首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Since Caenorhabditis elegans was chosen as a model organism by Sydney Brenner in 1960's, genetic studies in this organism have been instrumental in discovering the function of genes and in deciphering molecular signaling network. The small size of the organism and the simple nervous system enable the complete reconstruction of the first connectome. The stereotypic developmental program and the anatomical reproducibility of synaptic connections provide a blueprint to dissect the mechanisms underlying synapse formation. Recent technological innovation using laser surgery of single axons and in vivo imaging has also made C. elegans a new model for axon regeneration. Importantly, genes regulating synaptogenesis and axon regeneration are highly conserved in function across animal phyla. This mini-review will summarize the main approaches and the key findings in understanding the mechanisms underlying the development and maintenance of the nervous system. The impact of such findings underscores the awesome power of C. elegans genetics.  相似文献   

2.
A worm's life     
Despite its relative anatomic simplicity, the nematode Caenorhabditis elegans (C. elegans) is a complex multicellular organism. In this review, we describe studies that have contributed to a better understanding of certain aspects of the worm's physiology. We focus on the cellular and molecular basis of the interaction between C. elegans and its environment, including its sensory capacities, the intrinsic biological clock that governs the speed of its life, and on some of the factors that control its life span. We also outline very recent findings that have demonstrated the existence of an innate immune system in C. elegans. Finally, we highlight a number of novel techniques that are transforming the worm from a largely genetic model system into an attractive organism for functional genomic studies.  相似文献   

3.
Life in the soil is an intellectual and practical challenge that the nematode Caenorhabditis elegans masters by utilizing 302 neurons. The nervous system assembled by these 302 neurons is capable of executing a variety of behaviors, some of respectable complexity. The simplicity of the nervous system, its thoroughly characterized structure, several sets of well-defined behaviors, and its genetic amenability combined with its isogenic background make C. elegans an attractive model organism to study the genetics of behavior. This review describes several behavioral plasticity paradigms in C. elegans and their underlying neuronal circuits and then goes on to review the forward genetic analysis that has been undertaken to identify genes involved in the execution of these behaviors. Lastly, the review outlines how reverse genetics and genomic approaches can guide the analysis of the role of genes in behavior and why and how they will complement the forward genetic analysis of behavior.  相似文献   

4.
Autophagy in neuronal cell loss: a road to death   总被引:1,自引:0,他引:1  
The regulation of ageing has been extensively studied in divergent animal model systems including worms, flies and mice. However, little is known about the cellular pathways that mediate the death of these organisms. Analysing major cellular changes in the ageing nematode Caenorhabditis elegans has revealed a gradual, progressive deterioration of different tissues except for the nervous system, which remarkably preserves its integrity even in advanced old age. In addition, genetic data have shown that, in C. elegans and in the fruit fly Drosophila melanogaster, lifespan is controlled by signals derived from neurons and acting throughout adulthood. Organismal death thus seems to be a consequence of the decline of specific neurons. Accumulating evidence demonstrates that late onset of neuronal cell loss generally occurs via autophagy, a process in which eukaryotic cells self-digest parts of their contents during development or to survive starvation. Here we suggest that overactivation of autophagy in the cells of the nervous system is the eventual cause of "physiological" death.  相似文献   

5.
The human brain contains 100 billion neurons and probably one thousand times more synapses. Such a system can be analyzed at different complexity levels, from cognitive functions to molecular structure of ion channels. However, it remains extremely difficult to establish links between these different levels. An alternative strategy relies on the use of much simpler animals that can be easily manipulated. In 1974, S. Brenner introduced the nematode Caenorhabditis elegans as a model system. This worm has a simple nervous system that only contains 302 neurons and about 7,000 synapses. Forward genetic screens are powerful tools to identify genes required for specific neuron functions and behaviors. Moreover, studies of mutant phenotypes can identify the function of a protein in the nervous system. The data that have been obtained in C. elegans demonstrate a fascinating conservation of the molecular and cellular biology of the neuron between worms and mammals through more than 550 million years of evolution.  相似文献   

