首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the effects of digalactosyl-diacylglycerol (DGDG) on the organization and thermal stability of thylakoid membranes, using wild-type Arabidopsis thaliana and the DGDG-deficient mutant, dgd1. Circular-dichroism measurements reveal that DGDG-deficiency hampers the formation of the chirally organized macrodomains containing the main chlorophyll a/b light-harvesting complexes. The mutation also brings about changes in the overall chlorophyll fluorescence lifetimes, measured in whole leaves as well as in isolated thylakoids. As shown by time-resolved measurements, using the lipophylic fluorescence probe Merocyanine 540 (MC540), the altered lipid composition affects the packing of lipids in the thylakoid membranes but, as revealed by flash-induced electrochromic absorbance changes, the membranes retain their ability for energization. Thermal stability measurements revealed more significant differences. The disassembly of the chiral macrodomains around 55°C, the thermal destabilization of photosystem I complex at 61°C as detected by green gel electrophoresis, as well as the sharp drop in the overall chlorophyll fluorescence lifetime above 45°C (values for the wild type—WT) occur at 4–7°C lower temperatures in dgd1. Similar differences are revealed in the temperature dependence of the lipid packing and the membrane permeability: at elevated temperatures MC540 appears to be extruded from the dgd1 membrane bilayer around 35°C, whereas in WT, it remains lipid-bound up to 45°C and dgd1 and WT membranes become leaky around 35 and 45°C, respectively. It is concluded that DGDG plays important roles in the overall organization of thylakoid membranes especially at elevated temperatures.  相似文献   

2.
The lipophilic dye merocyanine 540 (MC540) was used to model small molecule-membrane interactions using micropatterned lipid bilayer arrays (MLBAs) prepared using a 3D Continuous Flow Microspotter (CFM). Fluorescence microscopy was used to monitor MC540 binding to fifteen different bilayer compositions simultaneously. MC540 fluorescence was two times greater for bilayers composed of liquid-crystalline (l.c.) phase lipids (1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC),1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC), and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)) compared to bilayers in the gel phase (1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC)). The effect cholesterol (CHO) had on MC540 binding to the membrane was found to be dependent on the lipid component; cholesterol decreased MC540 binding in DMPC, DPPC and DSPC bilayers while having little to no effect on the remaining l.c. phase lipids. MC540 fluorescence was also lowered when 1,2-dioleoyl-sn-glycero-3-phospho-L-serine (sodium salt) (DOPS) was incorporated into DOPC bilayers. The increase in the surface charge density appears to decrease the occurrence of highly fluorescent monomers and increase the formation of weakly fluorescent dimers via electrostatic repulsion. This paper demonstrates that MLBAs are a useful tool for preparing high density reproducible bilayer arrays to study small molecule-membrane interactions in a high-throughput manner.  相似文献   

3.
Echinocytosis and release of microvesicles from human erythrocytes treated with the impermeant fluorescent dye merocyanine 540 (MC540) has been correlated with the extent of dye binding to intact cells and ghosts. At 20 degrees C binding appeared to saturate at about 9.3.10(6) molecules per cell (3.6 mol/100 mol phospholipid), equivalent to an expansion of the outer leaflet lipid area of about 2.7%. Stage 3 echinocytes were formed upon binding of (3-4).10(6) molecules of MC540/cell (about 1.3 mol/100 mol phospholipid), equivalent to an expansion of the outer leaflet lipid area of about 1.0%. Negligible release of microvesicles was observed with MC540 at 20 degrees C. Binding of MC540 to permeable ghosts was approximately twice that to cells suggesting that there was no selective binding to the unsaturated (more fluid) phospholipids which are concentrated in the inner lipid leaflet of the membrane. At 37 degrees C apparent maximal binding of MC540 was about 3.2 mol/100 mol phospholipid and correlated with the maximal release of microvesicles from the cells as measured by release of phospholipid and acetylcholinesterase. These results are discussed in relation to the bilayer couple hypothesis of Sheetz and Singer (Proc. Natl. Acad. Sci. USA 71 (1974) 4457-4461).  相似文献   

