首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Primary astrocyte cultures are the most commonly used in vitro model for neurobiological studies. We speculated that different protocols might induce differences not only in the percentage of astrocytes but also in their biological characteristics. In this study, we investigated the effects of four major protocols on the purity of astrocytes, cell viability, expression of glial fibrillary acidic protein (GFAP) and bystin of cultured astrocytes using MTT assay, immunocytochemical staining, and Western blot analysis. We demonstrated that the purity of astrocytes (98.9%) generated by the subculture (SC) procedure is significantly higher than those generated by primary culture (PC), shaken once culture (SK‐1) or shaken twice culture (SK‐2). We also showed that expressions of GFAP and bystin in astrocytes that are purified by the SK‐2 or SK‐1 procedures are significantly higher than those in astrocytes prepared by PC or SC. In addition, astrocytes cultured by SK‐2 or SK‐1 have a higher level of cell viabilities at most time points after ischemia compared with astrocytes cultured by PC or SC. These suggested that physical stimulation induced by “shaken” or culture operation might be able to activate astrocytes and implied that different procedures induce differences not only in the purity but also in the biological characteristics of astrocytes, such as the percentage of activated astrocytes, GFAP, and bystin expressions and responses to ischemia. A more detailed analysis about the effect of “culture protocol factor” on the biological characteristics of astrocytes is absolutely needed. J. Cell. Biochem. 109: 30–37, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
It has been demonstrated that hypoxia-inducible factor-1 alpha (HIF-1 alpha) mediates ischemic tolerance induced by hypoxia/ischemia or pharmacological preconditioning. In addition, preconditioning stimuli can be cross-tolerant, safeguarding against other types of injury. We therefore hypothesized HIF-1 alpha might also be associated with ischemic tolerance induced by hyperthermic preconditioning. In the present study, we demonstrated for the first time that 6 h of hyperthermia (38 °C or 40 °C) could induce a characteristic “reactive” morphology and a significant increase in the expression of bystin in astrocytes. We also showed that pre-treatment with 6 h of hyperthermia resulted in a significant increase in cell viability and a remarkable decrease in lactate dehydrogenase (LDH) release and apoptosis development in the astrocytes that were exposed to 24 h of ischemia and a subsequent 24 h of reperfusion. Analysis of mechanisms showed that hyperthermia could lead to a significant increase in HIF-1 alpha expression and also the HIF-1 binding activity in the ischemia/reperfusion astrocytes. The data provide evidence to our hypothesis that the up-regulation of HIF-1 alpha is associated with the protective effects of hyperthermic preconditioning on astrocytes against ischemia/reperfusion injury.  相似文献   

3.
《Autophagy》2013,9(6):738-753
The present study evaluated autophagy activation in astrocytes and its contribution to astrocyte injury induced by cerebral ischemia and hypoxia. Focal cerebral ischemia was induced by permanent middle cerebral artery occlusion (pMCAO) in rats. In vitro hypoxia in cultured primary astrocytes was induced by the oxygen-glucose deprivation (OGD). Alterations of astrocytes were evaluated with astroglia markers glial fibrillary acidic protein (GFAP). The formation of autophagosomes in astrocytes was examined with transmission electron microscopy (TEM). The expression of autophagy-related proteins were examined with immunoblotting. The role of autophagy in OGD or focal cerebral ischemia-induced death of astrocytes was assessed by pharmacological inhibition of autophagy with 3-methyladenine (3-MA) or bafilomycin A1 (Baf). The results showed that GFAP staining was reduced in the infarct brain areas 3-12 h following pMCAO. Cerebral ischemia or OGD induced activation of autophagy in astrocytes as evidenced by the increased formation of autophagosomes and autolysosomes and monodansylcadaverine (MDC)-labeled vesicles; the increased production of microtubule-associated protein 1 light chain 3 (LC3-II); the upregulation of Beclin 1, lysosome-associated membrane protein 2 (LAMP2) and lysosomal cathepsin B expression; and the decreased levels of cytoprotective Bcl-2 protein in primary astrocytes. 3-MA inhibited OGD-induced the increase in LC3-II and the decline in Bcl-2. Furthermore, 3-MA and Baf slightly but significantly attenuated OGD-induced death of astrocytes. 3-MA also significantly increased the number of GFAP-positive cells and the protein levels of GFAP in the ischemic cortex core 12 h following pMCAO. These results suggest that ischemia or hypoxia-induced autophagic/lysosomal pathway activation may at least partly contribute to ischemic injury of astrocytes.  相似文献   

