which defines the future division site, and the phragmoplast, which mediates crosswall formation after mitosis. We review features of plant cell division in an evolutionary context and from the viewpoint that the cell is a domain of cytoplasm (cytoplast) organized around the nucleus by a cytoskeleton consisting of a single "tensegral" unit. The term "tensegrity" is a contraction of "tensional integrity" and the concept proposes that the whole cell is organized by an integrated cytoskeleton of tension elements (e.g., actin fibers) extended over compression-resistant elements (e.g., MTs).During cell division, a primary role of the spindle is seen as generating two cytoplasts from one with separation of chromosomes a later, derived function. The telophase spindle separates the newly forming cytoplasts and the overlap between half spindles (the shared edge of two new domains) dictates the position at which cytokinesis occurs. Wall MTs of higher plant cells, like the MT cytoskeleton in animal and protistan cells, spatially define the interphase cytoplast. Redeployment of actin and MTs into the preprophase band (PPB) is the overt signal that the boundary between two nascent cytoplasts has been delineated. The "actin-depleted zone" that marks the site of the PPB throughout mitosis may be a more persistent manifestation of this delineation of two domains of cortical actin. The growth of the phragmoplast is controlled by these domains, not just by the spindle. These domains play a major role in controlling the path of phragmoplast expansion. Primitive land plants show different morphological changes that reveal that the plane of division, with or without the PPB, has been determined well in advance of mitosis.The green alga Spirogyra suggests how the phragmoplast system might have evolved: cytokinesis starts with cleavage and then actin-related determinants stimulate and positionally control cell-plate formation in a phragmoplast arising from interzonal MTs from the spindle. Actin in the PPB of higher plants may be assembling into a potential furrow, imprinting a cleavage site whose persistent determinants (perhaps actin) align the outgrowing edge of the phragmoplast, as in Spirogyra. Cytochalasin spatially disrupts polarized mitosis and positioning of the phragmoplast. Thus, the tensegral interaction of actin with MTs (at the spindle pole and in the phragmoplast) is critical to morphogenesis, just as they seem to be during division of animal cells. In advanced green plants, intercalary expansion driven by turgor is controlled by MTs, which in conjunction with actin, may act as stress detectors, thereby affecting the plane of division (a response clearly evident after wounding of tissue). The PPB might be one manifestation of this strain detection apparatus.  相似文献   

6.
A. L. Cleary 《Protoplasma》1995,185(3-4):152-165
Summary Microinjection of rhodamine-phalloidin into living cells of isolatedTradescantia leaf epidermis and visualisation by confocal microscopy has extended previous results on the distribution of actin in mitotic cells of higher plants and revealed new aspects of actin arrays in stomatal cells and their initials. Divisions in the stomatal guard mother cells and unspecialised epidermal cells are symmetrical. Asymmetrical divisions occur in guard mother precursor cells and subsidiary mother cells. Each asymmetrical division is preceded by migration of the nucleus and the subsequent accumulation of thick bundles of anticlinally oriented actin filaments localised to the area of the anticlinal wall closest to the polarised nucleus. During prophase, in all cell types, a subset of cortical actin filaments coaligns to form a band, which, like the preprophase band of microtubules, accurately delineates the site of insertion of the future cell wall. Following the breakdown of the nuclear envelope, F-actin in these bands disassembles but persists elsewhere in the cell cortex. Thus, cortical F-actin marks the division site throughout mitosis, firstly as an appropriately positioned band and then by its localised depletion from the same region of the cell cortex. This sequence has been detected in all classes of division inTradescantia leaf epidermis, irrespective of whether the division is asymmetrical or symmetrical, or whether the cell is vacuolate or densely cytoplasmic. Taken together with earlier observations on stamen hair cells and root tip cells it may therefore be a general cytoskeletal feature of division in cells of higher plants.Abbreviations GMC guard mother cell - MT microtubule - PPB preprophase band - Rh rhodamine - SMC subsidiary mother cell  相似文献   

