首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
In the quest for effective control of mosquitoes, attention has turned increasingly to strains of the bacteria Bacillus sphaericus and Bacillus thuringiensis subsp. israelensis, which produce potent toxins with specific mosquitocidal activities. However, sedimentation of the bacterial spores limits the duration of effective control after field application of these bacilli. We describe here the cloning of genes encoding the 51.4- and 41.9-kDa toxins from B. sphaericus 2297, the 100-kDa toxin from B. sphaericus SSII-1, and the 130-kDa toxin from B. thuringiensis subsp. israelensis into the broad-host-range plasmid pRK248 and the transfer of these genes for expression in Caulobacter crescentus CB15. The recombinant C. crescentus cells were shown to be toxic to mosquito larvae. Caulobacter species are ubiquitous microorganisms residing in the upper regions of aquatic environments and therefore provide the potential for prolonged control by maintaining mosquitocidal toxins in larval feeding zones.  相似文献   

2.
The genes encoding the toxic determinants of Bacillus sphaericus have been expressed in a nontoxic and a toxic strain of Bacillus thuringiensis subsp. israelensis. In both cases, the B. sphaericus toxin proteins were produced at a high level during sporulation of B. thuringiensis and accumulated as crystalline structures. B. thuringiensis transformants expressing B. sphaericus and B. thuringiensis subsp. israelensis toxins did not show a significant enhancement of toxicity against Aedes aegypti, Anopheles stephensi, and Culex pipiens larvae.  相似文献   

3.
The genes encoding the toxic determinants of Bacillus sphaericus have been expressed in a nontoxic and a toxic strain of Bacillus thuringiensis subsp. israelensis. In both cases, the B. sphaericus toxin proteins were produced at a high level during sporulation of B. thuringiensis and accumulated as crystalline structures. B. thuringiensis transformants expressing B. sphaericus and B. thuringiensis subsp. israelensis toxins did not show a significant enhancement of toxicity against Aedes aegypti, Anopheles stephensi, and Culex pipiens larvae.  相似文献   