4.
The phase equilibria, hydration, and sodium counterion association for the systems DOPA-2H2O, DOPS-2H2O, DOPG-2H2O, and DPG-2H2O were investigated with 2H, 23Na, and 31P NMR and X-ray diffraction. The following one-phase regions were found in the DOPA-water system: a reversed hexagonal liquid-crystalline (HII) phase up to about 35 wt % water and a lamellar liquid-crystalline (L alpha) phase between about 55 and 98 wt % water. The area per DOPA molecule was 36-65 A2 in the HII phase (10-40 wt % water) and 69 A2 in the L alpha phase (60 wt % water). DOPS and DOPG with 10-98 wt % water, and DPG with 20-95 wt % water formed an L alpha phase at temperatures between 25 and 55 degrees C. At temperatures above 55 degrees C, DPG with 20 and 30 wt % water formed a mixture of L alpha, HII, and cubic liquid-crystalline phases, the mole percent of lipid forming nonlamellar phases being smaller at 30 wt % water than at 20 wt % water. DPG with 10 wt % water probably formed a mixture of an L alpha phase and at least one nonlamellar liquid-crystalline phase at 25 and 35 degrees C, and a pure HII phase at 45 degrees C and higher temperatures. At water concentrations above about 50 wt % the 23Na quadrupole splitting was constant for all four lipid-water systems studied, implying that the counterion association to the charged lipid aggregates did not change upon dilution. These experimental observations can be described with an ion condensation model but not with a simple equilibrium model. The fraction of counterions located close to the lipid-water interface was calculated to be greater than 95%. The 2H and 23Na NMR quadrupole splittings of 2H2O and sodium counterions, respectively, indicate that the molecular order in the polar head-group region decreases for the L alpha phase in the order DOPA approximately DPG greater than DOPS greater than DOPG.  相似文献   

5.
Arrhenius plots of various enzyme and transport systems associated with the liver mitochondrial inner membranes of ground squirrels exhibit changes in slope at temperatures of 20-25 degrees C in nonhibernating but not in hibernating animals. It has been proposed that the Arrhenius breaks observed in nonhibernating animals are the result of a gel to liquid-crystalline phase transition of the mitochondrial membrane lipids, which also occurs at 20-25 degrees C, and that the absence of such breaks in hibernating animals is due to a major depression of this lipid phase transition to temperatures below 4 degrees C. In order to test this hypothesis, we have examined the thermotropic phase behavior of liver inner mitochondrial membranes from hibernating and nonhibernating Richardson's ground squirrels, Spermophilus richardsonii, by differential scanning calorimetry and by 19F nuclear magnetic resonance and fluorescence polarization spectroscopy. Each of these techniques indicates that no lipid phase transition occurs in the membranes of either hibernating or nonhibernating ground squirrels within the physiological temperature range of this animal (4-37 degrees C). Moreover, differential scanning calorimetric measurements indicate that only a small depression of the lipid gel to liquid-crystalline phase transition, which is centered at about -5 degrees C in nonhibernating animals and at about -9 degrees C in hibernators, occurs. We thus conclude that the Arrhenius plot breaks observed in some membrane-associated enzymatic and transport activities of nonhibernating animals are not the result of a lipid phase transition and that a major shift in the gel to liquid-crystalline lipid phase transition temperature is not responsible for seasonal changes in the thermal behavior of these inner mitochondrial membrane proteins.  相似文献   

