首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pulmonary microvascular endothelial cells (PMECs) injury including apoptosis plays an important role in the pathogenesis of acute lung injury during sepsis. Our recent study has demonstrated that calpain activation contributes to apoptosis in PMECs under septic conditions. This study investigated how calpain activation mediated apoptosis and whether heat stress regulated calpain activation in lipopolysaccharides (LPS)-stimulated PMECs. In cultured mouse primary PMECs, incubation with LPS (1 μg/ml, 24 h) increased active caspase-3 fragments and DNA fragmentation, indicative of apoptosis. These effects of LPS were abrogated by pre-treatment with heat stress (43 °C for 2 h). LPS also induced calpain activation and increased phosphorylation of p38 MAPK. Inhibition of calpain and p38 MAPK prevented apoptosis induced by LPS. Furthermore, inhibition of calpain blocked p38 MAPK phosphorylation in LPS-stimulated PMECs. Notably, heat stress decreased the protein levels of calpain-1/2 and calpain activities, and blocked p38 MAPK phosphorylation in response to LPS. Additionally, forced up-regulation of calpain-1 or calpain-2 sufficiently induced p38 MAPK phosphorylation and apoptosis in PMECs, both of which were inhibited by heat stress. In conclusion, heat stress prevents LPS-induced apoptosis in PMECs. This effect of heat stress is associated with down-regulation of calpain expression and activation, and subsequent blockage of p38 MAPK activation in response to LPS. Thus, blocking calpain/p38 MAPK pathway may be a novel mechanism underlying heat stress-mediated inhibition of apoptosis in LPS-stimulated endothelial cells.  相似文献   

2.
Calpains and caspases are two cysteine protease families that play important roles in regulating pathological cell death. Here, we report that m-calpain may be responsible for cleaving procaspase-12, a caspase localized in the ER, to generate active caspase-12. In addition, calpain may be responsible for cleaving the loop region in Bcl-xL and, therefore, turning an antiapoptotic molecule into a proapoptotic molecule. We propose that disturbance to intracellular calcium storage as a result of ischemic injury or amyloid beta peptide cytotoxicity may induce apoptosis through calpain- mediated caspase-12 activation and Bcl-xL inactivation. These data suggest a novel apoptotic pathway involving calcium-mediated calpain activation and cross-talks between calpain and caspase families.  相似文献   

3.
In the absence and in the resolution of inflammatory responses, neutrophils rapidly undergo spontaneous apoptosis. Here we report about a new apoptosis pathway in these cells that requires calpain-1 activation and is essential for the enzymatic activation of the critical effector caspase-3. Decreased levels of calpastatin, a highly specific intrinsic inhibitor of calpain, resulted in activation of calpain-1, but not calpain-2, in neutrophils undergoing apoptosis, a process that was blocked by a specific calpain-1 inhibitor or by intracellular delivery of a calpastatin peptide. Further support for the importance of the calpastatin-calpain system was obtained by analyzing neutrophils from patients with cystic fibrosis that exhibited delayed apoptosis, associated with markedly increased calpastatin and decreased calpain-1 protein levels compared with neutrophils from control individuals. Additional studies were designed to place calpain-1 into the hierarchy of biochemical events leading to neutrophil apoptosis. Pharmacological calpain inhibition during spontaneous and Fas receptor-induced neutrophil apoptosis prevented cleavage of Bax into an 18-kDa fragment unable to interact with Bcl-xL. Moreover, calpain blocking prevented the mitochondrial release of cytochrome c and Smac, which was indispensable for caspase-3 processing and enzymatic activation, both in the presence and absence of agonistic anti-Fas receptor antibodies. Taken together, calpastatin and calpain-1 represent critical proximal elements in a cascade of pro-apoptotic events leading to Bax, mitochondria, and caspase-3 activation, and their altered expression appears to influence the life span of neutrophils under pathologic conditions.  相似文献   