4.
A 3.7-kilobase (kb) XbaI fragment harboring the cryIVB gene (L. Thorne, F. Garduno, T. Thompson, D. Decker, M. A. Zounes, M. Wild, A. M. Walfield, and T. J. Pollock, J. Bacteriol. 166:801-811, 1986) which encoded a 130-kilodalton (kDa) mosquitocidal toxin from a 110-kb plasmid of Bacillus thuringiensis subsp. israelensis 4Q2-72 was cloned into pUC12 and transformed into Escherichia coli. The clone with a recombinant plasmid (designated pBT8) was toxic to Aedes aegypti larvae. The fragment (3.7 kb) was ligated into pBC16 (tetracycline resistant [Tcr]) and transformed by the method of protoplast transformation into Bacillus sphaericus 1593 and 2362, which were highly toxic to Anopheles and Culex mosquito larvae but less toxic to Aedes larvae. After cell regeneration on regeneration medium, the Tcr plasmids from transformants (pBTC1) of both strains of B. sphaericus were prepared and analyzed. The 3.7-kb XbaI fragment from the B. thuringiensis subsp. israelensis plasmid was shown to be present by agarose gel electrophoresis and Southern blot hybridization. In addition, B. sphaericus transformants produced a 130-kDa mosquitocidal toxin which was detected by Western (immuno-) blot analysis with antibody prepared against B. thuringiensis subsp. israelensis 130-kDa mosquitocidal toxin. The 50% lethal concentrations of the transformants of strains 1593 and 2362 against A. aegypti larvae were 2.7 X 10(2) and 5.7 X 10(2) cells per ml, respectively. This level of toxicity was comparable to the 50% lethal concentration of B. thuringiensis subsp. israelensis but much higher than that of B. sphaericus 1593 and 2362 (4.7 X 10(4) cells per ml) against A. aegypti larvae.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
A 3.7-kilobase (kb) XbaI fragment harboring the cryIVB gene (L. Thorne, F. Garduno, T. Thompson, D. Decker, M. A. Zounes, M. Wild, A. M. Walfield, and T. J. Pollock, J. Bacteriol. 166:801-811, 1986) which encoded a 130-kilodalton (kDa) mosquitocidal toxin from a 110-kb plasmid of Bacillus thuringiensis subsp. israelensis 4Q2-72 was cloned into pUC12 and transformed into Escherichia coli. The clone with a recombinant plasmid (designated pBT8) was toxic to Aedes aegypti larvae. The fragment (3.7 kb) was ligated into pBC16 (tetracycline resistant [Tcr]) and transformed by the method of protoplast transformation into Bacillus sphaericus 1593 and 2362, which were highly toxic to Anopheles and Culex mosquito larvae but less toxic to Aedes larvae. After cell regeneration on regeneration medium, the Tcr plasmids from transformants (pBTC1) of both strains of B. sphaericus were prepared and analyzed. The 3.7-kb XbaI fragment from the B. thuringiensis subsp. israelensis plasmid was shown to be present by agarose gel electrophoresis and Southern blot hybridization. In addition, B. sphaericus transformants produced a 130-kDa mosquitocidal toxin which was detected by Western (immuno-) blot analysis with antibody prepared against B. thuringiensis subsp. israelensis 130-kDa mosquitocidal toxin. The 50% lethal concentrations of the transformants of strains 1593 and 2362 against A. aegypti larvae were 2.7 X 10(2) and 5.7 X 10(2) cells per ml, respectively. This level of toxicity was comparable to the 50% lethal concentration of B. thuringiensis subsp. israelensis but much higher than that of B. sphaericus 1593 and 2362 (4.7 X 10(4) cells per ml) against A. aegypti larvae.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
7.
The parasporal bodies of the mosquitocidal isolates of Bacillus thuringiensis subsp. israelensis and B. thuringiensis subsp. morrisoni isolate PG-14 were compared with regard to their hemolytic and cytolytic activities and the immunological relatedness of the 28- and 65-kilodalton (kDa) proteins that occur in both subspecies. The alkali-solubilized parasporal bodies of B. thuringiensis subsp. israelensis caused 50% lysis of human erythrocytes at 1.14 micrograms/ml, whereas those of B. thuringiensis subsp. morrisoni caused similar lysis at 1.84 micrograms/ml. Preincubation of solubilized parasporal bodies with dioleolyl phosphatidylcholine significantly inhibited the hemolytic activity of both supspecies. In cytolytic assays against Aedes albopictus cells, the toxin concentrations causing 50% lysis for B. thuringiensis subsp. israelensis and B. thuringiensis subsp. morrisoni were 1.87 and 11.98 micrograms/ml, respectively. Polyclonal antibodies raised separately against the 25-kDa protein (a tryptic digest of the 28-kDa protein) or the 65-kDa protein of B. thuringiensis subsp. israelensis cross-reacted, respectively, with the 28- and the 65-kDa proteins of B. thuringiensis subsp. morrisoni. However, neither of these antibodies cross-reacted with the 135-kDa protein of either subspecies. These results indicate that the mosquitocidal and hemolytic properties of B. thuringiensis subsp. israelensis and B. thuringiensis subsp. morrisoni isolate PG-14 are probably due to the biologically related proteins that are present in the parasporal bodies of both subspecies. The lower hemolytic activity of the B. thuringiensis subsp. morrisoni may be due to the presence of lower levels of the 28-kDa protein in that subspecies.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The parasporal bodies of the mosquitocidal isolates of Bacillus thuringiensis subsp. israelensis and B. thuringiensis subsp. morrisoni isolate PG-14 were compared with regard to their hemolytic and cytolytic activities and the immunological relatedness of the 28- and 65-kilodalton (kDa) proteins that occur in both subspecies. The alkali-solubilized parasporal bodies of B. thuringiensis subsp. israelensis caused 50% lysis of human erythrocytes at 1.14 micrograms/ml, whereas those of B. thuringiensis subsp. morrisoni caused similar lysis at 1.84 micrograms/ml. Preincubation of solubilized parasporal bodies with dioleolyl phosphatidylcholine significantly inhibited the hemolytic activity of both supspecies. In cytolytic assays against Aedes albopictus cells, the toxin concentrations causing 50% lysis for B. thuringiensis subsp. israelensis and B. thuringiensis subsp. morrisoni were 1.87 and 11.98 micrograms/ml, respectively. Polyclonal antibodies raised separately against the 25-kDa protein (a tryptic digest of the 28-kDa protein) or the 65-kDa protein of B. thuringiensis subsp. israelensis cross-reacted, respectively, with the 28- and the 65-kDa proteins of B. thuringiensis subsp. morrisoni. However, neither of these antibodies cross-reacted with the 135-kDa protein of either subspecies. These results indicate that the mosquitocidal and hemolytic properties of B. thuringiensis subsp. israelensis and B. thuringiensis subsp. morrisoni isolate PG-14 are probably due to the biologically related proteins that are present in the parasporal bodies of both subspecies. The lower hemolytic activity of the B. thuringiensis subsp. morrisoni may be due to the presence of lower levels of the 28-kDa protein in that subspecies.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Mosquitocidal Bacillus thuringiensis strains show as a common feature the presence of toxic proteins with cytolytic and hemolytic activities, Cyt1Aa1 being the characteristic cytolytic toxin of Bacillus thuringiensis subsp. israelensis. We have detected the presence of another cyt gene in this subspecies, highly homologous to cyt2An1, coding for the 29-kDa cytolytic toxin from B. thuringiensis subsp. kyushuensis. This gene, designated cyt2Ba1, maps upstream of cry4B coding for the 130-kDa crystal toxin, on the 72-MDa plasmid of strain 4Q2-72. Sequence analysis revealed, as a remarkable feature, a 5' mRNA stabilizing region similar to those described for some cry genes. PCR amplification and Southern analysis confirmed the presence of this gene in other mosquitocidal subspecies. Interestingly, anticoleopteran B. thuringiensis subsp. tenebrionis belonging to the morrisoni serovar also showed this gene. On the other hand, negative results were obtained with the anti-lepidopteran strains B. thuringiensis subsp. kurstaki HD-1 and subsp. aizawai HD-137. Western analysis failed to reveal Cyt2A-related polypeptides in B. thuringiensis subsp. israelensis 4Q2-72. However, B. thuringiensis subsp. israelensis 1884 and B. thuringiensis subsp. tenebrionis did show cross-reactive products, although in very small amounts.  相似文献   