6.
We report here the reversible association of a designed peptide embedded in a lipid membrane through a stimulus-sensitive trigger that changes the physical state of the bilayer matrix. A peptide designed with the classical 4-3 heptad repeat of coiled coils, equipped with leucine residues at all canonical interface positions, TH1, was rendered membrane soluble by replacement of all exterior residues with randomly selected hydrophobic amino acids. Insertion of TH1 into large unilamellar phosphatidylcholine vesicles was followed by monitoring tryptophan fluorescence. Peptide insertion was observed when the lipids were in the liquid-crystalline state [1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)] but not when they were in the crystalline phase [1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)]. Formation of a trimeric alpha-helical bundle in lipid bilayers was followed by fluorescence resonance energy transfer. Global fit analysis revealed a monomer--trimer equilibrium with a dissociation constant of around 10(-5) [corrected] MF(2). A lipid mixture composed of DPPC and POPC exhibiting a phase transition at 34 degrees C between a crystalline/liquid-crystalline coexistence region and a completely miscible liquid-crystalline phase was used to control the formation of the trimeric peptide bundle. TH1 is phase excluded in crystalline DPPC domains below 34 degrees C, leading to a larger number of trimers. However, when the DPPC domains are dispersed at temperatures above 34 degrees C, the number of trimers is reduced.  相似文献   

7.
In order to investigate membrane fluidity, the hydrophobic probe, 1,6-diphenyl-1,3,5-hexatriene (DPH), has been incorporated into intact isolated thylakoids and separated granal and stromal lamellae obtained from the chloroplasts of Pisum sativum. The steady-state polarization of DPH fluorescence was measured as a function of temperature and indicated that at physiological values the thylakoid membrane is a relatively fluid system with the stromal lamellae being less viscous than the lamellae of the grana. According to the DPH technique, neither region of the membrane, however, showed a sharp phase transition of its bulk lipids from the liquid-crystalline to the gel state for the temperature range -20° to 50° C. Comparison of intact thylakoids isolated from plants grown at cold (4°/7°C) and warm (14°/17° C) temperatures indicate that there is an adaptation mechanism operating which seems to maintain an optimal membrane viscosity necessary for growth. Using a modified Perrin equation the optimal average viscosity for the thylakoid membrane of the chill-resistant variety used in the study (Feltham First) is estimated to be about 1.8 poise.Abbreviations DPH 1,6-diphenyl-1,3,5-hexatriene - Hepes N-(2-hydroxyethyl)-1-piperazineethanesulphonic acid  相似文献   

8.
The presence of two liquid-crystalline phases, alpha and beta, in mixed bilayers of dimyristoylphosphatidylcholine/cholesterol was detected by the changes in the distribution of the fluorescence lifetimes of t-PnA, as analyzed by the Maximum Entropy Method. The formation of the liquid-ordered beta-phase, in the 30-40 degrees C temperature range as a function of cholesterol concentration (0-40 mol%), could be related quantitatively to the relative amplitude of a long lifetime component of the probe (10-14 ns). Based on this evidence, the phase behavior of mixtures of the unsaturated lipid palmitoyloleoylphosphatidylcholine and cholesterol was determined using the same technique, for cholesterol concentrations in the 0-50 mol% range, between 10 and 40 degrees C. It was found that two liquid-crystalline phases are also formed in this system, with physical properties reminiscent of the alpha- and beta-phases formed with saturated lipids. However, in this case it was determined that, for temperatures in the physiological range, the alpha- and beta-phases coexist up to 40 mol% cholesterol. This finding may be of significant biological relevance, because it supports the long held notion that cholesterol is responsible for the lipid packing heterogeneity of several natural membranes rich in unsaturated lipid components.  相似文献   

9.
The ATP-induced quenching of chlorophyll fluorescence in chloroplasts of higher plants is shown to be inhibited when the mobility of the protein complexes into the thylakoid membranes is reduced. Its occurrence also requires the presence of LHC complexes and the ability of the membranes to unstack. These observations, in addition to a slight increase of charge density of the surface—as indicated by 9-aminoacridine fluorescence and high salt-induced chlorophyll fluorescence studies—and partial unstacking of the membranes—as monitored by digitonin method and 540 nm light scattering changes—after phosphorylation, suggest that the ATP-induced quenching of chlorophyll fluorescence could reflect some lateral redistribution of membrane proteins in the lipid matrix of the thylakoids.  相似文献   