7.
F-actin distribution was studied in mitotic cells of embryogenic suspension culture of Norway spruce [Picea abies (L.) Karst.]. Actin was present in dividing cells of embryo head during whole mitosis. Transient co-localization of actin microfilaments with preprophase band of microtubules was observed. Weak actin staining occurred with non-kinetochor microtubular fibers in metaphase spindle. F-actin was not localized with kinetochore microtubular fibres in metaphase as well as with shortening kinetochore fibres in late anaphase. On the other hand, abundant actin microfilaments array was formed in the area of late anaphase spindle in equatorial level of the cell between separating chromatids. F-actin was also present in phragmoplast area in telophase. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
In plant cells, cytokinesis depends on a cytoskeletal structure called a phragmoplast, which directs the formation of a new cell wall between daughter nuclei after mitosis. The orientation of cell division depends on guidance of the phragmoplast during cytokinesis to a cortical site marked throughout prophase by another cytoskeletal structure called a preprophase band. Asymmetrically dividing cells become polarized and form asymmetric preprophase bands prior to mitosis; phragmoplasts are subsequently guided to these asymmetric cortical sites to form daughter cells of different shapes and/or sizes. Here we describe two new recessive mutations, discordia1 (dcd1) and discordia2 (dcd2), which disrupt the spatial regulation of cytokinesis during asymmetric cell divisions. Both mutations disrupt four classes of asymmetric cell divisions during the development of the maize leaf epidermis, without affecting the symmetric divisions through which most epidermal cells arise. The effects of dcd mutations on asymmetric cell division can be mimicked by cytochalasin D treatment, and divisions affected by dcd1 are hypersensitive to the effects of cytochalasin D. Analysis of actin and microtubule organization in these mutants showed no effect of either mutation on cell polarity, or on formation and localization of preprophase bands and spindles. In mutant cells, phragmoplasts in asymmetrically dividing cells are structurally normal and are initiated in the correct location, but often fail to move to the position formerly occupied by the preprophase band. We propose that dcd mutations disrupt an actin-dependent process necessary for the guidance of phragmoplasts during cytokinesis in asymmetrically dividing cells.  相似文献   

9.
T. Kakimoto  H. Shibaoka 《Protoplasma》1987,140(2-3):151-156
Summary Treatment with lysine prior to fixation of tobacco BY-2 cells with formaldehyde improved the preservation of actin filaments in the cells and enabled us to observe both networks of actin filaments and microtubules in the same cells. By using this method, we observed that (1) actin filaments were present in the preprophase band; (2) the actin filaments in the preprophase band and phragmoplast were runnig in the same direction as the microtubules in their respective structures; (3) a cortical network of actin filaments was present throughout all stages of cell cycle.The present method did not preserve the cortical actin filaments in interphase cells. The procedure for staining microtubules destroyed them.Abbreviations EGTA Ethyleneglycol-bis(-aminoethyl ether)N,N,N,N-tetraacetic acid - PIPES Piperazine-N,N-bis(2-ethanesulfonic acid) - PMSF Phenylmethylsulfonyl fluoride - TLCK Na-p-tosyl-L-lysine chloromethyl ketone  相似文献   

10.
Microtubules and microfilaments have been imaged in living plant cells and their dynamic changes recorded during division, growth and development. Carboxyfluorescein labeled brain tubulin has been injected into cells that are maintained in an active state in a culture chamber on the microscope stage. Subsequent imaging with the confocal microscope reveals microtubules in the preprophase band, the mitotic apparatus, the phragmoplast, and the cortical array. The structural changes of these microtubules have been observed during transitional stages. In addition, their dynamic features are demonstrated by depolymerization in elevated calcium, low temperature, and in the drug oryzalin, and by repolymerization when returned to normal conditions. Examination of living Tradescantia stamen hair cells, which have been injected with fluorescent phalloidin to label the actin microfilaments, reveals hitherto undisclosed aspects of the preparation of the division site and dynamics of the phragmoplast cytoskeleton. During prophase microfilaments occur throughout the cell cortex, with those in the region of the preprophase band becoming transversely aligned. At nuclear envelope breakdown, these specifically disassemble, leaving a circumferential zone from which microfilaments remain absent throughout division. During cytokinesis microfilaments arise within the phragmoplast, oriented parallel to the microtubules, but excluded from the zone where the MTs overlap and where cell plate vesicles aggregate. The phragmoplast microfilaments, in a manner similar to microtubules, shorten in length, expand in girth, and eventually disassemble when the cell plate is complete.  相似文献   

11.
Summary Indirect immunodetection of tubulin showed that the herbicide carbetamide activated silent signals left by the preprophase band (PPB) and by old phragmoplasts. Thus, after half an hour of treatment, 5.3% of anaphases inAllium cepa L. meristems showed spindle microtubules pointing to sites of the longitudinal cell membranes which, under control conditions, would only start attracting microtubules from the growing phragmoplast at late telophase. After 2 h, 12.8% of the telophases showed not only the expected phragmoplast between the two sister nuclei, but one or two additional phragmoplasts, at one or both cell tips, the sites of the phragmoplasts from the telophases of previous cycles. A few binucleate cells, obtained by aborting phragmoplast formation by a short caffeine treatment, developed three phragmoplasts in their next mitosis (bimitosis) in the presence of carbetamide: one between each sister pair of telophasic nuclei plus an extra one. The latter also occupied the site of the phragmoplast of the telophase of the previous cycle.Abbreviations PPB preprophase band of microtubules - EGTA ethylene glycol-bis(-amino-ethyl-ether)-N,N,N,N-tetraacetic acid - PMSF phenylmethylsulfonyl-fluoride - PIPES piperazine-N,N-bis(2-ethane sulphonic acid) - PBS phosphate-buffered saline - DAPI 4,6-diamidino-2-phenylindole  相似文献   