6.
Although diverse biological disciplines employ the nematode Caenorhabditis elegans as a highly efficient laboratory model system, little is known about its natural history. We investigated its evolutionary past using 10 polymorphic trinucleotide and tetranucleotide microsatellites, derived from across the whole genome. These microsatellites were analyzed from the 35 previously available natural isolates from different parts of the world and also 23 new strains isolated from northwest Germany. Our results highlight that C. elegans lineages differentiate genetically with respect to geographic distance and, to a lesser extent, differences in the time of strain isolation. The latter indicates some turnover of strain genotypes at specific locations. Our data also demonstrate the coexistence of highly diverse genotypes in the population from northwest Germany, which is best explained by recent migration events. Furthermore, selfing is confirmed as the primary mode of reproduction for this hermaphroditic nematode in nature. Importantly, we also find evidence for the occurrence of occasional outbreeding. Taken together, these results support the previous notion that C. elegans is a colonizer, whereby selfing may permit rapid dispersal within new habitats even in the absence of potential mates, whereas occasional outcrossing may serve to compensate for the disadvantages of inbreeding. Such information about the natural history of C. elegans should be of great value for an in-depth understanding of the complexity of this organism, including its multifaceted developmental, neurological, or molecular genetic pathways.  相似文献   

7.
Navigating toward (or away from) a remote odor source is a challenging problem that requires integrating olfactory information with visual and mechanosensory cues. Drosophila melanogaster is a useful organism for studying the neural mechanisms of these navigation behaviors. There are a wealth of genetic tools in this organism, as well as a history of inventive behavioral experiments. There is also a large and growing literature in Drosophila on the neural coding of olfactory, visual, and mechanosensory stimuli. Here we review recent progress in understanding how these stimulus modalities are encoded in the Drosophila nervous system. We also discuss what strategies a fly might use to navigate in a natural olfactory landscape while making use of all these sources of sensory information. We emphasize that Drosophila are likely to switch between multiple strategies for olfactory navigation, depending on the availability of various sensory cues. Finally, we highlight future research directions that will be important in understanding the neural circuits that underlie these behaviors.  相似文献   

8.
Asymmetric cell division is a conserved mechanism for partitioning information during mitosis. Over the past several years, significant progress has been made in our understanding of how cells establish polarity during asymmetric cell division and how determinants, in the form of localized proteins and mRNAs, are segregated. In particular, genetic studies in Drosophila and Caenorhabditis elegans have linked cell polarity, G protein signaling and regulation of the cytoskeleton to coordination of mitotic spindle orientation and localization of determinants. Also, several new studies have furthered our understanding of how asymmetrically localized cell fate determinants, such as the Numb, a negative regulator Notch signaling, functions in biasing cell fates in the developing nervous system in Drosophila. In vertebrates, analysis of dividing neural progenitor cells by in vivo imaging has raised questions about the role of asymmetric cell divisions during neurogenesis.  相似文献   

9.
Electrophysiology of the nematode Caenorhabditis elegans has the potential to bridge the wealth of information on the molecular biology and anatomy of this organism with the responses of selected cells and cellular neural networks associated with a behavioral response. In this paper we report that the nonlinear optical phenomenon of second harmonic generation (SHG) can be detected using green fluorescent protein (GFP) chimeras expressed in selected cells of living animals. Alterations in the SHG signal as a result of receptor ligand interactions and mechanical stimulation of the mechanosensory cells indicate that this signal is very sensitive to membrane potential. The results suggest that this approach to membrane potential measurements in C. elegans and in other biological systems could effectively couple data on selective locations within specific cells with functional responses that are associated with behavioral and sensory processes.  相似文献   

10.
The phenomenon of RNA-mediated interference (RNAi) was first discovered in the nematode Caenorhabditis elegans, in which introduction of double-stranded RNA causes specific inactivation of genes with corresponding sequences. Technical advances in RNAi methodology and the availability of the complete genome sequence have enabled the high-throughput, genome-wide RNAi analysis of this organism. Several groups have used large-scale RNAi to systematically examine every C. elegans gene for knock-down phenotypes, providing basal information to be mined in more detailed studies. Now, in addition to functional genomic RNAi analyses, high-throughput RNAi is also routinely used for rapid, genome-wide screens for genes involved in specific biological processes. The integration of high-throughput RNAi experiments with other large-scale data, such as DNA microarrays and protein-protein interaction maps, enhances the speed and reliability of such screens. The accumulation of RNAi phenotype data dramatically accelerates our understanding of this organism at the genetic level.  相似文献   