4.
In the present study, we examined ischemia-induced neuronal and glial changes in the gerbil MOB at various time points during 60 days after 5 min of transient cerebral ischemia. The number of neuronal neuclei-immunoreactive neurons was not changed after ischemia/reperfusion (I/R). Myelin basic protein immunoreaction was well preserved after I/R. Five days after I/R, reactive form of GFAP-immunoreactive astrocytes began to increase in the external plexiform layer and granule cell layer: These reactive astrocytes peaked 10 days after I/R, thereafter, they decreased with time after I/R. Iba-1-immunoreactive microglia were ubiquitously distributed in all layers of the MOB. After I/R, significant changes in their morphology and immunoreactivity were not detected. The results of western blot analyses for GFAP, Iba-1 and MBP were similar to the immunohistochemical data. In addition, 8-hydroxy-2′-deoxyguanosine (a marker for DNA damage) immunoreactivity and SOD1, an antioxidant, protein levels were not changed in the ischemic MOB. These results indicate that neurons in the MOB are resistant to ischemic insult, showing that astrocytes are activated late in the ischemic MOB.  相似文献   

5.
In the present study, we examined the temporal and spatial expression profiles of GFAP mRNA and protein in a focal cerebral ischemia model with ischemic injury confined to the cerebral cortex in the right middle cerebral artery (MCA) territory. Northern blot analysis showed a respective 5.5-fold and 7.2-fold increase in the GFAP mRNA in the ischemic right MCA cortex in rats subjected to 30-min (mild) or 60-min (severe) ischemia followed by 72-hr reperfusion. The GFAP mRNA signal remained elevated up to 2-week reperfusion. Interestingly, increased GFAP mRNA signal was clearly demonstrated for the first time in the left MCA cortex. A significant 1.5-fold and 5-fold increase was observed after 72-hr reperfusion following mild and severe ischemia, respectively. However, unlike the ischemic right MCA cortex, this induction was transient in the non-ischemic left MCA counterpart. In situ hybridization studies further revealed characteristic spatial induction profile following mild vs. severe ischemia. In mild ischemia, following 24-hr reperfusion, increase in GFAP mRNA was observed mainly within the ischemic right MCA cortex. Following 72-hr reperfusion, GFAP mRNA signal was observed in virtually the entire ischemic cortex, particularly the amygdala region, then gradually reduced and restricted to right MCA territory and subcortical thalamic nucleus following 2-week reperfusion. On the other hand, in severe ischemia, following 24-hr reperfusion increased GFAP mRNA signal was observed in area surrounding right MCA territory (infarct region) and outer cortical layers within the right MCA territory. Following 72-hr reperfusion, no signal was detected within right MCA cortex; however, increased GFAP signal was detected throughout the remaining ipsilateral cortex and subcortical region, as well as the contralateral cerebral cortex. GFAP mRNA signals then gradually reduced its intensity and was restricted to area surrounding necrosis and ipsilateral thalamic nucleus following 2-week reperfusion. GFAP-like immunoreactivity was also detected in area expressing GFAP mRNA. It is very likely that de novo synthesis was responsible for this increase. In summary, increased GFAP signal was noted in both ipsilateral and contralateral cerebral following mild and severe ischemia. Although the temporal induction profile for mild vs. severe ischemia was similar, the spatial induction profile was different. The mechanism leading to this differential induction and their physiological and functional significance are not clear at present. It is very likely that some local factors may involve, nevertheless, the detailed mechanisms remain to be fully explored.  相似文献   

6.
The long-term impacts of cerebral ischemia and diabetic ischemia on astrocytes and oligodendrocytes have not been defined. The objective of this study is to define profile of astrocyte and changes of myelin in diabetic and non-diabetic rats subjected to focal ischemia.Focal cerebral ischemia of 30-min duration was induced in streptozotocin-induced diabetic and vehicle-injected normoglycemic rats. The brains were harvested for immunohistochemistry of glial fibrillary acidic protein (GFAP) and 2'', 3''-cyclic nucleotide 3''-phosphodiesterase (CNPase) at various reperfusion endpoints ranging from 30 min up to 28 days. The results showed that activate astrocytes were observed after 30 min and peaked at 3 h to 1 day after reperfusion in ischemic penumbra, and peaked at 7 days of reperfusion in ischemic core. Diabetes inhibited the activation of astrocytes in ischemic hemisphere. Demyelination occurred after 30 min of reperfusion in ischemic core and peaked at 1 day. Diabetes caused more severe demyelination compared with non-diabetic rats. Remyelination started at 7 days and completed at 14 and 28 days in ischemic region. Diabetes inhibited the remyelination processes. It is concluded that ischemia activates astrocytes and induces demyelination. Diabetes inhibits the activation of astrocytes, exacerbates the demyelination and delays the remyelination processes. These may contribute to the detrimental effects of hyperglycemia on ischemic brain damage.  相似文献   

