首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Imaging molecular interactions in living cells by FRET microscopy   总被引:7,自引:0,他引:7  
F?rster resonance energy transfer (FRET) is applied extensively in all fields of biological research and technology, generally as a 'nanoruler' with a dynamic range corresponding to the intramolecular and intermolecular distances characterizing the molecular structures that regulate cellular function. The complex underlying network of interactions reflects elementary reactions operating under strict spatio-temporal control: binding, conformational transition, covalent modification and transport. FRET imaging provides information about all these molecular processes with high specificity and sensitivity via probes expressed by or introduced from the external medium into the cell, tissue or organism. Current approaches and developments in the field are discussed with emphasis on formalism, probes and technical implementation.  相似文献   

2.
Among the most intriguing forms of Ca(2+) channel modulation is the regulation of L-type and P/Q-type channels by intracellular Ca(2+), acting via unconventional channel-calmodulin (CaM) interactions. In particular, overexpressing Ca(2+)-insensitive mutant CaM abolishes Ca(2+)-dependent modulation, hinting that Ca(2+)-free CaM may "preassociate" with these channels to enhance detection of local Ca(2+). Despite the far-reaching consequences of this proposal, in vitro experiments testing for preassociation provide conflicting results. Here, we develop a three filter-cube fluorescence resonance energy transfer method (three-cube FRET) to directly probe for constitutive associations between channel subunits and CaM in single living cells. This FRET assay detects Ca(2+)-independent associations between CaM and the pore-forming alpha(1) subunit of L-type, P/Q-type, and, surprisingly, R-type channels. These results now definitively demonstrate channel-CaM preassociation in resting cells and underscore the potential of three-cube FRET for probing protein-protein interactions.  相似文献   

3.
Jobin CM  Chen H  Lin AJ  Yacono PW  Igarashi J  Michel T  Golan DE 《Biochemistry》2003,42(40):11716-11725
The endothelial isoform of nitric oxide synthase (eNOS), a key regulator of vascular tone, is activated in endothelial cells by diverse Ca(2+)-mobilizing agonists, including vascular endothelial growth factor (VEGF). Although the activation state of eNOS and the subcellular localization of the enzyme are both highly regulated, the relationship between enzyme activity and subcellular targeting remains obscure. We aim here to elucidate this relationship by direct dynamic imaging analysis of Ca(2+)/CaM-dependent eNOS activation in living endothelial cells, using high-resolution confocal microscopy and donor dequenching fluorescence resonance energy transfer (FRET) techniques. Confocal images show a complex pattern of eNOS subcellular distribution; the enzyme is concentrated in both the plasma membrane and internal membranes, with robust expression in the perinuclear region. We construct a fusion protein between eNOS and the FRET-based calcium sensor cameleon, and analyze the temporal and spatial pattern of VEGF-mediated calcium mobilization using donor dequenching FRET methods. We find that VEGF promotes rapid mobilization of intracellular calcium throughout the regions of the cell in which eNOS is distributed. We further create a series of fusion proteins and use FRET imaging methods to study the interactions between eNOS and its obligate allosteric activator protein calmodulin. We clone the FRET acceptor EYFP (enhanced yellow fluorescent protein) at the C-terminus of calmodulin, and the FRET donor ECFP (enhanced cyan fluorescent protein) into eNOS at a site adjacent to its calmodulin-binding domain. FRET imaging analysis of individual endothelial cells cotransfected with eNOS-ECFP and calmodulin-EYFP shows that VEGF induces interactions between eNOS and calmodulin wherever both are present in the cell. Our studies provide evidence that the pool of rapidly responsive receptor-activated eNOS is distributed throughout endothelial cells in both plasma membrane and internal membrane structures, and that this distribution parallels the localization of agonist-induced intracellular Ca(2+) changes in the vicinity of eNOS.  相似文献   

4.
Histone dynamics in living cells revealed by photobleaching   总被引:5,自引:0,他引:5  
Kimura H 《DNA Repair》2005,4(8):939-950
  相似文献   