12.
We have used two monoclonal antibodies to demonstrate the presence and localization of actin in interphase and mitotic vegetative cells of the green alga Chlamydomonas reinhardtii. Commercially available monoclonal antibodies raised against smooth muscle actin (Lessard: Cell Motil. Cytoskeleton 10:349-362, 1988; Lin: Proc. Natl. Acad. Sci. USA 78:2335-2339, 1981) identify Chlamydomonas actin as a approximately 43,000-M(r) protein by Western immunoblot procedures. In an earlier study, Detmers and coworkers (Cell Motil. 5:415-430, 1985) first identified Chlamydomonas actin using NBD-phallacidin and an antibody raised against Dictyostelium actin; they demonstrated that F-actin is localized in the fertilization tubule of mating gametes. Here, we show by immunofluorescence that vegetative Chlamydomonas cells have an array of actin that surrounds the nucleus in interphase cells and undergoes dramatic reorganization during mitosis and cytokinesis. This includes the following: reorganization of actin to the anterior of the cell during preprophase; the formation of a cruciate actin band in prophase; reorganization to a single anterior actin band in metaphase; rearrangement forming a focus of actin anterior to the metaphase plate; reextension of the actin band in anaphase; presence of actin in the forming cleavage furrow during telophase and cytokinesis; and finally reestablishment of the interphase actin array. The studies presented here do not allow us to discriminate between G and F-actin. None the less, our observations, demonstrating dynamic reorganization of actin during the cell cycle, suggest a role for actin that may include the movement of basal bodies toward the spindle poles in mitosis and the formation of the cleavage furrow during cytokinesis.  相似文献   

13.
 The ultrastructure of periclinally dividing fusiform cells was studied in the vascular cambium of Robinia pseudoacacia. Fusiform cell division begins in April at Madison, Wisconsin, when the cambial cells still have many characteristics of a dormant cambium. Soon afterward, the cambial cells acquire the appearance typical of an active cambium. Sequential phases of the microtubule cycle were documented: cortical microtubules bordering the cell wall during interphase, perinuclear microtubules preceding formation of the mitotic spindle, spindle microtubules, and phragmoplast microtubules. A preprophase band of microtubules was not encountered. An extended phragmosome was not encountered in periclinally dividing fusiform cells. During cytokinesis, the phragmosome is represented by a broad cytoplasmic plate which precedes the developing phragmoplast and cell plate as they migrate toward the ends of the cell.  相似文献   

14.
The distribution and organisation of F-actin during the cell cycle of meristematic root-tip cells of Allium was investigated using a rhodamine-labelled phalloidin to stain F-actin in isolated cell preparations. Such preparations could, in addition, be stained for tubulin by immunofluorescence, enabling a comparison between F-actin and microtubule distributions in the same cell. In interphase, an extensive array of actin-filament bundles was present in the cytoplasm of elongating cells, the bundles generally following the long axis of the cell and passing in close proximity to the nucleus. In contrast, the interphase microtubule array occupied the cortex of the cell and was oriented at right angles to the actin bundles. In smaller, isodiametric cells, microfilament arrays were present but less well developed. During cell division, phalloidin-specific staining was seen in the cytokinetic phragmoplast, and co-distributed with microtubules at all stages of cell plate formation; however, neither the pre-prophase band nor the mitotic spindle were stained with phalloidin. Co-distribution of F-actin and microtubules only occurs, therefore, at cytokinesis. The relationship between microfilaments and microtubules is discussed, together with the possible role of actin in the phragmoplast.  相似文献   

15.
Summary Changes in the actin filament and microtubule cytoskeleton were examined during heat- and cytochalasin D-induced embryogenesis in microspores ofBrassica napus cv. Topas by rhodamine phalloidin and immunofluorescence labelling respectively. The nucleus was displaced from its peripheral to a more central position in the cell, and perinuclear actin microfilaments and microtubules extended onto the cytoplasm. Heat treatment induced the formation of a preprophase band of microtubules in microspores; preprophase bands are not associated with the first pollen mitosis. Actin filament association with the preprophase band was not observed. The orientation and position of the mitotic spindle were altered, and it was surrounded with randomly oriented microfilaments. The phragmoplast contained microfilaments and microtubules, as in pollen mitosis I, but it assumed a more central position. Cytoskeletal reorganisation also occurred in microspores subjected to a short cytochalasin D treatment, in the absence of a heat treatment. Cytochalasin D treatment of microspores resulted in dislocated mitotic spindles, disrupted phragmoplasts, and symmetric divisions and led to embryogenesis, confirming that a normal actin cytoskeleton has a role in preventing the induction of embryogenesis.Abbreviations CD cytochalasin D - MF actin microfilament - MT microtubule - PPB preprophase band  相似文献   