7.
8.
Although ischemic preconditioning (IP) can provide powerful protection on brain against ischemic insult, it is rarely used in clinic to prevent the occurrence of ischemic stroke because of safety concerns. It is therefore necessary to seek the safer stimuli to initiate pharmacological preconditioning. Our previous work demonstrated that ginkgolide B (GB) could protect neurons against ischemia-induced apoptosis. Astrocytes are the most numerous cells in mammalian central nervous system and there is a close bi-directional communication between neurons and astrocytes in brain. Besides neurons, whether GB can exert the role of preconditioning on astrocytes through which to further improve neuronal survival under ischemic condition is not yet known. In the present study, primary cultured astrocytes were treated with GB for 24 h or short-term ischemia (ischemia for 3 h, as ischemic preconditioning/IP), and then cultured back to normoxia and normal medium for 24 h to induce the preconditioning response. Astrocyte-conditioned medium (ACM) was then collected and used to incubate the cultured neurons for 24 h before neurons were subjected to severe ischemia. Our results demonstrated that not only GB and IP increased astrocytic viability in ischemia, but also the conditioned medium from astrocytes treated with GB or IP increased cell viability and decreased the number of apoptosis of neurons in ischemia. We also found that GB and IP significantly stimulated astrocytes to express and secrete erythropoietin (EPO) into ACM, and the addition of anti-EPO antibody blocked the protective effect of GB or IP-treated astrocytes culture medium on neurons in ischemia. Further study of above protection revealed that ACM from astrocytes treated with GB or IP induced the inactivation of proapoptotic factor Bad by phosphorylation at serine 136 and 112 (136p-Bad and 112p-Bad) in neurons. Together, our results suggest that GB is capable of preconditioning on astrocytes as IP and then protects neurons against ischemia-induced apoptosis, which is mediated by EPO.  相似文献   

9.
Objective: In order to illustrate the hypoxia-induced changes of neural cells in inflammatory response, oxidative stress, and energy metabolism process and to compare the sensitivity of neural cells’ responses to hypoxia. Methods: Different types of neural cells (BV2, N9, Gl261, HT22) were treated with hypoxia (0.1% O2, 5% CO2) for 0-24 hours. Cell proliferation was detected by Cell Counting Kit-8 method and cell viability was assayed by CellTiter-Glo Luminescent Cell Viability Assay. Total RNA was extracted by Trizol reagent, and the inflammation, oxidative stress, and energy metabolism-related genes expression were measured by quantitative real-time PCR and Western blot. The ROS production was detected by flow cytometer with fluorescence probe. Results: Hypoxia stimulation decreased cell proliferation and cell viability. The hypoxia-induced changes of microglial cells (BV2 and N9) were mainly involved in inflammatory response and glucose metabolism process. The changes of astrocytes Gl261 and neural cell HT22 were mainly involved in glucose metabolism process. Hypoxia stimulation significantly increased oxidative stress in microglia and astrocytes. Conclusion: Different types of neural cells have different degrees of sensitivity in response to hypoxic stimulation. In terms of energy metabolism and inflammatory response, microglia are more sensitive to hypoxia treatment, which is manifested as a significant up-regulation of glycolytic enzymes and inflammation genes, whereas microglia and astrocytes are more sensitive to hypoxia treatment in terms of oxidative stress, which is indicated by their quick response and significant increase of ROS production.  相似文献   

