首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple HPLC method has been developed for the determination of ticlopidine in human plasma. Plasma samples were buffered at pH 9 and extracted with n-heptane-isoamyl alcohol (98.5: 1.5, v/v). Imipramine was used as internal standard. Chromatography was performed isocratically with acetonitrile-methanol-0.05 M KH2PO4 (20:25:55, v/v) at pH 3.0 containing 3% triethylamine at a flow-rate of 1 ml/min. A reversed-phase column, Supelcosil LC-8-DB, 15 cm × 4.6 mm I.D., 5 μm particle size, was used. The effluent was monitored by UV absorbance detection at 235 nm. The method showed good accuracy, precision and linearity in the concentration range 5–1200 ng/ml. The limit of quantitation was 5 ng/ml, with a precision (C.V.) of 8.91%, which is the same as that achieved by other authors with a previously published GC-MS method. The procedure described in this paper is simple and allows the routine assessment of ticlopidine plasma concentration in pharmacokinetic studies following therapeutic doses in human subjects.  相似文献   

2.
A novel HPLC assay which is rapid, reproducible and sensitive has been developed for the analysis of apomorphine in plasma. The assay incorporates boldine as an internal standard, and uses solid-phase extraction on C18 mini-columns for sample clean-up and concentration, so enabling quantitation of apomorphine at 500 pg/ml using fluorescence detection (λex 270 nm, λem). The HPLC assay comprised a 25 cm-long Techopakk C18 column and a mobile phase of (0.25 M sodium dihydrogen phosphate plus 0.25% heptane sulphonic acid, to pH 3.3 with orthophosphoric acid) containing 30% (v/v) methanol and 0.003% (w/v) EDTA, run at a flow-rate of 1.5 ml/min. Calibration plots prepared in plasma were linear over the range 1–30 ng/ml, (limit of quantitation (LOQ)=490 PG/ML) with R.S.D. of 0.05% and R.E. of 5.0% at the level of 1 ng/ml. Preliminary pharmacokinetic data from two patients given apomorphine by 12 h subcutaneous infusion (patient A dose=35 mg and patient B dose=141 mg) showed apomorphine elimination from plasma to fit a two-compartment model, with initial half-lives of 8.2 and 46.6 min, elimination half-lives of 76.4 and 166.5 min and area under the plasma concentration-time curve (AUC) values of 236 and 405 ng h/ml, respectively.  相似文献   

3.
A rapid and sensitive method using HPLC has been developed for the quantification of nicorandil (SG-75) in human plasma samples for routine bioequivalence studies. The sample preparation needs two liquid–liquid extractions, first with CH3Cl and HClO4 as denaturation reagent and second with addition of ethyl acetate and Na2CO3(aq). Detection wavelength was 256 nm. The obtained correlation coefficient for weighted linear curve in the range from 5.0 to 300 ng/ml was higher than 0.9950. The limit of quantitation (LOQ) was established at 5.0 ng/ml. The HPLC separation was accomplished on Nucleosil Phenyl (5 μm) stainless steel column within 7 min. The mixture of 0.01 M ammonium acetate buffer (pH 6.2) and acetonitrile 10:3 (v/v) was used as the mobile phase. The same separation method was examined on HPLC–MS system. Using this system, the LOQ was established at 1.0 ng/ml and the linearity was obtained in the range from 1.0 to 150 ng/ml.  相似文献   

4.
Ebastine (CAS 90729-43-4) is an antiallergic agent which selectively and potently blocks histamine H1-receptors in vivo. A simple and sensitive high-performance liquid chromatography (HPLC) method is described for the simultaneous determination of ebastine and its two oxidized metabolites, carebastine (CAS 90729-42-3) and hydroxyebastine (M–OH), in human plasma. After a pretreatment of plasma sample by solid-phase extraction, ebastine and its metabolites were analyzed on an HPLC system with ultraviolet detection at 254 nm. Chromatography was performed on a cyano column (250×4.0 mm I.D.) at 40 °C with the mobile phase of acetonitrile–methanol–0.012 M ammonium acetate buffer (20:30:48, v/v/v) at a flow rate of 1.2 ml/min. Accurate determinations were possible over the concentration range of 3–1000 ng/ml for the three compounds using 1 ml plasma samples. The intra- and inter-day assay accuracy of this method were within 100±15% of nominal values and the precision did not exceed 12.4% of relative standard deviation. The lower limits of quantitation were 3 ng/ml for ebastine and its metabolites in human plasma. This method was satisfactorily applied to the determination of ebastine and its two oxidized metabolites in human plasma after oral administration of ebastine.  相似文献   