16.
Summary Fusiform cambial cells of the ash (Fraxinus excelsior L.), which are strongly elongated and vacuolated, contain a phragmosome which traverses the whole length of the cells during preprophase and karyokinesis and which remains present during cytokinesis until it is integrated in cell plate with adjacent cytoplasm.The phragmosome consists of a thin perforated cytoplasmic layer located in the plane of the future cell plate. Otherwise oriented transvacuolar cytoplasmic layers or strands are not present in these cells.The phragmosome contains cytoskeletal elements, namely microtubules and also microfilament bundles both of which are oriented mainly in longitudinal direction.The phragmosomal microtubules are a new category of microtubules associated with cell division; presumably they guide the centrifugally growing cell plate to the parental cell wall site previously marked by the preprophase band of microtubules.  相似文献   

17.
Cytokinesis is an event common to all organisms that involves the precise coordination of independent pathways involved in cell-cycle regulation and microtubule, membrane, actin and organelle dynamics. In animal cells, the spindle midzone/midbody with associated endo-membrane system are required for late cytokinesis events, including furrow ingression and scission. In plants, cytokinesis is mediated by the phragmoplast, an array of microtubules, actin filaments and associated molecules that act as a framework for the future cell wall. In this article (which is part of the Cytokinesis series), we discuss recent studies that highlight the increasing number of similarities in the components and function of the spindle midzone/midbody in animals and the phragmoplast in plants, suggesting that they might be analogous structures.  相似文献   

18.
Actin in the preprophase band of Allium cepa   总被引:7,自引:3,他引:4       下载免费PDF全文
F-actin has been identified in the preprophase band of Allium cepa. Cells attached to subbed slides were obtained from formaldehyde-fixed root tips digested in EGTA and Cellulysin. The air-dried cells were extracted in Triton X-100, treated with rhodamine-phalloidin, rinsed briefly in PBS, and viewed in the fluorescence microscope. Interphase cells contain a network of actin fibers that extends into all areas of the cytoplasm. During preprophase, the network is replaced by a band of fibers aligned in the position of the preprophase band. Colocalization of F-actin with rhodamine-phalloidin and microtubules with tubulin immunocytochemistry confirms that the two bands are coincident. The actin appears to comprise a thin layer of fibers next to the plasmalemma. Like the microtubule preprophase band, the actin band narrows as preprophase progresses and disappears by midprophase. Fluorescent actin bands are not seen in fixed cells pretreated with excess unlabeled phalloidin before staining. They are also absent in roots exposed to cytochalasins B and D before fixation, but preprophase band microtubules at all stages of aggregation are still present. Colchicine treatment leads to the loss of both preprophase band microtubules and actin. The possible function of preprophase band actin is discussed.  相似文献   

19.
In plant cells, the plane of division is anticipated at the onset of mitosis by the presence of a preprophase band (PPB) of microtubules and F-actin at a cortical site that circumscribes the nucleus. During cytokinesis, the microtubule- and F-actin-based phragmoplast facilitates construction of a new cell wall and is guided to the forecast division site. Proper execution of this process is essential for establishing the cellular framework of plant tissues. The microtubule binding protein TANGLED1 (TAN1) of maize is a key player in the determination of division planes . Lack of TAN1 leads to misguided phragmoplasts and mispositioned cell walls in maize. In a yeast two-hybrid screen for TAN1-interacting proteins, a pair of related kinesins was identified that shares significant sequence homology with two kinesin-12 genes in Arabidopsis thaliana (A. thaliana): PHRAGMOPLAST ORIENTING KINESIN 1 and 2 (POK1, POK2). POK1 and POK2 are expressed in tissues enriched for dividing cells. The phenotype of pok1;pok2 double mutants strongly resembles that of maize tan1 mutants, characterized by misoriented mitotic cytoskeletal arrays and misplaced cell walls. We propose that POK1 and POK2 participate in the spatial control of cytokinesis, perhaps via an interaction with the A. thaliana TAN1 homolog, ATN.  相似文献   

20.
The preprophase band predicts the future cell division site. However, the mechanism of how a transient preprophase band fulfils this function is unknown. We have investigated the possibility that Golgi secretion might be involved in marking the preprophase band site. Observations on living BY-2 cells labeled for microtubules and Golgi stacks indicated an increased Golgi stack frequency at the preprophase band site. However, inhibition of Golgi secretion by brefeldin A during preprophase band formation did not prevent accurate phragmoplast fusion, and subsequent cell plate formation, at the preprophase band site. The results show that Golgi secretion does not mark the preprophase band site and thus does not play an active role in determination of the cell division site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号