10.
11.
Estrogen replacement therapy could play a role in the reduction of injury associated with cerebral ischemia in vivo, which could be, at least partially, a consequence of estrogen influence of glutamate buffering by astrocytes during hypoxia/ischemia. Estrogen exerts biological effects through interaction with its two receptors: estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ), which are both expressed in astrocytes. This study explored effects of hypoxia and glucose deprivation (HGD), alone or followed by 1 h recovery, on ERα and ERβ expression in primary rat astrocyte cultures following 1 h exposure to: a) 5 % CO(2) in air (control group-CG); b) 2 % O(2)/5 % CO(2) in N(2) with glucose deprivation (HGD group-HGDG); or c) the HGDG protocol followed by 1 h CG protocol (recovery group-RG). ERα mRNA expression decreased in HGDG. At the protein level, full-length ERα (67 kDa) and three ERα-immunoreactive protein bands (63, 60 and 52 kDa) were detected. A significant decrease in the 52 kDa band was seen in HGDG, while a significant decrease in expression of the full length ERα was seen in the RG. ERβ mRNA and protein expression (a 54 kDa single band) did not change. The observed decrease in ERα protein may limit estrogen-mediated signalling in astrocytes during hypoxia and recovery.  相似文献   

12.
Responses of selected neuroregulatory proteins that promote (Caspase 3 and Bax) or inhibit (Bcl-2, high Bcl-2/Bax ratio) apoptotic cell death were measured in the brain of piglets subjected to precisely controlled hypoxic and ischemic insults: 1 h hypoxia (decreasing FiO2 from 21 to 6%) or ischemia (ligation of carotid arteries and hemorrhage), followed by 0, 2 and 4 h recovery with 21% FiO2. Protein expression was measured in cortex, hippocampus and striatum by Western blot. There were no significant differences in expression of Caspase-3 between sham operated, hypoxic and ischemic groups. There were significant regional differences in expression of Bcl-2 and Bax in response to hypoxia and ischemia. The changes in Bcl-2/Bax ratio were similar for hypoxia and ischemia except for striatum at zero time recovery, with ischemia giving lower ratios than hypoxia. The Bcl-2/Bax ratio was also lower for the striatum than for the other regions of the brain, suggesting this region is the more susceptible to apoptotic injury.  相似文献   

13.
To investigate the astrocyte response to hypoxia/reoxygenation, as a model relevant to the pathogenesis of ischemic injury, cultured rat astrocytes were exposed to hypoxia. On restoration of astrocytes to normoxia, there was a dramatic increase in protein synthesis within 3 h, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis of metabolically labeled astrocyte lysates showed multiple induced bands on fluorograms. Levels of cellular ATP declined during the first 3 h of reoxygenation and the concentration of AMP increased to ± 3.6 nmol/mg of protein within 1 h of reoxygenation. Reoxygenated astrocytes generated oxygen free radicals early after replacement into ambient air, and addition of diphenyliodonium, an NADPH oxidase inhibitor, diminished the generation of free radicals as well as the induction of several bands on fluorogram. Although addition of cycloheximide on reoxygenation resulted in inhibition of both astrocyte protein synthesis and accumulation of cellular AMP, it caused cell death within 6 h, suggesting the importance of protein synthesis in adaptation of hypoxic astrocytes to reoxygenation. Potential physiologic significance of biosynthetic products of astrocytes in hypoxia/reoxygenation was suggested by the recovery of glutamate uptake. These results indicate that the astrocyte response to hypoxia/reoxygenation includes generation of oxygen free radicals and de novo synthesis of products that influence cell viability and function in ischemia.  相似文献   

14.
The effects of hypoxia (O2-free), aglycemia (glucose-free), ischemia (O2- and glucose-free) and chemical anoxia (by 3-nitropropionic acid; 3-NPA) were evaluated on the synaptic transmission in vitro. Stimulation of a dorsal root in hemisected spinal cord from neonatal rat, evoked monosynaptic (MSR) and polysynaptic reflexes (PSR) in the segmental ventral root. In all the hypoxic conditions, the reflexes were depressed in a time-dependent manner. Hypoxia took longer time (> 240 min) to abolish the reflexes where as, aglycemia and ischemia abolished them within 35 min. Recovery after wash was complete in hypoxia, 60-70% in aglycemia and 20-25% in ischemia. The time required for 50% depression of reflexes (T-50) was also in the same order (100, 23 and 13 min). The elimination of O2 in hypoxic or ischemic solution by N2 bubbling abolished the reflexes within 16 min. The T-50 values in both the conditions were between 5-8 min. Superfusion of 3-NPA (an irreversible inhibitor of succinate dehydrogenase) depressed the reflexes. The abolition time and T-50 values were shorter with the increasing concentrations of 3-NPA. The present results reveal that the energy production in hypoxic condition with normal glucose level can sustain the synaptic activity for a longer time while the glucose deficiency even in normoxic conditions drastically impair the synaptic activity. Further, aglycemia depressed the reflexes almost in a similar time as seen with ischemia.  相似文献   