4.
Hyperhomocysteinemia (HHcy) is associated with atherosclerosis, stroke, and dementia. Hcy causes extracellular matrix remodeling by the activation of matrix metalloproteinase-9 (MMP-9), in part, by inducing redox signaling and modulating the intracellular calcium dynamics. Calpains are the calcium-dependent cysteine proteases that are implicated in mitochondrial damage via oxidative burst. Mitochondrial abnormalities have been identified in HHcy. The mechanism of Hcy-induced extracellular matrix remodeling by MMP-9 activation via mitochondrial pathway is largely unknown. We report a novel role of calpains in mitochondrial-mediated MMP-9 activation by Hcy in cultured rat heart microvascular endothelial cells. Our observations suggested that calpain regulates Hcy-induced MMP-9 expression and activity. We showed that Hcy activates calpain-1, but not calpain-2, in a calcium-dependent manner. Interestingly, the enhanced calpain activity was not mirrored by the decreased levels of its endogenous inhibitor calpastatin. We presented evidence that Hcy induces the translocation of active calpain from cytosol to mitochondria, leading to MMP-9 activation, in part, by causing intramitochondrial oxidative burst. Furthermore, studies with pharmacological inhibitors of calpain (calpeptin and calpain-1 inhibitor), ERK (PD-98059) and the mitochondrial uncoupler FCCP suggested that calpain and ERK-1/2 are the major events within the Hcy/MMP-9 signal axis and that intramitochondrial oxidative stress regulates MMP-9 via ERK-1/2 signal cascade. Taken together, these findings determine the novel role of mitochondrial translocation of calpain-1 in MMP-9 activation during HHcy, in part, by increasing mitochondrial oxidative stress.  相似文献   

5.
Li  Weiwei  Yang  Jiancheng  LYU  Qiufeng  Wu  Gaofeng  Lin  Shumei  Yang  Qunhui  Hu  Jianmin 《Amino acids》2020,52(3):453-463
Amino Acids - The calpain-1-activated apoptotic pathway plays a key role in right ventricular hypertrophy (RVH). Taurine has been shown to attenuate apoptosis by inhibiting calpain activity. This...  相似文献   

6.
Pancreatic beta-cell death is a critical event in type 1 diabetes, type 2 diabetes, and clinical islet transplantation. We have previously shown that prolonged block of ryanodine receptor (RyR)-gated release from intracellular Ca(2+) stores activates calpain-10-dependent apoptosis in beta-cells. In the present study, we further characterized intracellular Ca(2+) channel expression and function in human islets and the MIN6 beta-cell line. All three RyR isoforms were identified in human islets and MIN6 cells, and these endoplasmic reticulum channels were observed in close proximity to mitochondria. Blocking RyR channels, but not sarco/endoplasmic reticulum ATPase (SERCA) pumps, reduced the ATP/ADP ratio. Blocking Ca(2+) flux through RyR or inositol trisphosphate receptor channels, but not SERCA pumps, increased the expression of hypoxia-inducible factor (HIF-1beta). Moreover, inhibition of RyR or inositol trisphosphate receptor channels, but not SERCA pumps, increased the expression of presenilin-1. Both HIF-1beta and presenilin-1 expression were also induced by low glucose. Overexpression of presenilin-1 increased HIF-1beta, suggesting that HIF is downstream of presenilin. Our results provide the first evidence of a presenilin-HIF signaling network in beta-cells. We demonstrate that this pathway is controlled by Ca(2+) flux through intracellular channels, likely via changes in mitochondrial metabolism and ATP. These findings provide a mechanistic understanding of the signaling pathways activated when intracellular Ca(2+) homeostasis and metabolic activity are suppressed in diabetes and islet transplantation.  相似文献   

7.
The cellular pathways of apoptosis have not been fully characterized; however, calpain, a cytosolic calcium-activated cysteine protease, has been implicated in several forms of programmed cell death. Reoviruses induce apoptosis both in vitro and in vivo and serve as a model for studying virus-induced cell death. We investigated the potential role of calpain in reovirus-induced apoptosis in vitro by measuring calpain activity as well as evaluating the effects of calpain inhibitors. L929 cells were infected with reovirus type 3 Abney (T3A), and calpain activity, measured as cleavage of the fluorogenic calpain substrate Suc-Leu-Leu-Val-Tyr-AMC, was monitored. There was a 1.6-fold increase in calpain activity in T3A-infected cells compared to mock-infected cells; this increase was completely inhibited by preincubation with calpain inhibitor I (N-acetyl-leucyl-leucyl-norleucinal [aLLN]), an active-site inhibitor. Both aLLN and PD150606, a specific calpain inhibitor that interacts with the calcium-binding site, inhibited reovirus-induced apoptosis in L929 cells by 54 to 93%. Apoptosis induced by UV-inactivated reovirus was also reduced 65 to 69% by aLLN, indicating that inhibition of apoptosis by calpain inhibitors is independent of effects on viral replication. We conclude that calpain activation is a component of the regulatory cascade in reovirus-induced apoptosis.  相似文献   