10.
Mg~(2+)加强嵌有H~+-ATP酶脂酶体脂质分子的堆积(packing)   总被引:3,自引:2,他引:1  
用亲脂性的灵敏的荧光MC 540标记在有Mg~(2+)(1mM)与无Mg~(2+)条件下重建的线粒体H~+-ATP酶脂酶体,后者的荧光强度较前者增加30%左右.这提示,含Mg~(2+)的脂酶体的脂质分子间的堆积紧密度增加.在N-AF系列(n=27和16)探剂与MC 540之间的能量转移效率,又以反应靠近脂双层表面变化的2-AP与MC 54O之间最高.这进一步表明,含Mg~(2+)的脂酶体具有较适合流动性是与Mg~(2+)通过调节靠近脂双层表面的脂质分子具有适度的堆积相关的.这对阐明我们已提出的Mg~(2+)促进线粒体H~+-ATP酶重建作用模型进一步提供了较直接的证据.  相似文献   

11.
The degree of dependence of a lipid bilayer's surface properties on its conformational state is still an unresolved question. Surface properties are functions of molecular organization in the complex interfacial region. In the past, they were frequently measured using fluorescence spectroscopy. Since a fluorescent probe provides information on its local environment, there is a need to estimate the effect caused by the probe itself. In this paper, we address this question by calculating how lipid head-group orientation effects the fluorescence intensity of Fluorescein-PE (a probe that is sensitive to surface potential). In the theoretical model assumed the lipid bilayer state and the interactions between the charged fluorescent probe and the surrounding lipid molecules was evaluated. The results of this theoretical analysis were compared with experimentally obtained data. A lipid bilayer formed from DPPC was chosen as the experimental system, since it exhibits all the major conformational states within a narrow temperature range of 30 degrees C-45 degrees C. Fluorescein-PE fluorescence intensity depends on local pH, which in turn is sensitive to local electrostatic potential in the probe's vicinity. This local electrostatic potential is generated by lipid head-group dipole orientation. We have shown that the effect of the probe on lipid bilayer properties is limited when the lipid bilayer is in the gel phase, whereas it is more pronounced when the membrane is liquid-crystalline. This implies that Fluorescein-PE is a good reporter of local electrostatic fields when the lipid bilayer is in the gel phase, and is a poor reporter when the membrane is in the liquid-crystalline state.  相似文献   

12.
The interaction between Nystatin and small unilamellar vesicles of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, both in gel (T = 21 degrees C) and in liquid-crystalline (T = 45 degrees C) phases, was studied by steady-state and time-resolved fluorescence measurements by taking advantage of the intrinsic tetraene fluorophore present in this antibiotic. It was shown that Nystatin aggregates in aqueous solution with a critical concentration of 3 microM. The enhancement in the fluorescence intensity of the antibiotic was applied to study the membrane binding of Nystatin, and it was shown that the antibiotic had an almost fivefold higher partition coefficient for the vesicles in a gel (P = (1.4 +/- 0.1) x 10(3)) than in a liquid-crystalline phase (P = (2.9 +/- 0.1) x 10(2)). Moreover, a time-resolved fluorescence study was used to examine Nystatin aggregation in the membrane. The emission decay kinetics of Nystatin was described by three and two exponentials in the lipid membrane at 21 degrees C and 45 degrees C, respectively. Nystatin mean fluorescence lifetime is concentration-dependent in gel phase lipids, increasing steeply from 11 to 33 ns at an antibiotic concentration of 5-6 microM, but the fluorescence decay parameters of Nystatin were unvarying with the antibiotic concentration in fluid lipids. These results provide evidence for the formation of strongly fluorescent antibiotic aggregates in gel-phase membrane, an interpretation that is at variance with a previous study. However, no antibiotic self-association was detected in a liquid-crystalline lipid bilayer within the antibiotic concentration range studied (0-14 microM).  相似文献   