11.
The development of the nervous system is an extremely complex and dynamic process. Through the continuous interplay of genetic information and changing intra- and extracellular environments, the nervous system constructs itself from precursor cells that divide and form neurons, which migrate, differentiate and establish synaptic connections. Our understanding of neural development can be greatly assisted by mathematical and computational modelling, because it allows us to bridge the gap between system-level dynamics and the lower level cellular and molecular processes. This Review shows the potential of theoretical models to examine many aspects of neural development.  相似文献   

12.
Piggott BJ  Liu J  Feng Z  Wescott SA  Xu XZ 《Cell》2011,147(4):922-933
C. elegans is widely used to dissect how neural circuits and genes generate behavior. During locomotion, worms initiate backward movement to change locomotion direction spontaneously or in response to sensory cues; however, the underlying neural circuits are not well defined. We applied a multidisciplinary approach to map neural circuits in freely behaving worms by integrating functional imaging, optogenetic interrogation, genetic manipulation, laser ablation, and electrophysiology. We found that a disinhibitory circuit and a stimulatory circuit together promote initiation of backward movement and that circuitry dynamics is differentially regulated by sensory cues. Both circuits require glutamatergic transmission but depend on distinct glutamate receptors. This dual mode of motor initiation control is found in mammals, suggesting that distantly related organisms with anatomically distinct nervous systems may adopt similar strategies for motor control. Additionally, our studies illustrate how a multidisciplinary approach facilitates dissection of circuit and synaptic mechanisms underlying behavior in a genetic model organism.  相似文献   

13.
The nicotinic acetylcholine receptor is among the most thoroughly characterized molecules in the nervous system, and its role in mediating fast cholinergic neurotransmission has been broadly conserved in both vertebrates and invertebrates. However, the accessory molecules that facilitate or regulate nicotinic signaling remain mostly unknown. One approach to identify such molecules is to use molecular genetics in a simple, experimentally accessible organism to identify genes required for nicotinic signaling and to determine the molecular identity of the mutant genes through molecular cloning. Because cellular signaling pathways are often highly conserved between different animal phyla, the information gained from studies of simple organisms has historically provided many critical insights into more complex organisms, including humans. Genetic screens essentially make no prior assumptions about the types of molecules involved in the process being studied; thus, they are well suited for identifying previously unknown components of cell signaling pathways. The sophisticated genetic tools available in organisms such as the nematode Caenorhabditis elegans and the fruit fly Drosophila melanogaster have also proven extremely powerful in elucidating complex biologic pathways in the absence of prior biochemical information and for assessing a molecule's in vivo function of in the context of an intact nervous system. This review describes how genetic analysis has been used to investigate nicotinic signaling mechanisms in worms and flies, and the prospects for using these studies to gain insight into nicotinic receptor function and regulation in humans.  相似文献   

14.
Roles of MAP kinase cascades in Caenorhabditis elegans   总被引:1,自引:0,他引:1  
Mitogen-activated protein kinases (MAPKs) are serine/threonine protein kinases that are activated by diverse stimuli such as growth factors, cytokines, neurotransmitters and various cellular stresses. MAPK cascades are generally present as three-component modules, consisting of MAPKKK, MAPKK and MAPK. The precise molecular mechanisms by which these MAPK cascades transmit signals is an area of intense research, and our evolving understanding of these signal cascades has been facilitated in great part by genetic analyses in model organisms. One organism that has been commonly used for genetic manipulation and physiological characterization is the nematode Caenorhabditis elegans. Genes sequenced in the C. elegans genome project have furthered the identification of components involved in several MAPK pathways. Genetic and biochemical studies on these components have shed light on the physiological roles of MAPK cascades in the control of cell fate decision, neuronal function and immunity in C. elegans.  相似文献   

15.
Genetic interactions provide information about genes and processes with overlapping functions in biological systems. For Saccharomyces cerevisiae, computational integration of multiple types of functional genomic data is used to generate genome-wide predictions of genetic interactions. However, this methodology cannot be applied to the vastly more complex genome of metazoans, and only recently has the first metazoan genome-wide prediction of genetic interactions been reported. The prediction for Caenorhabditis elegans was generated by computationally integrating functional genomic data from S. cerevisiae, C. elegans and Drosophila melanogaster. This achievement is an important step toward system-level understanding of biological systems and human diseases.  相似文献   