8.
The islet in type 2 diabetes (T2DM) and the brain in neurodegenerative diseases share progressive cell dysfunction, increased apoptosis, and accumulation of locally expressed amyloidogenic proteins (islet amyloid polypeptide (IAPP) in T2DM). Excessive activation of the Ca2+-sensitive protease calpain-2 has been implicated as a mediator of oligomer-induced cell death and dysfunction in neurodegenerative diseases. To establish if human IAPP toxicity is mediated by a comparable mechanism, we overexpressed human IAPP in rat insulinoma cells and freshly isolated human islets. Pancreas was also obtained at autopsy from humans with T2DM and nondiabetic controls. We report that overexpression of human IAPP leads to the formation of toxic oligomers and increases beta cell apoptosis mediated by increased cytosolic Ca2+ and hyperactivation of calpain-2. Cleavage of α-spectrin, a marker of calpain hyperactivation, is increased in beta cells in T2DM. We conclude that overactivation of Ca2+-calpain pathways contributes to beta cell dysfunction and apoptosis in T2DM.  相似文献   

9.
10.
Two cysteine protease families, caspase and calpain, are known to participate in cell death. We investigated whether a stress-specific protease activation pathway exists, and to what extent Bcl-2 plays a role in preventing drug-induced protease activity and cell death in a dopaminergic neuronal cell line, MN9D. Staurosporine (STS) induced caspase-dependent apoptosis while a dopaminergic neurotoxin, MPP(+) largely induced caspase-independent necrotic cell death as determined by morphological and biochemical criteria including cytochrome c release and fluorogenic caspase cleavage assay. At the late stage of both STS- and MPP(+)-induced cell death, Bax was cleaved into an 18-kDa fragment. This 18-kDa fragment appeared only in the mitochondria-enriched heavy membrane fraction of STS-treated cells, whereas it was detected exclusively in the cytosolic fraction of MPP(+)-treated cells. This proteolytic cleavage of Bax appeared to be mediated by calpain as determined by incubation with [(35)S]methionine-labelled Bax. Thus, cotreatment of cells with calpain inhibitor blocked both MPP(+)- and STS-induced Bax cleavage. Intriguingly, overexpression of baculovirus-derived inhibiting protein of caspase, p35 or cotreatment of cells with caspase inhibitor blocked STS- but not MPP(+)-induced Bax cleavage. This appears to indicate that calpain activation may be either dependent or independent of caspase activation within the same cells. However, cotreatment with calpain inhibitor rescued cells from MPP(+)-induced but not from STS-induced neuronal cell death. In these paradigms of dopaminergic cell death, overexpression of Bcl-2 prevented both STS- and MPP(+)-induced cell death and its associated cleavage of Bax. Thus, our results suggest that Bcl-2 may play a protective role by primarily blocking drug-induced caspase or calpain activity in dopaminergic neuronal cells.  相似文献   

11.
Neuronal cell death after traumatic brain injury, Alzheimer’s disease and ischemic stroke may in part be mediated through endoplasmic reticulum (ER) stress and unfolded protein response (UPR). UPR results in induction of molecular chaperone GRP78 and the ER-resident caspase-12, whose activation has been proposed to be mediated by calpain and caspase processing, although their relative contribution remains unclear. In this study we induced ER stress with thapsigargin (TG), and determined the activation profile of calpain-2, caspase-3, caspase-7, and caspase-12 by analyses of protein levels, corresponding substrates and breakdown products (BDP). Specific calpain and caspase activity was assessed by analysis of αII-spectrin BDP of 145 kDa (SBDP145), BDP of 150 kDa (SBDP150) and BDP of 120 kDa (SBDP120). Decrease in pro-calpain-2 protein and increased SBDP145 levels by 3 h after TG treatment indicated early calpain activity. Active caspase-7 (p20) increase occurred after 8 h, followed by concomitant up-regulation of active caspase-3 and SBDP120 after 24 h. In vitro digestion experiments supported that SBDP120 was exclusively generated by active caspase-3 and validated that kinectin and co-chaperone p23 were calpain and caspase-7 substrates, respectively. Pro-caspase-12 protein processing by the specific action of calpain and caspase-3/7 was observed in a time-dependent manner. N-terminal pro-domain processing of pro-caspase-12 by calpain generated a 38 kDa fragment, while caspase-3/7 generated a 35 kDa fragment. Antibody developed specifically against the caspase-3/7 C-terminal cleavage site D341 detected the presence of large subunit (p20) containing 23 kDa fragment that increased after 24 h of TG treatment. Significant caspase-12 enzyme activity was only detected after 24 h of TG treatment and was completely inhibited by caspase 3/7 inhibitor DEVD-fmk and partially by calpain inhibitor SNJ-1945. ER-stress-induced cell death pathway in TG-treated PC12 cells was characterized by up-regulation of GRP-78 and processing and activation of caspase-12 by the orchestrated proteolytic activity of calpain-2 and caspase-3/7.  相似文献   