5.
All-trans retinoic acid (all-trans RA), the active metabolite of vitamin A, has been demonstrated to be an efficient alternative to chemotherapy in the treatment of acute promyelocytic leukemia (APL), the AML3 subtype of the FAB cytological classification. Complete remission is obtained by inducing terminal granulocytic differentiation of the leukemic cells. To study all-trans RA pharmacokinetics in patients with APL, a rapid, precise and selective high-performance liquid chromatographis (HPLC) assay was developed. This method is easy and shows good repeatability (C.V. = 8.41–12.44%), reproducibility (C.V. = 9.19–14.73%), accuracy (C.V. = 3.5–11%) and sensitivity with a detection limit of 5 pmol/ml. The analysis is performed using normal-phase HPLC in an isocratic mode with UV detection after solid-phase extraction on octadecyl (C18) columns. The mobile phase is hexanedichloromethane-dioxane (78:18:4, v/v) containing 1% acetic acid.  相似文献   

6.
An original method based upon high-performance liquid chromatography coupled to ionspray mass spectrometry (HPLC–ISP-MS) has been developed for the identification and quantification in plasma of several cardiac glycosides, namely digoxin, digitoxin, lanatoside C and acetyldigitoxin. After single-step liquid–liquid extraction by chloroform–2-propanol (95:5, v/v) at pH 9.5 using oleandrin as an internal standard, solutes are separated on a 4 μm NovaPak C18 (Waters) column (150×2.0 mm, I.D.), using a gradient of acetonitrile–2 mM NH4COOH, pH 3 buffer (flow-rate 200 μl/min, post-column split 1:3). Detection is done by a Perkin-Elmer Sciex API-100 mass analyzer equipped with an ISP interface. In most instances the major ion observed is not [M+H]+ as expected, but [M+NH4]+. The mean retention times (min) are: lanatoside C, 5.74; digoxin, 6.00; digitoxin, 8.08, oleandrin, 8.30, acetyldigitoxin, 8.66 and 9.01 (isomers α and β, respectively). The lower limits of detection in single ion monitoring mode range from 0.15 ng/ml (α- and β-acetyldigitoxin) to 0.60 ng/ml (lanatoside C), making the method less sensitive than radioimmunoassay, whereas it is much more specific.  相似文献   

7.
A sensitive high-performance liquid chromatographic (HPLC) assay has been developed and validated for the quantitation of the novel anticancer agent topotecan and topotecan as the total of its lactone and carboxylate forms in human plasma. Linear response in analyte standard peak area were observed over the concentration range 0.05–10 ng/ml using 100-μl plasma samples. The instability of the drug in the biological matrix necessitated that the plasma fraction was obtained within 5 min after blood sampling by centrifugation, immediately followed by protein precipitation with cold methanol (−30°C). Stability studies have indicated that topotecan is stable in these methanolic extracts for at least 4.5 months at −30°C and 2 months at −70°C. For the total determination of the lactone plus lactone ring-opened forms of the drug as topotecan, plasma samples were deproteinated with methanol and, subsequently, acidified with 7% (v/v) perchloric acid. Plasma samples for the measurement of total levels of the lactone and the ring-opened forms of the topotecan were stable for at least 4.5 months when stored at −30°C. After centrifugation, the supernatants were analysed by HPLC using a Zorbax SB-C18 Stable Bond column and methanol-0.1 M hexane-1-sulfonic acid in methanol-0.01 M N,N,N′,N′-tetramethylethylenediamine (TEMED) in distilled water pH 6.0 (25:10:65, v/v) as the mobile phase. Detection was performed fluorimetrically. Within-run and between-run precision was always less than 12.1% in the concentration range of interest (0.05–10.0 ng/ml). The limit of quantitation is 0.05 ng/ml. Accuracy measurements ranged between 87.6 and 113.5%.  相似文献   

8.
A sensitive HPLC method for determination of bisphenol A (BPA) in plasma samples using 4-(4,5-diphenyl-1H-imidazol-2-yl)benzoyl chloride (DIB-Cl) as a fluorescence labeling reagent was developed. The fluorescence labeling reaction was completed within 10 min at room temperature. DIB-Cl reacts with the phenolic hydroxyl group of BPA in the presence of triethylamine (TEA). The DIB-Cl derivative of BPA (DIB-BPA) was separated within 30 min with an ODS column using acetonitrile–water (90:10, v/v) as the isocratic eluent. Calibration graphs were linear over the range of 1.0–100 ng/ml (r=0.999). The detection limit of DIB-BPA was 0.05 ng/ml (2.5 pg) at a signal-to-noise ratio of 3. The relative standard deviations (RSDs) of the method for between-run were 1.0–5.0%. The analytical recoveries of known amounts (1.0 and 100 ng/ml) of BPA-spiked rabbit plasma were around 95%.  相似文献   