15.
D Acosta  C P Li 《In vitro》1979,15(11):929-934
Primary cultures of rat heart endothelial cells were subjected to simulated conditions of ischemia: hyposia and glucose deprivation for 4 and 24 hr. Cellular injury was evaluated by measuring changes in viability, total protein, cellular morphology, and leakage of cytoplasmic enzymes from the cells into the culture medium. Deprivation of oxygen and glucose for 4 or 24 hr did not lethally injure the cells as noted by no change in cell viability, morphology, and total protein when compared to controls. However, reversible or non-lethal cellular injury was produced as reflected by a significant release of lactate dehydrogenase (LDH) from the cells into the medium after treatment with hypoxia and glucose deprivation for 4 or 24 hr. When the cultures were deprived of glucose, but were oxygenated, cellular injury was not evident after 24 hr. Deprivation of oxygen but not glucose resulted in significant loss of LDH after 4 or 24 hr. When the cultures were allowed to recover after oxygen and glucose deprivation in complete medium containing 1000 mg glucose per 1 and a normal atmosphere of 20% O2, they had levels of LDH leakage comparable to those of control cultures.  相似文献   

16.
Hypothermia decreases the arterial PO(2) at which hemoglobin is 50% saturated (P(50)), increasing hemoglobin O(2)-binding affinity. We used RSR13, a synthetic allosteric modifier of hemoglobin that increases P(50), to study the role of altered hemoglobin O(2)-binding affinity in mild hypothermic neuroprotection. RSR13 (150 mg/kg iv) restored P(50) to normothermic values. Rats underwent 70 min of middle cerebral artery occlusion (MCAO) at 30.0, 34.0, or 37.5 degrees C with hemoglobin saturation held at 98-100%. The 34.0 degrees C group received RSR13 or vehicle before ischemia. After 7 days of recovery, infarct volumes were reduced in all hypothermic groups, without evidence of a detrimental effect on infarct size or neurological score as a result of P(50) correction. To examine for a beneficial effect of P(50) correction, ischemia duration was increased to 120 min in rats maintained at 34.0 degrees C. Correction of P(50) by RSR13 did not alter cerebral infarct sizes or neurological scores. The decrease in P(50), caused by mild hypothermia, could not be associated with infarct size or neurological deficit resulting from ischemic brain hypoxia in rats.  相似文献   

17.
Brain astrocytes provide structural and metabolic support to surrounding cells during ischemia. Glucose and oxygen are critical to brain function, and glucose uptake and metabolism by astrocytes are essential to their metabolic coupling to neurons. To examine astrocyte metabolic response to hypoxia, cell survival and metabolic parameters were assessed in rat primary cortical astrocytes cultured for 3 weeks in either normoxia or in either 1 day or 3 weeks sustained hypoxia (5% O2). Although cell survival and proliferation were not affected by the mildly hypoxic environment, substantial differences in glucose consumption and lactate release after either acute or prolonged hypoxia suggest that astrocyte metabolism may contribute to their adaptation. Hypoxia over a period of 1 day increased glucose uptake, lactate release, and glucose transporter 1 (GLUT1) and monocarboxylate transporter 1 (MCT1) expression, whereas hypoxia over a period of 3 weeks resulted in a decrease of all parameters. Furthermore, increased glucose uptake at 1 day of hypoxia was not inhibited by cytochalasin B suggesting the involvement of additional glucose transporters. We uncovered hypoxia-regulated expression of sodium-dependent glucose transporters (SGLT1) in astrocytes indicating a novel adaptive strategy involving both SGLT1 and GLUT1 to regulate glucose intake in response to hypoxia. Overall, these findings suggest that although increased metabolic response is required for the onset of astrocyte adaptation to hypoxia, prolonged hypoxia requires a shift to an energy conservation mode. These findings may contribute to the understanding of the relative tolerance of astrocytes to hypoxia compared with neurons and provide novel therapeutic strategies aimed at maintaining brain function in cerebral pathologies involving hypoxia.  相似文献   