13.
The structural reorganization of pea thylakoid systems in response to osmotic shock in a wide range of temperatures (36–70°C) was studied. At temperatures 40–46°C, the configuration of thylakoid systems changed from a flattened to a nearly round, whereas thylakoids themselves remained compressed. The percentage of thylakoids stacked into grana at 44°C decreased from 71 % in the control to 40 % in experimental samples, reaching 59 % at 48°C. At 44°C and above, thylakoid systems ceased to respond to the osmotic shock by disordering, in contrast to what happened at lower temperatures (36–43°C) and in the control, and retained the configuration inherent in thylakoid systems at these temperatures. At 50°C and above, the packing of thylakoids in grana systems changed, and thylakoids formed extended strands of pseudograna. Simultaneously, single thylakoids formed a network of anastomoses through local fusions. At temperatures of 60–70°C, thylakoid systems appeared as spherical clusters of membrane vesicles with different degree of separation.  相似文献   

14.
We studied the interaction between the 35 kDa apolipoprotein of canine pulmonary surfactant (SP 35) and five saturated phosphatidylcholines: distearoyl (DSPC), diheptadecanoyl (DHPC), dipalmitoyl (DPPC), dimyristoyl (DMPC), and dilauroyl (DLPC); and two monoenoic unsaturated phosphatidylcholines: dioleoyl (DOPC) and dielaidyl (DEPC), using temperatures at which all of the phospholipids except DOPC were in both the gel and liquid-crystalline states. The experiments were carried out in a buffer without Ca2+. The amount of apolipoprotein which was bound by both small unilamellar and multilayered vesicles of these lipids decreased as the temperature was increased. Moreover, near the temperatures of the phase transitions of all lipids except DLPC, there was an abrupt and marked reduction in binding of protein, in that over a 3-4 degree change in temperature there was an abrupt decrease in bound apolipoprotein. A similar change in binding occurred using DLPC, although the relatively large changes in bound protein occurred at about 10 and 20 degrees C, temperatures which are above the phase transition temperature of this lipid. Experiments using DOPC were limited to temperatures above the phase transition, and apolipoprotein binding was low. Experiments monitoring the intrinsic fluorescence of the protein, and the fluorescence of bis-1-anilino-8-naphthalene sulfonic acid bound to the protein, revealed a possible conformational change at about 40 degrees C. Measurement of intrinsic fluorescence provided the same result whether or not the protein was associated with lipid. DSC of the apolipoprotein indicated that this change was not associated with a measurable thermogenic process. We found that the interaction with DPPC was reversible at 42 degrees C, and we measured the thermodynamic parameters of the interaction at this temperature. These were: delta G0 = -8.0 kcal/mol apolipoprotein; delta H0 = -88 kcal/mol; delta S0 = -254 cal/Cdeg per mol. We conclude that the interaction between SP 35 and saturated phosphatidylcholines is temperature sensitive, and this probably reflects differences in the ability of gel and liquid-crystalline phospholipids to bind this protein. Both the delta H0 and delta S0 of the interaction are negative, and may reflect an immobilization of phospholipid around the apolipoprotein to form a boundary layer. This hypothesis is consistent with the findings obtained by DSC, in which the enthalpy of the phase transition of DMPC in lipid-apolipoprotein recombinants was found to be about 60% of that expected for a pure and unperturbed multilamellar dispersion.  相似文献   