9.
A sensitive and specific high-performance liquid chromatographic–tandem mass spectrometric (HPLC–MS–MS) method was developed for the determination of 3-hydroxypropylmercapturic acid (3-HPMA) in human urine. Samples were extracted using ENV+ cartridges and then injected onto a C8 Superspher Select B column with acetonitrile and formic acid as eluent (5:95, v/v). N-Acetylcysteine was used as internal standard for HPLC–MS–MS. Linearity was given in the tested range of 50–5000 ng/ml urine. The limit of quantification was 50 ng/ml. Precision, as C.V., in the tested range of 50–5000 ng/ml was 1.47–6.04%. Accuracy ranged from 87 to 114%. 3-HPMA was stable in human urine at 37°C for 24 h. The method was able to quantify 3-HPMA in urine of non-smokers and smokers.  相似文献   

10.
A simple, specific and sensitive high-performance liquid chromatographic (HPLC) method was developed for the determination of rifabutin in human plasma. Rifabutin and sulindac (internal standard) are extracted from human plasma using a C8 Bond Elut extraction column. Methanol (1 ml) is used to elute the compounds. The methanol is dried down under nitrogen and reconstituted in 250 μl of mobile phase. Separation is achieved by HPLC on a Zorbax Rx C8 column with a mobile phase composed of 0.05 M potassium dihydrogen phosphate and 0.05 M sodium acetate at pH 4.0-acetonitrile (53:47, v/v). Detection is by ultraviolet absorbance at 275 nm. The retention times of rifabutin and internal standard were approximately 10.8 and 6.9 min, respectively. The assay is linear over the concentration range of 5–600 ng/ml. The quantitation limit was 5 ng/ml. Both intra-day and inter-day accuracy and precision data showed good reproducibility.  相似文献   

11.
A reversed-phase isocratic high-performance liquid chromatographic method has been developed for the determination of AG-331, a novel thymidylate synthase inhibitor, in human serum and urine. The method involves a solid-phase extraction from C18 cartridges without addition of an internal standard. The methanol eluent is evaporated under nitrogen at 40°C, and reconstituted in mobile phase, acetonitrile-water (35:65, v/v) containing 25 mM ammonium phosphate. Separation of AG-331 was obtained on a C18 column at a flow-rate of 1 ml/min. Chromatographic signals were monitored by a photodiode-array detector at a primary wavelength of 457 nm with a bandwidth of 4.8 nm. Standard curves are linear in the range of 22–2175 ng/ml in plasma and 44–2175 ng/ml in urine, respectively. The extraction recovery ranged from 92.9–102.4%. Intra-day coefficient of variation was less than 9.5%, and inter-day coefficient of variation was less than 14.3% for an AG-331 concentration of 44 ng/ml. This method has been used to characterize the pharmacokinetics of AG-331 in cancer patients as part of ongoing Phase I trials.  相似文献   

12.
A simple, selective, sensitive and precise high-performance liquid chromatographic plasma assay for the prokinetic drug cisapride is described. Alkalinised samples of plasma (100 μl) were extracted with 1.0 ml of 10% (v/v) isopropanol in chloroform, dried, redissolved in mobile phase and injected. Chromatography was performed at 20°C by pumping a mobile phase of acetonitrile (370 ml) in pH 5.2, 0.02 M phosphate buffer (630 ml) at 1.0 ml/min through a C8 Symmetry column. Cisapride and the internal standard were detected by fluorescence monitoring at 295 nm (excitation) and 350 nm (emission), and were eluted 5 min and 8 min, respectively, after injection. Calibration plots in bovine serum albumin (3% w/v) were linear (r > 0.999) from 5 to 250 ng/ml. Intra-day and inter-day precision (C.V.) was 9.5%, or less, and the accuracy was within 5.5% of the nominal concentration over the range 8–200 ng/ml. Total assay recovery was above 82%. Endogenous plasma components, major cisapride metabolite (norcisapride), and other durgs used in neonatal pharmacotherapeutics did not interfere.  相似文献   