18.
Yang  Xiao  Zhang  Yanshuang  Geng  Keyi  Yang  Ke  Shao  Jiaxiang  Xia  Weiliang 《Cellular and molecular neurobiology》2021,41(6):1203-1215

Sirtuin 3 (Sirt3) is a member of the Sirtuin family proteins and known to regulate multiple physiological processes such as metabolism and aging. As stroke is an aging-related disease, in this work, we attempt to examine the role and potential mechanism of Sirt3 in regulating ischemic stroke by using a permanent middle cerebral artery occlusion (pMCAO) model in wild type (WT) and Sirt3 knockout (KO) mice, coupled with oxygen glucose deprivation (OGD) experiments in cultured primary astrocytes. Sirt3 deficiency aggravated neuronal cell apoptosis and neurological deficits after brain ischemia. In addition, Sirt3 KO mice showed more severe blood–brain barrier (BBB) disruption and inflammatory responses compared with WT group in the acute phase. Furthermore, specific overexpression of Sirt3 in astrocytes by injecting glial fibrillary acidic protein (GFAP)::Sirt3 virus in ischemic region showed protective effect against stroke-induced damage. Mechanistically, Sirt3 could regulate vascular endothelial growth factor (VEGF) expression by inhibiting hypoxia inducible factor-1α (HIF-1α) signaling after ischemia (OGD). Our results have shown that Sirt3 plays a protective role in ischemic stroke via regulating HIF-1α/VEGF signaling in astrocytes, and reversal of the Sirt3 expression at the acute phase could be a worthy direction for stroke therapy.

  相似文献   

19.
To determine the role of nerve growth factor (NGF) in ischemic brain damage, we measured the temporal and regional changes in the level of NGF in the hippocampal subfields, the cerebral cortex, the striatum, and the septum at 1, 2, 7, and 30 days after transient forebrain ischemia using a highly sensitive sandwich-type enzyme immunoassay system for the beta-subunit of mouse 7S NGF (beta-NGF). We also analyzed glial fibrillary acidic protein immunoreactivity in the hippocampus to ascertain the contribution of reactive astrocytes to NGF production after an ischemic insult. In the CA1 subfield of the hippocampus, the level of beta-NGF decreased slightly 2 days after ischemia (not significant), at which time CA1 pyramidal cell loss began to occur, and increased by 40% 30 days after ischemia (p less than 0.05). A marked increase in glial fibrillary acidic protein-positive astrocytes in the CA1 subfield 2-30 days after ischemia suggests that the reactive astrocytes participated in a gradual increase in the level of beta-NGF after recirculation. The level of beta-NGF in the dentate gyrus decreased transiently 2 days (p less than 0.05) and 7 days (p less than 0.01) after ischemia, followed by recovery to the level of control animals 30 days after ischemia. The level of beta-NGF in the septum gradually decreased 7 days (-27%, p less than 0.05) and 30 days (-43%, p less than 0.01) after ischemia. The levels of beta-NGF in the cerebral cortex and striatum remained unaltered throughout the observation period.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Cerebral ischemia is a cerebrovascular episode that generates a high incidence of death and physical and mental disabilities worldwide. Excitotoxicity, release of free radicals, and exacerbated immune response cause serious complications in motor and cognitive areas during both short and long time frames post-ischemia. CDK5 is a kinase that is widely involved in the functions of neurons and astrocytes, and its over-activation is implicated in neurodegenerative processes. In this study, we evaluated the brain parenchymal response to the transplantation of CDK5-knockdown astrocytes into the somatosensory cortex after ischemia in rats. Male Wistar rats were subjected to the two-vessel occlusion (2VO) model of global cerebral ischemia and immediately transplanted with shCDK5miR- or shSCRmiR-transduced astrocytes or with untransduced astrocytes (Control). Our findings showed that animals transplanted with shCDK5miR astrocytes recovered motor and neurological performance better than with those transplanted with WT or shSCRmiR astrocytes. Cell transplantation produced an overall prevention of neuronal loss, and CDK5-knockdown astrocytes significantly increased the immunoreactivity (IR) of endogenous GFAP in branches surrounding blood vessels, accompanied by the upregulation of PECAM-1 IR in the walls of vessels in the motor and somatosensory regions and by an increase in Ki67 IR in the subventricular zone (SVZ), partially associated with the production of BDNF. Together, our data suggest that transplantation of shCDK5miR astrocytes protects the neurovascular unit in ischemic rats, allowing the motor and neurological function recovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号