5.
We have used fluorescence resonance energy transfer (FRET) to follow the process of capsid disassembly for adenovirus (Ad) serotype 5 (Ad5) in living CHO-CAR cells. Ad5 were weakly labeled on their capsid proteins with FRET donor and acceptor fluorophores. A progressive decrease in FRET efficiency recorded during Ad5 uptake revealed that the time course of Ad5 capsid disassembly has two sequential protein dissociation rates with half-times of 3 and 60 min. Fluorescence anisotropy measurements of the segmental motions of fluorophores on Ad5 indicate that the first rate is linked to the detachment from the capsid of the protruding, flexible fiber proteins. The second rate was shown to report on the combined dissociation of protein IX, penton base, and hexons, which form the rigid icosahedral capsid shell. Fluorescence lifetime imaging microscopy measurements using a pH-sensitive probe provided information on the pH of the microenvironment of Ad5 particles during intracellular trafficking, and confirmed that the fast fiber dissociation step occurred at the onset of endocytosis. The slower dissociation phase was shown to coincide with the escape of Ad5 from endocytic compartments into the cytosol, and its arrival at the nuclear membrane. These results demonstrate a rapid, quantitative live-cell assay for the investigation of virus-cell interactions and capsid disassembly.  相似文献   

6.
7.
Microtubules (MTs) are involved in many crucial processes such as cell morphogenesis, mitosis and motility. These dynamic structures resulting from the complex assembly of tubulin are tightly regulated by stabilising MT‐associated proteins (MAPs) such as tau and destabilising proteins, notably stathmin. Because of their key role, these MAPs and their interactions have been extensively studied using biochemical and biophysical approaches, particularly in vitro. Nevertheless, numerous questions remain unanswered and the mechanisms of interaction between MT and these proteins are still unclear in cells. Techniques coupling cell imaging and fluorescence methods, such as Förster resonance energy transfer and fluorescence recovery after photobleaching, are excellent tools to study these interactions in situ. After describing these methods, we will present emblematic data from the literature and unpublished experimental results from our laboratory concerning the interactions between MTs, tau and stathmin in cells.  相似文献   

8.
Kinesin motor proteins drive the transport of cellular cargoes along microtubule tracks. How motor protein activity is controlled in cells is unresolved, but it is likely coupled to changes in protein conformation and cargo association. By applying the quantitative method fluorescence resonance energy transfer (FRET) stoichiometry to fluorescent protein (FP)-labeled kinesin heavy chain (KHC) and kinesin light chain (KLC) subunits in live cells, we studied the overall structural organization and conformation of Kinesin-1 in the active and inactive states. Inactive Kinesin-1 molecules are folded and autoinhibited such that the KHC tail blocks the initial interaction of the KHC motor with the microtubule. In addition, in the inactive state, the KHC motor domains are pushed apart by the KLC subunit. Thus, FRET stoichiometry reveals conformational changes of a protein complex in live cells. For Kinesin-1, activation requires a global conformational change that separates the KHC motor and tail domains and a local conformational change that moves the KHC motor domains closer together.  相似文献   

9.
Experiments with fluorescence recovery after photobleaching (FRAP) started 30 years ago to visualize the lateral mobility and dynamics of fluorescent proteins in living cells. Its popularity increased when non-invasive fluorescent tagging became possible with the green fluorescent protein (GFP). Many researchers use GFP to study the localization of fusion proteins in fixed or living cells, but the same fluorescent proteins can also be used to study protein mobility in living cells. Here we review the potential of FRAP to study protein dynamics and activity within a single living cell. These measurements can be made with most standard confocal laser-scanning microscopes equipped with photobleaching protocols.  相似文献   

10.
Shyu YJ  Suarez CD  Hu CD 《Nature protocols》2008,3(11):1693-1702
Studies of protein interactions have increased our understanding and knowledge of biological processes. Assays that utilize fluorescent proteins, such as fluorescence resonance energy transfer (FRET) and bimolecular fluorescence complementation (BiFC), have enabled direct visualization of protein interactions in living cells. However, these assays are primarily suitable for a pair of interacting proteins, and methods to visualize and identify multiple protein complexes in vivo are very limited. This protocol describes the recently developed BiFC-FRET assay, which allows visualization of ternary complexes in living cells. We discuss how to design the BiFC-FRET assay on the basis of the validation of BiFC and FRET assays and how to perform transfection experiments for acquisition of fluorescent images for net FRET calculation. We also provide three methods for normalization of the FRET efficiency. The assay employs a two-chromophore and three-filter FRET setup and is applicable to epifluorescence microscopes. The entire protocol takes about 2-3 weeks to complete.  相似文献   