12.
Nanometre-scale spaces between organelles represent focused nodes for signal transduction and the control of cellular decisions. The endoplasmic reticulum (ER) and the mitochondria form dynamic quasi-synaptic interaction nanodomains in all cell types examined, but the functional role of these junctions in cellular metabolism and cell survival remains to be fully understood. In this paper, we review recent evidence that ER Ca2+ channels, such as the RyR and IP3R, can signal specifically across this nanodomain to the adjacent mitochondria to pace basal metabolism, with focus on the pancreatic β-cell. Blocking these signals in the basal state leads to a form of programmed cell death associated with reduced ATP and the induction of calpain-10 and hypoxia-inducible factors. On the other hand, the hyperactivity of this signalling domain plays a deleterious role during classical forms of apoptosis. Thus, the nanospace between ER and mitochondria represents a critical rheostat controlling both metabolism and programmed cell death. Many aspects of the mechanisms underlying this control system remain to be uncovered, and new nanotechnologies are required understand these domains at a molecular level.  相似文献   

13.
Dong B  Liu R 《Biochimie》2008,90(9):1362-1371
Calpain-10 is a novel ubiquitous calpain family member that has been implicated as a susceptibility gene for type 2 diabetes. One of the major challenges is that the function of calpain-10 is not yet known. To address this problem, we purified human calpain-10 from different sources, including the endogenous and the recombinant calpain-10 from HeLa S3 and 293F cells, respectively. Both endogenous and recombinant calpain-10 were present as two major forms with different origins. Interestingly, radiolabeled calpain-10 was found to be efficiently cleaved at the N-terminal region by calpain-2, but not by other proteases. None of these calpain-10 proteins have putative proteolytic activity under in vitro conditions when examined using different peptide substrates, including more than 70 in vitro translated, radiolabeled oligopeptides. Our results raise the possibility that calpain-10 may require a special intracellular localization or interacting partner(s) to acquire proteolytic activity, or it functions by interacting with other proteins rather than through its proteolytic activity.  相似文献   

14.
Cardiovascular dysfunction is a common complication among heatstroke patients, but its underlying mechanism is unclear. This study was designed to investigate the role of calpain-2 and its downstream signal pathway in heat stress-induced cardiomyocyte apoptosis and heart dysfunction. In cultured primary mouse neonatal cardiomyocytes (MNCs), heat stress (43°C for 2 hr) induced a heat-shock response, as indicated by upregulated heat-shock protein 27 (HSP27) expression and cellular apoptosis, as indicated by increased caspase-3 activity, DNA fragmentation and decreased cell viability. Meanwhile, heat stress decreased calpain activity, which was accompanied by downregulated calpain-2 expression and increased phosphorylation of p38, extraceIIuIar signaI-reguIated protein kinase (ERK1/2) and c-Jun N-terminaI kinase (JNK). Calpain-2 overexpression abrogated heat stress-induced apoptosis and phosphorylation of p38 and JNK, but not of ERK1/2. Blocking only p38 prevented heat stress-induced apoptosis in MNCs. In cardiac-specific calpain-2 overexpressing transgenic mice, p38 phosphorylation and cardiomyocyte apoptosis were decreased in the heart tissue of heatstroke mice, as revealed by western blot and terminal deoxynucleotidyl transferase dUTP nick end labelling assays, respectively. M-mode echocardiography also demonstrated that calpain-2 overexpression significantly improved heatstroke-induced decreases in ventricular end-diastolic volume and cardiac output. In conclusion, our study suggests that heat stress reduces calpain-2 expression, which then activates p38, leading to cardiomyocyte apoptosis and heart dysfunction.  相似文献   