10.
The interaction of two cytolytic toxins, Cyt1Ab from Bacillus thuringiensis subsp. medellin and Cyt2Ba from Bacillus thuringiensis subsp. israelensis, with Bacillus sphaericus was evaluated against susceptible and resistant Culex quinquefasciatus and the nonsensitive species Aedes aegypti. Mixtures of B. sphaericus with either cytolytic toxin were synergistic, and B. sphaericus resistance in C. quinquefasciatus was suppressed from >17,000- to 2-fold with a 3:1 mixture of B. sphaericus and Cyt1Ab. This trait may prove useful for combating insecticide resistance and for improving the activity of microbial insecticides.  相似文献   

11.
A mosquitocidal toxin gene, cloned from Bacillus thuringiensis subsp. israelensis, was introduced into mutant crystal-negative B. thuringiensis subsp. israelensis cells. Partial toxicity to mosquitos was restored. The 58-kilodalton cloned gene product is a minor protein component of B. thuringiensis subsp. israelensis crystals and is structurally related to a major, 135-kilodalton crystal toxin.  相似文献   

12.
A mosquitocidal toxin gene, cloned from Bacillus thuringiensis subsp. israelensis, was introduced into mutant crystal-negative B. thuringiensis subsp. israelensis cells. Partial toxicity to mosquitos was restored. The 58-kilodalton cloned gene product is a minor protein component of B. thuringiensis subsp. israelensis crystals and is structurally related to a major, 135-kilodalton crystal toxin.  相似文献   

13.
W H Yap  T Thanabalu    A G Porter 《Applied microbiology》1994,60(11):4199-4202
A series of plasmids bearing the binary toxin genes of Bacillus sphaericus 2297 or 2317.3, the 100-kDa toxin gene of B. sphaericus SSII-1, or the 130-kDa (cryIVB) toxin gene of Bacillus thuringiensis subsp. israelensis were constructed and introduced into Ancylobacter aquaticus by electroporation. The transformed A. aquaticus cells exhibited significant toxicity towards mosquito larvae, demonstrating a potential use of recombinant A. aquaticus for biological control of mosquitoes.  相似文献   

