首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
IL-10, IL-13, IFN-gamma, tumor necrosis factor (TNF)-alpha, LT-alpha, CD154, and TNF-related activation-induced cytokine (TRANCE) were expressed by 2-20% of rheumatoid arthritis (RA) synovial tissue CD4(+) memory T cells, whereas CD4(+) cells that produced IL-2, IL-4, or IL-6 were not detected. Expression of none of these molecules by individual CD4(+) cells correlated with the exception of TRANCE and IL-10, and TRANCE and TNF-alpha. A correlation between expression of IL-10 and CCR7, LT-alpha and CCR6, IFN-gamma and CCR5, and TRANCE and CXCR4 was also detected.  相似文献   

2.
Plasmacytoid dendritic cells (pDCs) are a subset of DCs whose major function relies on their capacity to produce large amount of type I IFN upon stimulation via TLR 7 and 9. This function is evolutionary conserved and place pDC in critical position in the innate immune response to virus. Here we show that rat pDC constitutively express TNF-related activation-induced cytokine (TRANCE) also known as Receptor-activating NF-κB ligand (RANKL). TRANCE/RANKL is a member of the TNF superfamily which plays a central role in osteoclastogenesis through its interaction with its receptor RANK. TRANCE/RANK interaction are also involved in lymphoid organogenesis as well as T cell/DC cross talk. Unlike conventional DC, rat CD4(high) pDC were shown to constitutively express TRANCE/RANKL both at the mRNA and the surface protein level. TRANCE/RANKL was also induced on the CD4(low) subsets of pDC following activation by CpG. The secreted form of TRANCE/RANKL was also produced by rat pDC. Of note, levels of mRNA, surface and secreted TRANCE/RANKL expression were similar to that observed for activated T cells. TRANCE/RANKL expression was found on pDC in all lymphoid organs as well blood and BM with a maximum expression in mesenteric lymph nodes. Despite this TRANCE/RANKL expression, we were unable to demonstrate in vitro osteoclastogenesis activity for rat pDC. Taken together, these data identifies pDC as novel source of TRANCE/RANKL in the immune system.  相似文献   

3.
In this report, we have examined the expression of the T cell survival signals, OX40 ligand (OX40L) and CD30 ligand (CD30L) on CD4(+)CD3(-)CD11c(-)B220(-)IL-7Ralpha(+) inducer cells from birth to adulthood in mice. We found that adult but not neonatal inducer cells expressed high levels of OX40L and CD30L, whereas their expression of TNF-related activation-induced cytokine (TRANCE) and receptor activator of NF-kappaB (RANK) was comparable. The failure of neonatal inducer cells to express the ligands that rescue T cells helps to explain why exposure to Ag in neonatal life induces tolerance rather than immunity. The expression of OX40L and CD30L on inducer cells increased gradually in the first few weeks of life achieving essentially normal levels around the time mice were weaned. We found that IL-7 signaling through the common cytokine receptor gamma-chain was critical for the optimal expression of both TNF-related activation-induced cytokine and CD30L but not OX40L. Furthermore, glucocorticoids, which potently suppress T effector function, did not influence the expression of OX40L and CD30L in the presence of IL-7.  相似文献   

4.
We analyzed the role of TNF-related activation-induced cytokine (TRANCE), a member of the TNF family expressed on activated T cells that shares functional properties with CD40L, and its receptor-activating NF-kappaB (RANK) which is mostly expressed on mature dendritic cells, during allogenic responses in vivo using a rodent heart allograft model. TRANCE mRNA was strongly up-regulated in acutely rejected allografts on days 4 and 5 posttransplantation whereas RANK was detected as early as day 1 but did not show further up-regulation during the first week. Immunofluoresence analyses of heart allografts showed that 80 and 100% of TRANCE and RANK-expressing cells were T cells and APCs, respectively. We show for the first time that short-term TRANCE blockade using a mouse RANKIg fusion molecule can significantly prolong heart allograft survival in both rat and mouse models. Similarly, rat heart allografts transduced with a RANKIg encoding recombinant adenovirus exhibited a significant prolongation of survival (14.3 vs 7.6 days, p < 0.0001). However, TRANCE blockade using RANKIg did not appear to inhibit allogeneic T and B cell priming humoral responses against RANKIg. Interestingly, TRANCE blockade induced strong up-regulation of CD40 ligand (CD40L) mRNA in allografts. Combined CD40L and TRANCE blockade resulted in significantly decreased chronic allograft rejection lesions as well as allogeneic humoral responses compared with CD40L blockade alone. We conclude that TRANCE-RANK interactions play an important role during acute allograft rejection and that CD40L-independent allogeneic immune responses can be, at least in part, dependent on the TRANCE pathway of costimulation.  相似文献   