15.
The rd mouse, an accepted animal model for photoreceptor degeneration in retinitis pigmentosa, has a recessive mutation for the gene encoding the beta-subunit of the cGMP phosphodiesterase. This mutation results in high levels of cGMP, which leaves an increased number of the cGMP-gated channels in the open state, thus allowing intracellular calcium (Ca(2+)) to rise to toxic levels, and rapid photoreceptor degeneration follows. To delineate the events in rd photoreceptor degeneration, we demonstrated an increase in calpain and caspase-3 activity, hypothesizing that Ca(2+)-mediated apoptosis in photoreceptors is mediated by calpain, involving mitochondrial depolarization and caspase-3 activation. To examine this hypothesis further, a murine photoreceptor-derived cell line (661W) was treated with the Ca(2+) ionophore A23187, cGMP-gated channel agonist 8-bromo-cGMP, or phosphodiesterase inhibitor isobutylmethylxanthine to mimic the increased Ca(2+) influx seen in the rd photoreceptors. Ca(2+)-induced cell death in 661W cells was found to be mediated by calpain and caspase-3 and could be completely inhibited by the calpain inhibitor SJA6017, implicating both calpain and caspases in the apoptotic process. The apoptotic events correlated in an SJA6017-inhibitable manner with bid cleavage, mitochondrial depolarization, cytochrome c release, and caspase-3 and -9 activation. We concluded that Ca(2+) influx in the rd model of photoreceptor degeneration leads to the activation of the cysteine protease calpain, which executes apoptosis via modulation of caspase-3 activity.  相似文献   

16.
Control of apoptosis by IP(3) and ryanodine receptor driven calcium signals   总被引:12,自引:0,他引:12  
Intracellular calcium signals mediated by IP(3)and ryanodine receptors (IP(3)R/RyR) play a central role in cell survival, but emerging evidence suggests that IP(3)R/RyR are also important in apoptotic cell death. Switch from the life program to the death program may involve coincident detection of proapoptotic stimuli and calcium signals or changes in the spatiotemporal pattern of the calcium signal or changes at the level of effectors activated by the calcium signal (e.g. calpain, calcineurin). The fate of the cell is often determined in the mitochondria, where calcium spikes may support cell survival through stimulation of ATP production or initiate apoptosis v ia opening of the permeability transition pore and release of apoptotic factors such as cytochrome c. The functional importance of these mitochondrial calcium signalling pathways has been underscored by the elucidation of a highly effective, local Ca(2+)coupling between IP(3)R/RyR and mitochondrial Ca(2+)uptake sites. This article will focus on the IP(3)R/RyR-dependent pathways to apoptosis, particularly on the mitochondrial phase of the death cascade.  相似文献   

17.

Background

Cardiac cell apoptosis is the initiating factor of cardiac complications especially diabetic cardiomyopathy. Mitochondria are susceptible to the damaging effects of elevated glucose condition. Calcium overload and oxidative insult are the two mutually non-exclusive phenomena suggested to cause cardiac dysfunction. Here, we examined the effect of high-glucose induced calcium overload in calpain-1 mediated cardiac apoptosis in an in vitro setting.

Methods

H9c2, rat ventricular myoblast cell line was treated with elevated glucose condition and the cellular consequences were studied. Intracellular calcium trafficking, ROS generation, calpain-1 activation and caspase-12 and caspase-9 pathway were studied using flow cytometry, confocal microscopy and Western blot analysis.

Results

High-glucose treatment resulted in increased intracellular calcium ([Ca2 +]i) which was mobilized to the mitochondria. Concomitant intra-mitochondrial calcium ([Ca2 +]m) increase resulted in enhanced reactive oxygen and nitrogen species generation. These events led to mitochondrial dysfunction and apoptosis. Cardiomyocyte death exhibited several classical markers of apoptosis, including activation of caspases, appearance of annexin V on the outer plasma membrane, increased population of cells with sub-G0/G1 DNA content and nuclear condensation. Key findings include elucidation of cell signaling mechanism of high-glucose induced calcium-dependent cysteine protease calpain-1 activation, which triggers non-conventional caspases as alternate mode of cell death.