14.
Both Bacillus sphaericus and Bacillus thuringiensis subsp. israelensis produce mosquitocidal toxins during sporulation and are extensively used in the field for control of mosquito populations. All the known toxins of the latter organism are known to be encoded on a large plasmid, pBtoxis. In an attempt to combine the best properties of the two bacteria, an erythromycin resistance-marked pBtoxis plasmid was transferred to B. sphaericus by a mating technique. The resulting transconjugant bacteria were significantly more toxic to Aedes aegypti mosquitoes and were able to overcome resistance to B. sphaericus in a resistant colony of Culex quinquefasciatus, apparently due to the production of Cry11A but not Cry4A or Cry4B. The stability of the plasmid in the B. sphaericus host was moderate during vegetative growth, but segregational instability was observed, which led to substantial rates of plasmid loss during sporulation.  相似文献   

15.
Bacillus thuringiensis subsp. israelensis is a bacterium producing crystals containing Cry and Cyt proteins, which are toxic for mosquito larvae. Nothing is known about the interaction between crystal toxins and decaying leaf litter, which is a major component of several mosquito breeding sites and represents an important food source. In the present work, we investigated the behavior of B. thuringiensis subsp. israelensis toxic crystals sprayed on leaf litter. In the presence of leaf litter, a 60% decrease in the amount of Cyt toxin detectable by immunology (enzyme-linked immunosorbent assays [ELISAs]) was observed, while the respective proportions of Cry toxins were not affected. The toxicity of Cry toxins toward Aedes aegypti larvae was not affected by leaf litter, while the synergistic effect of Cyt toxins on all B. thuringiensis subsp. israelensis Cry toxins was decreased by about 20% when mixed with leaf litter. The toxicity of two commercial B. thuringiensis subsp. israelensis strains (VectoBac WG and VectoBac 12AS) and a laboratory-produced B. thuringiensis subsp. israelensis strain decreased by about 70% when mixed with leaf litter. Taken together, these results suggest that Cyt toxins interact with leaf litter, resulting in a decreased toxicity of B. thuringiensis subsp. israelensis in litter-rich environments and thereby dramatically reducing the efficiency of mosquitocidal treatments.  相似文献   

16.
Bacillus sphaericus is a mosquitocidal bacterium recently developed as a commercial larvicide that is used worldwide to control pestiferous and vector mosquitoes. Whereas B. sphaericus is highly active against larvae of Culex and Anopheles mosquitoes, it is virtually nontoxic to Aedes aegypti, an important vector species. In the present study, we evaluated the capacity of the cytolytic protein Cyt1A from Bacillus thuringiensis subsp. israelensis to enhance the toxicity of B. sphaericus toward A. aegypti. Various combinations of these two materials were evaluated, and all were highly toxic. A ratio of 10:1 of B. sphaericus to Cyt1A was 3, 600-fold more toxic to A. aegypti than B. sphaericus alone. Statistical analysis showed this high activity was due to synergism between the Cyt1A toxin and B. sphaericus. These results suggest that Cyt1A could be useful in expanding the host range of B. sphaericus.  相似文献   

17.
A recombinant plasmid harboring cry4A, cry4B and cry11A from Bacillus thuringiensis subsp. israelensis and binary toxin genes from Bacillus sphaericus has been constructed. The three cry genes were placed under the control of the cry4B promoter whereas the binary toxin gene was controlled by its native promoter. The expression of toxins in Escherichia coli harboring the resulting plasmid, p4BDA-5142, was investigated. Cry4B expression was highest compared to other toxins. Although the level of toxin expression was low compared with E. coli expressing single toxins, the recombinant E. coli strain harboring p4BDA-5142 exhibited broad range mosquito-larvicidal activity against all Aedes, Culex and Anopheles larvae. This work has shown that the development of the recombinant plasmid can be used to broaden the host range spectrum of the appropriate bacterial host for mosquito control.  相似文献   