13.
A sensitive, rapid, selective and reproducible method has been developed to measure plasma levels of sulfadoxine, 4-Amino-N-(5, 6-dimethoxy-4-pyrimidinyl) benzensulfonamide; in healthy, human volunteers using packed-column supercritical fluid chromatography. Omeprazole, 5-methoxy-2-[[(4-methoxy-3, 5-di-methyl-2-pyridinyl)methyl]sulfinyl]-1H-benzimidazole; was used as the internal standard (i.s.) at 15.0 μg/ml. The drug and the i.s. were extracted from plasma using dichloromethane. Separation of sulfadoxine and i.s. was done on a Nucleosil (250×4.6 mm) 10 μm, RP-C18 column with 7.4% (v/v) methanol-modified supercritical fluid carbon dioxide (2.5 ml/min) as the mobile phase. The column temperature was 40°C and the outlet pressure was set at 8.83 MPa. The detection was done using a UV–Vis detector set at 265 nm. The limit of quantification was 0.50 μg/ml using 1 ml plasma specimen. The mean extraction recovery of the drug from plasma was found to be 94.9%. The SFC method was directly compared to a published HPLC/UV method. With respect to speed and use of organic solvents SFC was found to be superior; while in all other aspects the results were similar to the published technique. The method has been successfully used to estimate the sulfadoxine levels in healthy human volunteers from 0 to 240 h following an oral dose of 500 mg of sulfadoxine in combination with 25 mg of pyrimethamine.  相似文献   

14.
A simple and sensitive column-switching HPLC method has been developed for the simultaneous determination of NK-104 (HMG–CoA reductase inhibitor) and its lactone in human and dog plasma. Plasma sample was extracted with methyl tert-butyl ether and then the extract was subjected to methylation with diazomethane to prevent the mutual conversion between NK-104 and its lactone. The extract was injected into the column-switching HPLC system. The calibration curves of NK-104 and NK-104 lactone were linear over the ranges 0.5 to 100 ng/ml for human plasma samples and 0.5 to 500 ng/ml for dog plasma, respectively. The intra-day and inter-day C.V. values of these analytes were less than 13.3%. The intra-day and inter-day accuracies of these analytes were between −14.0 and 6.5%. The proposed method has been applied to plasma samples obtained after oral administration of a single 2 mg dose of NK-104 to volunteers.  相似文献   

15.
An HPLC method was developed and validated for the determination of mifepristone in human plasma. C(18) solid-phase extraction cartridges were used to extract plasma samples. Separation was by C(18) column; mobile phase, methanol-acetonitrile-water (50:25:25, v/v/v); flow rate, 0.8 ml/min; UV detection at 302 nm. The calibration curve was linear in the concentration range of 10 ng/ml to 20 microg/ml (r=0.9991). Within- and between-day variability were acceptable. The limit of detection for the assay was 6 ng/ml. Plasma samples were stable for at least 7 days in the state of plasma or residue treated at -20 degrees C. The method was simple, sensitive and accurate, and allowed to determine ng mifepristone in human plasma. It could be applied to assess the plasma level of mifepristone in women receiving low oral doses of mifepristone.  相似文献   

16.
A sensitive and selective high-performance liquid chromatographic (HPLC) method has been developed for the simultaneous determination of bufuralol enantiomers in plasma and pharmaceutical formulations. Enantiomeric resolution was achieved on a vancomycin macrocyclic antibiotic chiral stationary phase (CSP) known as Chirobiotic V with UV detection set at 254 nm. The polar ionic mobile phase (PIM) consisting of methanol-glacial acetic acid-triethylamine (100:0.015:0.010, v/v/v) has been used at a flow rate of 0.5 ml/min. The method is highly specific where other coformulated compounds did not interfere. The stability of bufuralol enantiomers under different degrees of temperature was also studied. The results showed that the drug is stable for at least 7 days at 70 degrees C. The method was validated for its linearity, accuracy, precision and robustness. An experimental design was used during validation to evaluate method robustness. The calibration curves in plasma were linear over the range of 5-500 ng/ml for each enantiomer with detection limit of 2 ng/ml. The mean relative standard deviation (RSD) of the results of within-day precision and accuracy of the drug were 0.05) between inter- and intra-day studies for each enantiomer which confirmed the reproducibility of the assay method. The mean extraction efficiency for S-(-)- and R-(+)-bufuralol from plasma was in the range 97-102% at 15-400 ng/ml level for each enantiomer. The overall recoveries of bufuralol enantiomers from pharmaceutical formulations was in the range 99.6-102.2% with %RSD ranging from 1.06 to 1.16%. The assay method proved to be suitable as chiral quality control for bufuralol formulations by HPLC and for therapeutic drug monitoring.  相似文献   