16.
The nematode C. elegans is the only animal with a known neuronal wiring diagram, or "connectome". During the last three decades, extensive studies of the C. elegans have provided wide-ranging data about it, but few systematic ways of integrating these data into a dynamic model have been put forward. Here we present a detailed demonstration of a virtual C. elegans aimed at integrating these data in the form of a 3D dynamic model operating in a simulated physical environment. Our current demonstration includes a realistic flexible worm body model, muscular system and a partially implemented ventral neural cord. Our virtual C. elegans demonstrates successful forward and backward locomotion when sending sinusoidal patterns of neuronal activity to groups of motor neurons. To account for the relatively slow propagation velocity and the attenuation of neuronal signals, we introduced "pseudo neurons" into our model to simulate simplified neuronal dynamics. The pseudo neurons also provide a good way of visualizing the nervous system's structure and activity dynamics.  相似文献   

17.
The nervous and immune systems consist of complex networks that have been known to be closely interrelated. However, given the complexity of the nervous and immune systems of mammals, including humans, the precise mechanisms by which the two systems influence each other remain understudied. To cut through this complexity, we used the nematode Caenorhabditis elegans as a simple system to study the relationship between the immune and nervous systems using sophisticated genetic manipulations. We found that C. elegans mutants in G-protein coupled receptors (GPCRs) expressed in the nervous system exhibit aberrant responses to pathogen infection. The use of different pathogens, different modes of infection, and genome-wide microarrays highlighted the importance of the GPCR NPR-1 in avoidance to certain pathogens and in the regulation of innate immunity. The regulation of innate immunity was found to take place at least in part through a mitogen-activated protein kinase signaling pathway similar to the mammalian p38 MAPK pathway. Here, the results that support the different roles of the NPR-1 neural circuit in the regulation of C. elegans responses to pathogen infection are discussed.  相似文献   

18.
Gap junctions are prevalent in every nervous system, but their role in information processing remains largely unknown. In C. elegans, the role of gap junctional communication in touch sensitivity has been demonstrated. In this animal, the entire complement of gap junctions in the nervous system is documented, therefore providing a good model for the computational investigation of circuit functions of gap junctions.We explored several hypotheses about the role of gap junctions in the nervous system of C. elegans by systematically analysing an anatomical database with recursive algorithms. We find that gap junctions connect different sets of neurons from those connected by chemical synapses. In addition, when analysing the topology of the gap-junction networks, we find that, surprisingly, most (92%) neurons in the worm are linked in a single gap-junction network. The worm nervous system can only be divided into smaller networks by assuming that two or more gap junctions are necessary for functional coupling or that neural activity has limited propagation. However, these groups, and others identified using algorithms with subsets or combinations of restrictive criteria, do not correspond to any known circuits identified in genetic and behavioral studies. Finally, we notice that the function of some gap junctions appears linked to their precise location on the neuronal processes. We propose that the location of the gap junctions within the neuron determines their functional role.  相似文献   

19.
The anatomical and developmental constancy of Caenorhabditis elegans belies the complexity of its numerically small nervous system. Indeed, there is an increased appreciation of C. elegans as an organism to study systems level questions. Many recent studies focus on the circuits that control locomotion, egg-laying, and male mating behaviors and their modulation by multiple sensory stimuli.  相似文献   

20.
The cell division and differentiation events that occur during the development of the nematode Caenorhabditis elegans are nearly identical between different individuals, a feature that distinguishes this organism from larger and more complex metazoans, such as humans and Drosophila. In view of this discrepancy, it might be expected that the regulation of cell growth, division and differentiation in C. elegans would involve mechanisms separate from those utilized in larger animals. However, the results of recent genetic, molecular and cellular studies indicate that C. elegans employs an arsenal of developmental regulatory mechanisms quite similar to those wielded by its arthropod and vertebrate relatives. Thus, the nematode system is providing both novel and complementary insights into the general problem of how growth and patterning events are integrated in development. This review offers a general perspective on the regulation of cell division and growth in C. elegans, emphasizing recent studies of these crucial aspects of development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号