5.
IL-10, IL-13, IFN-γ, tumor necrosis factor (TNF)-α, LT-α, CD154, and TNF-related activation-induced cytokine (TRANCE) were expressed by 2-20% of rheumatoid arthritis (RA) synovial tissue CD4+ memory T cells, whereas CD4+ cells that produced IL-2, IL-4, or IL-6 were not detected. Expression of none of these molecules by individual CD4+ cells correlated with the exception of TRANCE and IL-10, and TRANCE and TNF-α. A correlation between expression of IL-10 and CCR7, LT-α and CCR6, IFN-γ and CCR5, and TRANCE and CXCR4 was also detected.  相似文献   

6.
Immunoregulation of lymphocytes and macrophages in the peripheral immune system is achieved in part by activation-induced cell death. Members of the TNF receptor family including Fas (CD95) are involved in the regulation of activation-induced cell death. To determine whether activation-induced cell death plays a role in regulation of dendritic cells (DCs), we examined interactions between Ag-presenting murine DCs and Ag-specific Th1 CD4+ T cells. Whereas mature bone marrow- or spleen-derived DCs expressed high levels of Fas, these DCs were relatively insensitive to Fas-mediated killing by the agonist mAb, Jo-2, as well as authentic Fas ligand expressed on the CD4+ T cell line, A.E7. The insensitivity to Fas-mediated apoptosis was not affected by priming with IFN-gamma and/or TNF-alpha or by blocking the DC survival signals TNF-related activation-induced cytokine and CD40L. However, apoptosis could be induced with C2-ceramide, suggesting that signals proximal to the generation of ceramide might mediate resistance to Fas. Analysis of protein expression of several anti-apoptotic mediators revealed that expression of the intracellular inhibitor of apoptosis Fas-associated death domain-like IL-1-converting enzyme-inhibitory protein was significantly higher in Fas-resistant DCs than in Fas-sensitive macrophages, suggesting a possible role for Fas-associated death domain-like IL-1-converting enzyme-inhibitory protein in DC resistance to Fas-mediated apoptosis. Our results demonstrate that murine DCs differ significantly from other APC populations in susceptibility to Fas-mediated apoptosis during cognate presentation of Ag. Because DCs are most notable for initiation of an immune response, resistance to apoptosis may contribute to this function.  相似文献   

7.
Growing evidence has demonstrated that members of TNF superfamily transduce signals after engagement with their receptors. TNF-related activation-induced cytokine (TRANCE), a member of TNF superfamily, is preferentially expressed on the surface of activated CD4(+) Th1 cells. The soluble receptor activator of NF-kappaB (RANK).Fc fusion protein suppresses IFN-gamma secretion by activated Th1 cells, but does not affect IL-4 secretion by Th2 cells. The suppressive effect on IFN-gamma secretion is observed when Th1 cells are activated by APCs, but not by immobilized anti-TCR beta mAb. In contrast, immobilized RANK.Fc fusion protein augments IFN-gamma secretion by Th1 cells, indicating the occurrence of reverse signaling through TRANCE during T cell/APC interaction. The enhanced secretion of IFN-gamma mediated via TRANCE correlates with the activation of p38 mitogen-activated protein kinase and is blocked by SB203580, a p38 mitogen-activated protein kinase-specific inhibitor. Thus, in addition to its role in activating dendritic cells by binding to the receptor RANK, TRANCE itself can signal the augmentation of IFN-gamma secretion via a p38-dependent pathway, and this provides yet another example of reverse signaling by a member of TNF superfamily.  相似文献   

8.
Osteoclasts are terminally differentiated from cells of monocyte/macrophage lineage by stimulation with TNF-related activation-induced cytokine (TRANCE) (receptor activator of NF-kappaB ligand/osteoprotegerin ligand/osteoclast differentiation factor/TNFSF11/CD254). In the present study, we attempted to determine when and how the cell fate of precursors becomes committed to osteoclasts following TRANCE stimulation. Although mouse bone marrow-derived macrophages (BMMs) were able to differentiate into either osteoclasts or dendritic cells, the cells no longer differentiated into dendritic cells after treatment with TRANCE for 24 h, indicating that their cell fate was committed to osteoclasts. Committed cells as well as BMMs were still quite weak in tartrate-resistant acid phosphatase activity, an osteoclast marker, and incorporated zymosan particles by phagocytosis. Interestingly, committed cells, but not BMMs, could still differentiate into osteoclasts even after incorporation of the zymosan particles. Furthermore, IL-4 and IFN-gamma, potent inhibitors of osteoclast differentiation, failed to inhibit osteoclast differentiation from committed cells, and blocking of TRANCE stimulation by osteoprotegerin resulted in cell death. Adhesion to culture plates was believed to be essential for osteoclast differentiation; however, committed cells, but not BMMs, differentiated into multinucleated osteoclasts without adhesion to culture plates. Although LPS activated the NF-kappaB-mediated pathway in BMMs as well as in committed cells, the mRNA expression level of TNF-alpha in the committed cells was significantly lower than that in BMMs. These results suggest that characteristics of the committed cells induced by TRANCE are distinctively different from that of BMMs and osteoclasts.  相似文献   