11.
12.
Matrix metalloproteinases (MMPs) are secretory endopeptidases. They have been associated with invasion by cancer-cell and metastasis. Previous studies have demonstrated that proteolytic activity could be detected using fluorescence resonance energy transfer (FRET) with mutants of GFP. To monitor MMP activity, we constructed vectors that encoded a MMP Substrate Site (MSS) between YFP and CFP. In vitro, YFP-MSS-CFP can be used to detect MMP activity and 1,10-phenathroline inhibition of MMP activity. In living cells, MMPs are secreted proteins and act outside of the cell, and therefore YFP-MSS-CFPdisplay was anchored on the cellular surface to detect extracellular MMP. A pDisplay-YC vector expressing the YFP-MSS-CFPdisplay on the cellular surface was transfected into MCF-7 cells that expressed low levels of MMP. Efficient transfer of energy from excited CFP to YFP within the YFP-MSS-CFPdisplay molecule was observed, and real-time FRET was declined when MCF-7 was incubated with MMP2. However, no such transfer of energy was detected in the YFP-MSS-CFPdisplay expressing MDA-MB 435s cells, in which high secretory MMP2 were expressed. The FRET sensor YFP-MSS-CFPdisplay can sensitively and reliably monitor MMP activation in living cells and can be used for high-throughput screening of MMP inhibitors for anti-cancer treatments.  相似文献   

13.
Staphylococcus aureus is a major cause of pulmonary infection, particularly in cystic fibrosis (CF) patients. However, few aspects of the interplay between S. aureus and host airway epithelial cells have been investigated thus far. We investigated by videomicroscopy the time- and bacterial concentration-dependent (10(4), 10(6), and 10(8) CFU/ml) effect of S. aureus on adherence, internalization, and the associated damage of the airway epithelial cells. The balance between the secretion by S. aureus of the alpha-toxin virulence factor and by the airway cells of the antibacterial secretory leukoproteinase inhibitor (SLPI) was also analyzed. After 1 h of interaction, whatever the initial bacterial concentration, a low percentage of S. aureus (<8%) adhered to airway cells, and no airway epithelial cell damage was observed. In contrast, after 24 h of incubation, more bacteria adhered to airway epithelial cells, internalized bacteria were observed, and a bacterial concentration-dependent effect on airway cell damage was observed. At 24 h, most airway cells incubated with bacteria at 10(8) CFU/ml exhibited a necrotic phenotype. The necrosis was preceded by a transient apoptotic process. In parallel, we observed a time- and bacterial concentration-dependent decrease in SLPI and increase in alpha-toxin expression. These results suggest that airway cells can defend against S. aureus in the early stages of infection. However, in later phases, there is a marked imbalance between the bactericidal capacity of host cells and bacterial virulence. These findings reinforce the potential importance of S. aureus in the pathogenicity of airway infections, including those observed early in CF patients.  相似文献   

14.
15.
Faithful chromatin segregation is mediated and controlled by the kinetochore protein network which assembles at centromeres. In this study, the neighbourhood relations of inner kinetochore and nucleosome-associated complex (NAC) proteins were analysed in living human interphase cells by acceptor photobleaching FRET. The data indicate that CENP-U is in close vicinity to CENP-I as well as to CENP-B and that CENP-M is close to CENP-T. This article has been submitted as a contribution to the Festschrift entitled “Uncovering cellular sub-structures by light microscopy” in honour of Professor Cremer’s 65th birthday.  相似文献   

16.
17.
LC3 is a marker protein that is involved in the formation of autophagosomes and autolysosomes, which are usually characterized and monitored by fluorescence microscopy using fluorescent protein-tagged LC3 probes (FP-LC3). FP-LC3 and even endogenous LC3 can also be incorporated into intracellular protein aggregates in an autophagy-independent manner. However, the dynamic process of LC3 associated with autophagosomes and autolysosomes or protein aggregates in living cells remains unclear. Here, we explored the dynamic properties of the two types of FP-LC3-containing puncta using fluorescence microscopy techniques, including fluorescence recovery after photobleaching (FRAP) and fluorescence resonance energy transfer (FRET). The FRAP data revealed that the fluorescent signals of FP-LC3 attached to phagophores or in mature autolysosomes showed either minimal or no recovery after photobleaching, indicating that the dissociation of LC3 from the autophagosome membranes may be very slow. In contrast, FP-LC3 in the protein aggregates exhibited nearly complete recovery (more than 80%) and rapid kinetics of association and dissociation (half-time < 1 sec), indicating a rapid exchange occurs between the aggregates and cytoplasmic pool, which is mainly due to the transient interaction of LC3 and SQSTM1/p62. Based on the distinct dynamic properties of FP-LC3 in the two types of punctate structures, we provide a convenient and useful FRAP approach to distinguish autophagosomes from LC3-involved protein aggregates in living cells. Using this approach, we find the FP-LC3 puncta that adjacently localized to the phagophore marker ATG16L1 were protein aggregate-associated LC3 puncta, which exhibited different kinetics compared with that of autophagic structures.  相似文献   