15.
B Babbitt  L Huang  E Freire 《Biochemistry》1984,23(17):3920-3926
The interactions of palmitoyl-alpha-bungarotoxin (PBGT) with dipalmitoylphosphatidylcholine (DPPC) bilayers have been studied by using high-sensitivity differential scanning calorimetry together with steady-state and time-resolved phosphorescence and fluorescence spectroscopy. The incorporation of PBGT into large single lamellar vesicles causes a decrease in the phospholipid phase transition temperature (Tm), a broadening of the heat capacity function, and a decrease in the enthalpy change associated with the phospholipid gel to liquid-crystalline transition. Analysis of the dependence of this decreased enthalpy change on the protein/lipid molar ratio indicates that each PBGT molecule exhibits a localized effect upon the bilayer, preventing approximately six lipid molecules from participating in the lipid phase transition. Additional calorimetric experiments indicate that binding to acetylcholine receptor enriched membranes causes a small increase in the Tm of the PBGT/DPPC vesicles. Steady-state fluorescence depolarization measurements employing 1,6-diphenyl-1,3,5-hexatriene (DPH) indicate that the association of PBGT with the phospholipid bilayer decreases the apparent order of the bulk lipid below Tm while increasing the order above Tm. These results have been further supported by rotational mobility measurements of erythrosin-labeled PBGT associated with giant (about 2-micron) unilamellar vesicles composed of dielaidoylphosphatidylcholine or dioleoylphosphatidylcholine using the time-dependent decay of delayed fluorescence/phosphorescence emission anisotropy. Rotational correlation times in the submillisecond time scale (about 30 microseconds) indicate that the protein is highly mobile in the fluid phase and that below Tm the rotational mobility is only slightly restricted.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Earlier experiments, using 31P‐NMR and time‐resolved merocyanine fluorescence spectroscopy, have shown that isolated intact, fully functional plant thylakoid membranes, in addition to the bilayer phase, contain three non‐bilayer (or non‐lamellar) lipid phases. It has also been shown that the lipid polymorphism of thylakoid membranes can be characterized by remarkable plasticity, i.e. by significant variations in 31P‐NMR signatures. However, changes in the lipid‐phase behaviour of thylakoids could not be assigned to changes in the overall membrane organization and the photosynthetic activity, as tested by circular dichroism and 77 K fluorescence emission spectroscopy and the magnitude of the variable fluorescence of photosystem II, which all showed only marginal variations. In this work, we investigated in more detail the temporal stability of the different lipid phases by recording 31P‐NMR spectra on isolated thylakoid membranes that were suspended in sorbitol‐ or NaCl‐based media. We observed, at 5°C during 8 h in the dark, substantial gradual enhancement of the isotropic lipid phases and diminishment of the bilayer phase in the sorbitol‐based medium. These changes compared well with the gradually increasing membrane permeability, as testified by the gradual acceleration of the decay of flash‐induced electrochromic absorption changes and characteristic changes in the kinetics of fast chlorophyll a‐fluorescence transients; all variations were much less pronounced in the NaCl‐based medium. These observations suggest that non‐bilayer lipids and non‐lamellar lipid phases play significant roles in the structural dynamics and functional plasticity of thylakoid membranes.  相似文献   

17.
Differential scanning calorimetry (DSC) and electron spin resonance (ESR) measurements were made to characterize how modifications in the fatty acid composition of Escherichia coli affected the thermotropic phase transition(s) of the membrane lipd. When the fatty acid composition contained between 20 and 60% saturated fatty acids, the DSC curves for isolated phospholipids and cytoplasmic membranes showed a broad (15-25 degree C) gel to liquid-crystalline phase transition, the position of which depended on the particular fatty acid composition. Utilizing multiple lipid mutants, enrichment of the membrane phospholipids with a single long-chain cis-monoenoic fatty acid in excess of that possible in a fatty acid levels less than 20% and gradually replaced the broad peak as the cis-monoenoic fatty acid content increased. These results were obtained with phospholipids, cytoplasmic membranes, and whole cells. With these same phopholipids, plots of 2,2,6,6-tetramethylpiperidinyl-1-oxy partitioning and ESR order parameters vs. 1/T revealed discontinuities at temperatures 40-60 degrees C above the calorimetrica-ly measured gel to liquid-crystalline phase transitions. Moreover, when the membrane phospholipids were enriched with certain combinations of cis-monenoic fatty acids (e.g., cis-delta 9-16:1 plus cis-delta 11-18:1) the DSC curve showed a broad gel to liquid crystalline phase change below 0 degrees C but the ESR studies revealed no discontinuities at temperatures above those of the gel to liquid-crystalline transition. These results demonstrated that enrichment of the membrane lipids with molecules in which both fatty acyl chains are identical cis-monoenoic residues led to a distinct type of liquid-crystalline phase. Furthermore, a general conclusion from this study is that Escherichia coli normally maintains a heterogeneous mixture of lipid molecules and, by so doing, prevents strong lipid-lipid associations that lead to the formation of lipid domains in the membrane.  相似文献   