9.
This study focuses on the specific CD4+ T cell requirement for optimal induction of cytotoxicity against MHC class II negative autologous tumors (AuTu) collected from patients with various types of cancer at advanced stages. CD4+ T cells were induced in cultures of cancer patients' malignant effusion-associated mononuclear cells with irradiated AuTu (mixed lymphocyte tumor cultures (MLTC)) in the presence of recombinant IL-2 and recombinant IL-7. Tumor-specific CD4+ T cells did not directly recognize the AuTu cells, but there was an MHC class II-restricted cross-priming by autologous dendritic cells (DCs), used as APC. CD8+ CTL, also induced during the MLTC, lysed specifically AuTu cells or DCs pulsed with AuTu peptide extracts (acid wash extracts (AWE)) in an MHC class I-restricted manner. Removal of CD4+ T cells or DCs from the MLTC drastically reduced the CD8+ CTL-mediated cytotoxic response against the AuTu. AWE-pulsed DCs preincubated with autologous CD4+ T cells were able, in the absence of CD4+ T cells, to stimulate CD8+ T cells to lyse autologous tumor targets. Such activated CD8+ T cells produced IL-2, IFN-gamma, TNF-alpha, and GM-CSF. The process of the activation of AWE-pulsed DCs by CD4+ T cells could be inhibited with anti-CD40 ligand mAb. Moreover, the role of CD4+ T cells in activating AWE-pulsed DCs was undertaken by anti-CD40 mAb. Our data demonstrate for the first time in patients with metastatic cancer the essential role of CD4+ Th cell-activated DCs for optimal CD8+ T cell-mediated killing of autologous tumors and provide the basis for the design of novel protocols in cellular adoptive immunotherapy of cancer, utilizing synthetic peptides capable of inducing T cell help in vivo.  相似文献   

10.
Earlier, we have shown that GM-CSF-exposed CD8α- DCs that express low levels of pro-inflammatory cytokines IL-12 and IL-1β can induce Foxp3+ Tregs leading to suppression of autoimmunity. Here, we examined the differential effects of IL-12 and IL-1β on Foxp3 expression in T cells when activated in the presence and absence of DCs. Exogenous IL-12 abolished, but IL-1β enhanced, the ability of GM-CSF-exposed tolerogenic DCs to promote Foxp3 expression. Pre-exposure of DCs to IL-1β and IL-12 had only a modest effect on Foxp3- expressing T cells; however, T cells activated in the absence of DCs but in the presence of IL-1β or IL-12 showed highly significant increase and decrease in Foxp3+ T cell frequencies respectively suggesting direct effects of these cytokines on T cells and a role for IL-1β in promoting Foxp3 expression. Importantly, purified CD4+CD25+ cells showed a significantly higher ability to maintain Foxp3 expression when activated in the presence of IL-1β. Further analyses showed that the ability of IL-1β to maintain Foxp3 expression in CD25+ T cells was dependent on TGF-β1 and IL-2 expression in Foxp3+Tregs and CD25- effectors T cells respectively. Exposure of CD4+CD25+ T cells to IL-1β enhanced their ability to suppress effector T cell response in vitro and ongoing experimental autoimmune thyroidits in vivo. These results show that IL-1β can help enhance/maintain Tregs, which may play an important role in maintaining peripheral tolerance during inflammation to prevent and/or suppress autoimmunity.  相似文献   