18.
A new mosquitocidal Bacillus thuringiensis subsp., jegathesan, has recently been isolated from Malaysia. Parasporal crystal inclusions were purified from this strain and bioassayed against fourth-instar larvae of Culex quinquefasciatus, Aedes aegypti, Aedes togoi, Aedes albopictus, Anopheles maculatus, and Mansonia uniformis. The 50% lethal concentration of crystal inclusions for each species was 0.34, 8.08, 0.34, 17.59, 3.91, and 120 ng/ml, respectively. These values show that parasporal inclusions from this new subspecies have mosquitocidal toxicity comparable to that of inclusions isolated from B. thuringiensis subsp. israelensis. Solubilized and chymotrypsin-activated parasporal inclusions possessed low-level hemolytic activity. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that the crystals were composed of polypeptides of 77, 74, 72, 68, 55, 38, 35, 27, and 23 kDa. Analysis by Western blotting (immunoblotting) with polyclonal antisera raised against toxins purified from B. thuringiensis subsp. israelensis reveals that proteins in parasporal inclusions of subsp. jegathesan are distinct, because little cross-reactivity was shown. Analysis of the plasmid content of B. thuringiensis subsp. jegathesan indicates that the genes for toxin production may be located on 105- to 120-kb plasmids. Cry- clones that have been cured of these plasmids are nontoxic. Southern blot analysis of plasmid and chromosomal DNA from subsp. jegathesan showed little or low homology to the genes coding for CryIVA, CryIVB, and CryIVD from B. thuringiensis subsp. israelensis.  相似文献   

19.
Y M Yu  M Ohba    S S Gill 《Applied microbiology》1991,57(4):1075-1081
The mosquitocidal crystals of Bacillus thuringiensis subsp. fukuokaensis were isolated and bioassayed against fourth-instar larvae of two mosquito species. The 50% lethal concentration values of the crystals to Aedes aegypti and Culex quinquefasciatus were 4.1 and 2.9 micrograms/ml, respectively. In addition, the solubilized crystals had hemolytic activity; 50 micrograms/ml was the lowest detectable level. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis revealed that the crystals consisted of polypeptides of 90, 86, 82, 72, 50, 48, 37, and 27 kDa. When the solubilized inclusion was treated with C. quinquefasciatus midgut brush border membrane vesicles or Manduca sexta gut juice, only one major protein was detected. This protein retained mosquitocidal activity but had no detectable hemolytic activity. Immunological analysis of this subspecies and the subspecies israelensis, kyushuensis and darmstadiensis by using polyclonal antisera raised against the whole-crystal protein of B. thuringiensis subsp. fukuokaensis revealed that the proteins in subsp. fukuokaensis are distinct from proteins in the other subspecies because little cross-reaction was observed. Analysis of the plasmid pattern showed that the crystal protein genes are located on a plasmid of 130 MDa. Analysis of plasmid and chromosomal DNA from subsp. fukuokaensis showed little homology to the 72-kDa toxin gene (PG-14) of B. thuringiensis subsp. morrisoni. However, some of the proteins of B. thuringiensis subsp. fukuokaensis are homologous to other B. thuringiensis toxins because N-terminal amino acid analysis revealed that the 90-kDa protein is encoded by a cryIV gene type.  相似文献   

20.
Cry11A from Bacillus thuringiensis subsp. israelensis and Cry11Ba from Bacillus thuringiensis subsp. jegathesan were introduced, separately and in combination, into the chromosome of Bacillus sphaericus 2297 by in vivo recombination. Two loci on the B. sphaericus chromosome were chosen as target sites for recombination: the binary toxin locus and the gene encoding the 36-kDa protease that may be responsible for the cleavage of the Mtx protein. Disruption of the protease gene did not increase the larvicidal activity of the recombinant strain against Aedes aegypti and Culex pipiens. Synthesis of the Cry11A and Cry11Ba toxins made the recombinant strains toxic to A. aegypti larvae to which the parental strain was not toxic. The strain containing Cry11Ba was more toxic than strains containing the added Cry11A or both Cry11A and Cry11Ba. The production of the two toxins together with the binary toxin did not significantly increase the toxicity of the recombinant strain to susceptible C. pipiens larvae. However, the production of Cry11A and/or Cry11Ba partially overcame the resistance of C. pipiens SPHAE and Culex quinquefasciatus GeoR to B. sphaericus strain 2297.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号