18.
Quantitative analysis in Förster resonance energy transfer (FRET) experiments in live cells for protein interaction studies is still a challenging issue. In a two-component system (FRET and no FRET donor species), fitting of fluorescence lifetime imaging microscopy (FLIM) data gives the fraction of donor molecules involved in FRET (fD) and the intrinsic transfer efficiency. But when fast FLIM acquisitions are used to monitor dynamic changes in protein-protein interactions at high spatial and temporal resolutions in living cells, photon statistics and time resolution are limited. In this case, fitting procedures are not reliable, even for single lifetime donors. We introduce the new concept of a minimal fraction of donor molecules involved in FRET (mfD), coming from the mathematical minimization of fD. We find particular advantage in the use of mfD because it can be obtained without fitting procedures and it is derived directly from FLIM data. mfD constitutes an interesting quantitative parameter for live cell studies because it is related to the minimal relative concentration of interacting proteins. For multi-lifetime donors, the process of fitting complex fluorescence decays to find at least four reliable lifetimes is a near impossible task. Here, mfD extension for multi-lifetime donors is the only quantitative determinant. We applied this methodology for imaging the interaction between the bromodomains of TAFII250 and acetylated histones H4 in living cells at high resolution. We show the existence of discrete acetylated chromatin domains where the minimal fraction of bromodomain interacting with acetylated H4 oscillates from 0.26 to 0.36 and whose size is smaller than half of one micron cube. We demonstrate that mfD by itself is a useful tool to investigate quantitatively protein interactions in live cells, especially when using fast FRET-FLIM acquisition times.  相似文献   

19.
By using attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy and curve fitting we have examined temperature dependence and composition dependence of the shape of the carbonyl band in phosphatidylcholine/cholesterol model membranes. Membranes were hydrated either in excess water or in excess deuterated water. The studied binary mixtures exhibit different lipid phases at appropriate temperature and amount of cholesterol, among them also the so-called liquid-ordered phase. The results confirm that cholesterol has a significant indirect influence on the carbonyl band through conformational and hydration effects. This influence was interpreted in view of the known temperature composition phase diagrams for inspected binary mixtures. In addition, direct interaction was observed, which could point to the presence of hydrogen bond between cholesterol and carbonyl group. This direct interaction, though weak, might play at least a partial role in the stabilization of cholesterol-rich lipid domains in model and biological membranes.  相似文献   

20.
To study the structural composition and dynamics of gap junctions in living cells, we tagged their subunit proteins, termed connexins, with the autofluorescent tracer green fluorescent protein (GFP) and its cyan (CFP) and yellow (YFP) color variants. Tagged connexins assembled normally and channels were functional. High-resolution fluorescence images of gap junction plaques assembled from CFP and YFP tagged connexins revealed that the mode of channel distribution is strictly dependent on the connexin isoforms. Co-distribution as well as segregation into well-separated domains was observed. Based on accompanying studies we propose that channel distribution is regulated by intrinsic, connexin isoform specific signals. High-resolution time-lapse images revealed that gap junctions, contrary to previous expectations, are dynamic assemblies of channels. Channels within clusters and clusters themselves are mobile and constantly undergo structural rearrangements. Movements are complex and allow channels to move, comparable to other plasma membrane proteins not anchored to cytoskeletal elements. Comprehensive analysis, however, demonstrated that gap junction channel movements are not driven by diffusion described to propel plasma membrane protein movement. Instead, recent studies suggest that movements of gap junction channels are indirect and predominantly propelled by plasma membrane lipid flow that results from metabolic endo- and exocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号