11.
Dendritic cells (DCs) express functional purinergic receptors, but the effects of purine nucleotides on DC functions have been marginally investigated. In this study, we report on the ability of micromolar concentrations of ATP to affect the maturation and Ag-presenting function of monocyte-derived DCs in vitro. Chronic stimulation (24 h) of DCs with low, noncytotoxic ATP doses increased membrane expression of CD54, CD80, CD86, and CD83, slightly reduced the endocytic activity of DCs, and augmented their capacity to promote proliferation of allogeneic naive T lymphocytes. Moreover, ATP enhanced LPS- and soluble CD40 ligand-induced CD54, CD86, and CD83 expression. On the other hand, ATP markedly and dose-dependently inhibited LPS- and soluble CD40 ligand-dependent production of IL-1alpha, IL-1beta, TNF-alpha, IL-6, and IL-12, whereas IL-1 receptor antagonist and IL-10 production was not affected. As a result, T cell lines generated from allogeneic naive CD45RA(+) T cells primed with DCs matured in the presence of ATP produced lower amounts of IFN-gamma and higher levels of IL-4, IL-5, and IL-10 compared with T cell lines obtained with LPS-stimulated DCs. ATP inhibition of TNF-alpha and IL-12 production by mature DCs was not mediated by PGs or elevation of intracellular cAMP and did not require ATP degradation. The inability of UTP and the similar potency of ADP to reproduce ATP effects indicated that ATP could function through the P2X receptor family. These results suggest that extracellular ATP may serve as an important regulatory signal to dampen IL-12 production by DCs and thus prevent exaggerated and harmful immune responses.  相似文献   

12.
13.
A role for IL-16 in the cross-talk between dendritic cells and T cells.   总被引:8,自引:0,他引:8  
Dendritic cells (DCs) in the periphery capture and process Ags, migrate to lymphoid organs, and initiate immune responses in T cells. IL-16, the soluble ligand for CD4, is a potent chemoattractant for CD4+ T cells, eosinophils, and monocytes and is mainly derived from activated T cells. Because migration is a fundamental property of DCs, we asked whether IL-16 induces chemotaxis in DCs and whether DCs are a source of IL-16. DCs were generated by culture of monocytes in IL-4 and GM-CSF for 6 days and subsequently highly purified employing magnetic beads. Migration was assayed by nitrocellulose and polycarbonate filter-based assays, and distinction of chemotaxis and chemokinesis was performed by a checkerboard analysis. Messenger RNA and protein data revealed constitutive expression and release of IL-16 by day-6 DCs. Gradients of rIL-16 induced a chemotactic response of DCs. Furthermore, the chemotactic activity of DC supernatant toward DCs themselves and T cells was mainly due to IL-16, because the addition of neutralizing Abs completely abrogated the migratory response. However, after induction of maturation by the addition of TNF-alpha and PGE2 DCs, neither expressed IL-16 mRNA nor produced IL-16 protein. We conclude that IL-16 may play a role in the trafficking of DCs and may be a major chemotactic signal from DCs toward themselves and toward T cells.  相似文献   

14.
15.
We analyzed regulation of the prosurvival Bcl-2 homologue A1, following T-cell receptor (TCR) or cytokine receptor engagement. Activation of CD4(+) or CD8(+) T cells by antigenic peptides induced an early but transient IL-2-independent expression of A1 and Bcl-xl mRNA and proteins, whereas expression of Bcl-2 was delayed and required IL-2. Cytokines such as IL-2, IL-4, IL-7 or IL-15 prevented apoptosis of activated T cells that effect being associated with the maintenance of Bcl-2, but not of A1 expression. However, restimulation of activated or posteffector T cells with antigenic peptide strongly upregulated A1 mRNA and maintained A1 protein expression. IL-4, IL-7 or IL-15 also prevented cell death of naive T cells. In those cells, cytokines upregulated Bcl-2, but not A1 expression. Therefore, in naive, activated and posteffector T cells, expression of A1 is dependent on TCR but not on cytokine receptor engagement, indicating that A1 is differently regulated from Bcl-xl and Bcl-2.  相似文献   

16.
The glucocorticoid-induced TNF-related gene receptor (GITR) is the newest member of the costimulatory molecule family and is expressed on both resting CD4+CD25+ regulatory T (T(R)) cells and activated CD4+ T cells. We investigated the endogenous mechanisms that regulate GITR expression on both T(R) and CD4+ T cells, as well as the functional interaction between GITR and other costimulatory molecules. CD28 stimulation increased GITR expression on both T(R) and CD4+ T cells via IL-2-dependent mechanisms. In addition, ligation of GITR and/or CD28 increased the level of CD4+ T cell proliferation and effector function under both APC-dependent and -independent conditions, suggesting that these costimulatory molecules cooperate to regulate CD4+ T cell activation and function by directly signaling to the CD4+ T cell. Thus, GITR may serve opposing functional roles on CD4+ T(R) and effector cells and alterations in GITR expression and/or function may tip the balance between immune tolerance and effector function.  相似文献   