17.
The objective of the study was to develop a sensitive and specific assay for studying the pharmacokinetics of a novel calcium antagonist, a benzimidazolyl-substituted tetraline derivative, mibefradil (I) in the dog. The assay involves liquid-liquid extraction of a biological sample, reversed-phase HPLC separation and fluorescence detection (λex = 270 nm and λem = 300 nm) of a sample components. Each sample was eluted with a mobile phase pumping at a flow-rate of 2 ml/min. The mobile phase composition was a mixture of acetonitrile and aqueous solution (38:62, v/v). The aqueous solution contains 0.0393 M KH2PO4 and 0.0082 M Na-pentanesulphonic acid. The retention times were 10.7 min for I, and 12.2 min for internal standard Ro 40–6792. Calibration curves with concentrations of I ranging from 10 to 500 ng/ml were linear (r2 > 0.99). The detection limit for I was 0.5 ng/ml when 0.5 ml of plasma or urine was used. Intra- and inter-day accuracy and precision were within 10%. The assay was successfully applied to the pharmacokinetic studies of I in dogs.  相似文献   

18.
An improved HPLC method for the simultaneous determination of the enantiomers of verapamil (V) and its major metabolite norverapamil (NV) in human plasma samples is presented. NV is acetylated immediately to N-acetylnorverapamil (ANV) in the extraction solvent (2% butanol in hexane). Acetylation is so rapid that it does not delay sample processing. ANV and V enantiomers are then separated on an α1-acid glycoprotein chiral column with a mobile phase of phosphate buffer (0.01 M, pH 6.65) and acetonitrile. The fluorescence detector wavelengths are set at 227 nm for excitation and 308 nm for emission. Introduction of the internal standard (I.S.) (+)-glaucine improves accuracy, precision and robustness of the method. The assay is sensitive and specific. Baseline separation is achieved for both V and ANV. Limits of quantitation are 3 ng/ml for V and 2 ng/ml for NV (single enantiomer) with precision and accuracy better than 15% at those levels. Detector response is linear in the range tested (3–200 ng/ml for V and 2–100 ng/ml for NV, single enantiomer). This assay has been applied to a clinical study of the pharmacodynamics of V involving six healthy volunteers.  相似文献   

19.
Dilute solutions (50 ng/ml) of apomorphine in plasma are unstable at 37°C and pH 7.4. The chemical half-life is only 39 min. Mercaptoethanol (0.01%) is effective in stabilizing these samples while sodium metabisulphite (1%), which is generally used, is not effective. Biological samples are extracted with diethyl ether (recovery 96.5%) and analysed using HPLC with coulometric detection (oxidation potential 0.25 V). The stationary phase employed was C18 material (4 μm) and the mobile phase was phosphate buffer (pH 3)—acetonitrile (70:30, v/v). The flow-rate was 1.8 ml/min. This bioanalytical method presents a reliable tool for pharmacokinetic studies in man.  相似文献   

20.
A high-performance liquid chromatogaphic method was developed for determining the concentrations of ticarcillin (TIPC) epimers in human plasma and urine. Samples were prepared for HPLC analysis with a solid-phase extraction method and the concentrations of TIPC epimers were determined using reversed-phase HPLC. The mobile phase was a mixture of 0.005 M phosphate buffer (pH 7.0) and methanol (12:1, v/v) with a flow-rate of 1.0 ml/min. TIPC epimers were detected at 254 nm. Baseline separation of the two epimers was observed for both plasma and urine samples with a detection limit of ca. 1 μg/ml with a S/N ratio of 3. No peaks interfering with either of the TIPC epimers were observed on the HPLC chromatograms for blank plasma and urine. The recovery was more than 80% for both plasma and urine samples. C.V. values for intra- and inter-day variabilities were 0.9–2.1 and 1.1–6.4%, respectively, at concentrations ranging between 5 and 200 μg/ml. The present method was used to determine the concentrations of TIPC epimers in plasma and urine following intravenous injection of TIPC to a human volunteer. It was found that both epimers were actively secreted into urine and that the secretion of TIPC was not stereoselective. Plasma protein binding was also measured, which revealed stereoselective binding of TIPC in human plasma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号