Conclusion

This information increases the understanding of cardiac cell death under hyperglycemic condition and can possibly be extended for designing new therapeutic strategies for diabetic cardiomyopathy.

General significance

The novel findings of the study reveal that high glucose induces apoptosis by both mitochondria-dependent and independent pathways via concomitant rise in intracellular calcium.  相似文献   

18.
Taurine has been shown to prevent cardiomyocyte apoptosis. This study investigated the effects of taurine on NADPH oxidase and calpain activation in mediating apoptosis in cardiomyocytes. Apoptosis was induced by norepinephrine (NE) in cultured adult rat ventricular cardiomyocytes. NE (5 microM) increased NADPH oxidase activation and reactive oxygen species (ROS) production and induced apoptosis. These effects of NE on cardiomyocytes were diminished by taurine (0.5 mg/kg) but not beta-alanine. Inhibition of gp91(phox)-NADPH oxidase or ROS production protected cardiomyocytes from apoptosis. NE also induced calpain-1 activation in cardiomyocytes. This effect of NE on calpain was abrogated by gp91(phox)-NADPH oxidase inhibition or ROS scavengers and was mimicked by H(2)O(2) (25 microM) in cardiomyocytes. Pharmacological inhibitors of calpain or overexpression of calpastatin, a specific calpain inhibitor, blocked calpain activation and prevented cardiomyocyte apoptosis during NE stimulation. Furthermore, taurine treatment inhibited NE- or H(2)O(2)-induced calpain activation in cardiomyocytes. In conclusion, NADPH oxidase induces calpain activation, leading to apoptosis in NE-induced cardiomyocytes. Taurine inhibits NADPH oxidase and calpain activation. Thus, inhibition of NADPH oxidase-mediated calpain activation may be an important mechanism for taurine's antiapoptotic action in cardiomyocytes.  相似文献   

19.
Ceramides are potent lipid second messengers that are involved in apoptotic and hypoxic/ischaemic neurone death. We investigated the role of mitochondria and the mitochondrial apoptosis pathway in ceramide-induced cell death using human D283 medulloblastoma cells with a reduced mitochondrial DNA copy number (rho- cells) and a corresponding defect in mitochondrial respiration. Treatment with the complex I inhibitor rotenone, C2- or C8-ceramide induced cell death in D283 control cells, while rho- cells were significantly protected. In contrast, activation of the mitochondrial apoptosis pathway by transient overexpression of the pro-apoptotic Bax protein or exposure to the kinase inhibitor staurosporine induced apoptosis to a similar extent in control and rho- cells. Overexpression of the antiapoptotic protein Bcl-xL failed to inhibit the toxic effect of C2-ceramide in D283 control cells, and no significant increase in caspase-3-like protease activity could be detected during the death process. Despite this, C2-ceramide induced significant chromatin condensation and cell shrinkage in D283 control cells, reminiscent of apoptosis. These morphological alterations were associated with the activation of calpains. Both apoptotic morphology and calpain activation were attenuated in rho- cells. Our data indicate that the apoptosis-inducing effect of C2-ceramide may require mitochondrial respiratory chain activity and can occur independently of the mitochondrial apoptosis pathway, but involves the activation of calpains.  相似文献   

20.
Nanometre-scale spaces between organelles represent focused nodes for signal transduction and the control of cellular decisions. The endoplasmic reticulum (ER) and the mitochondria form dynamic quasi-synaptic interaction nanodomains in all cell types examined, but the functional role of these junctions in cellular metabolism and cell survival remains to be fully understood. In this paper, we review recent evidence that ER Ca(2+) channels, such as the RyR and IP(3)R, can signal specifically across this nanodomain to the adjacent mitochondria to pace basal metabolism, with focus on the pancreatic β-cell. Blocking these signals in the basal state leads to a form of programmed cell death associated with reduced ATP and the induction of calpain-10 and hypoxia-inducible factors. On the other hand, the hyperactivity of this signalling domain plays a deleterious role during classical forms of apoptosis. Thus, the nanospace between ER and mitochondria represents a critical rheostat controlling both metabolism and programmed cell death. Many aspects of the mechanisms underlying this control system remain to be uncovered, and new nanotechnologies are required understand these domains at a molecular level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号