17.
Thus far, immunotherapies based on one or a few immunostimulatory molecules have shown limited antitumor efficacy. This highlights the need to use multiple immunostimulatory molecules, to target different immune cells, including immunosuppressive cells, simultaneously. Consequently, in this study, we delivered intratumorally via protein transfer four molecules, including the chemotactic molecules secondary lymphoid tissue chemokine and Fas ligand and the costimulatory molecules 4-1BBL and TNF-related activation-induced cytokine. Secondary lymphoid tissue chemokine and Fas ligand together can attract an array of immune cells and induce apoptosis in CD4(+)CD25(+) regulatory T cells (Treg), whereas 4-1BBL and TRANCE together can stimulate T cells and dendritic cells (DCs). We show that the transfer of all four molecules increases tumor-infiltrating neutrophils, DCs, and CD4(+) and CD8(+) T cells and decreases intratumoral Treg. We show that the treatment favors the generation of a Th1 cytokine milieu at the tumor site, which is attributed not only to an increase in IL-12-producting DCs and IFN-gamma-producing CD8(+) T cells, but also to a decrease in IL-10-producing Treg. Importantly, in the L5178Y lymphoma model, we show that compared with transfer of the chemotactic molecules alone or the costimulatory molecules alone, transfer of all four molecules demonstrates stronger antitumor responses against established tumors. Furthermore, we show that the antitumor responses elicited by transfer of all four molecules are mediated by long-term, systemic antitumor immunity. Hence, this study demonstrates for the first time that combinatorial use of chemotactic and costimulatory molecules provides a useful strategy for enhancing antitumor responses.  相似文献   

18.
19.
Efficient immune responses require regulated antigen presentation to CD4 T cells. IL-10 inhibits the ability of dendritic cells (DCs) and macrophages to stimulate antigen-specific CD4 T cells; however, the mechanisms by which IL-10 suppresses antigen presentation remain poorly understood. We now report that IL-10 stimulates expression of the E3 ubiquitin ligase March-I in activated macrophages, thereby down-regulating MHC-II, CD86, and antigen presentation to CD4 T cells. By contrast, IL-10 does not stimulate March-I expression in DCs, does not suppress MHC-II or CD86 expression on either resting or activated DCs, and does not affect antigen presentation by activated DCs. IL-10 does, however, inhibit the process of DC activation itself, thereby reducing the efficiency of antigen presentation in a March-I-independent manner. Thus, IL-10 suppression of antigen presenting cell function in macrophages is March-I-dependent, whereas in DCs, suppression is March- I-independent.  相似文献   

20.
IL-4 enhances keratinocyte expression of CXCR3 agonistic chemokines   总被引:6,自引:0,他引:6  
IFN-induced protein of 10 kDa (IP-10), monokine induced by IFN-gamma (Mig), and IFN-inducible T-cell alpha-chemoattractant (I-TAC) belong to the non-glutamate-leucine-arginine motif CXC chemokine family and act solely through the CXCR3 receptor for potent attraction of T lymphocytes. In this study, we evaluated the capacity of the T cell-derived cytokines IL-4, IL-10, and IL-17 to modulate IP-10, Mig, and I-TAC in cultured human keratinocytes and CXCR3 expression in T cells from allergic contact dermatitis (ACD). IL-4, but not IL-10 or IL-17, significantly up-regulated IFN-gamma- or TNF-alpha-induced IP-10, Mig, and I-TAC mRNA accumulation in keratinocytes and increased the levels of IP-10 and Mig in keratinocyte supernatants. Immunohistochemistry of skin affected by ACD revealed that >70% of infiltrating cells were reactive for CXCR3 and that CXCR3 staining colocalized in CD4+ and CD8+ T cells. Nickel-specific CD4+ and CD8+ T cell lines established from ACD skin produced IFN-gamma and IL-4 and expressed moderate to high levels of CXCR3. Finally, CXCR3 agonistic chemokines released by stimulated keratinocytes triggered calcium mobilization in skin-derived nickel-specific CD4+ T cells and promoted their migration, with supernatant from keratinocyte cultures stimulated with IFN-gamma and IL-4 attracting more efficaciously than supernatant from keratinocytes activated with IFN-gamma alone. In conclusion, IL-4 exerts a proinflammatory function on keratinocytes by potentiating IFN-gamma and TNF-alpha induction of IP-10, Mig, and I-TAC, which in turn may determine a prominent recruitment of CXCR3+ T lymphocytes at inflammatory reaction sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号