18.
Non-bilayer lipids account for about half of the total lipid content in chloroplast thylakoid membranes. This lends high propensity of the thylakoid lipid mixture to participate in different phases which might be functionally required. It is for instance known that the chloroplast enzyme violaxanthin de-epoxidase (VDE) requires a non-bilayer phase for proper functioning in vitro but direct evidence for the presence of non-bilayer lipid structures in thylakoid membranes under physiological conditions is still missing. In this work, we used phosphatidylglycerol (PG) as an intrinsic bulk lipid label for 31P-NMR studies to monitor lipid phases of thylakoid membranes. We show that in intact thylakoid membranes the characteristic lamellar signal is observed only below 20 degrees C. But at the same time an isotropic phase is present, which becomes even dominant between 14 and 28 degrees C despite the presence of fully functional large membrane sheets that are capable of generating and maintaining a transmembrane electric field. Tris-washed membranes show a similar behavior but the lamellar phase is present up to higher temperatures. Thus, our data show that the location of the phospholipids is not restricted to the bilayer phase and that the lamellar phase co-exists with a non-bilayer isotropic phase.  相似文献   

19.
Summary The maximum monomer absorption wavelength of a frequently used external membrane probe, Merocyanine 540, can be related to the location of the binding site for the dye within lipid membranes. Solvent studies indicate the occurrence of very specific and mutual perturbances between the probe and its microenvironment, that are of relevance, when investigating structural and functional events in biomembranes with the aid of this dye. Merocyanine 540 (MC 540) is an excellent probe for structural altions in the lipids including phase transitions. The extinction coefficient and max place the location of the dye-chromophore slightly above the domain of the glycerol of backbone of neutral and charged phospholipids. This explains the sensitivity of MC 540 to structural variations in the head-group region of several synthetic dipalmitoyl-lecithin analogues. The major physical parameters involved in variations of the optical signals associated with changes in the membrane structure are the dye/lipid partition coefficient and the monomer-dimer dissociation constant of the dye bound to the lipids. A temperature dependent transition from the liquid-crystalline to the crystalline state leads mainly to an exclusion of the dye from the lipid phase with a concomitant dimerization of the dye molecules still in contact with the polarhead group region of the lipid. The relevance of this finding for the mechanism of transient optical signals in connection with the occurrence of action potentials in excitable membranes is discussed. Our findings underline the necessary caution when applying external optical probes and analyzing membrane features from the spectral data, because of inevitable perturbances in the microenvironment of every probe molecule.  相似文献   

20.
Examination of the thermotropic behavior of aqueous dispersions of dipalmitoylphosphatidylcholine-cholesterol mixtures by high-sensitivity scanning calorimetry has revealed that the phospholipid gel to liquid-crystalline phase transition consists of two components. One, a relatively sharp transition centered at 39.6-40.7 degrees C, exhibits a transition enthalpy change which decreases linearly with increasing cholesterol content, approaching zero at a cholesterol content of about 25 mol %. The other, a broad, lower intensity transition centered at approximately 41.5 degrees C for cholesterol concentrations of 20 mol %, displays an enthalpy change which is maximal at about 20-25 mol % cholesterol and which decreases as the cholesterol content decreases to zero or increases above 25 mol %. The origin of these two transitions is discussed in terms of a separation of these lipid mixtures into cholesterol-rich and cholesterol-poor domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号