首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Whether or not biogeographic rules dealing with spatial patterns of animal body sizes are valid for ectotherms is controversial. As the ectotherms grow all their lives, we explored the role of age and annual growth rate in body size variation in Phrynocephalus przewalskii in northern China. Morphological data were collected from 11 populations across a broad geographic gradient. Correlations between age, sex, climatic factors, and body size were analyzed using generalized linear model (GLM) and generalized linear mixed model (GLMM). GLM analysis indicated that the general body size of both sexes and the appendage size of females increased significantly with increasing temperature; however, the coefficient of determination was very small. GLMM analysis indicated that body size only correlated with age, whereas appendage size was affected by age, temperature, rainfall, and sunshine. Annual growth rates were positively correlated with temperature. We concluded that body size variation was mainly caused by age structure and plasticity of the growth rate in P. przewalskii and did not follow Bergmann''s rule; however, females followed Allen''s rule. Future studies to investigate the effect of energy restriction are needed to further understand the relationship between growth rate and body size. We also suggest that further studies on thermal advantage and sexual selection may be helpful to understand appendage size variation in P. przewalskii.  相似文献   

2.
Phenotypic plasticity is crucial for how organisms respond to variation in their environment, affecting their diversity and distribution, especially in the light of rapid environmental change. Ecogeographical rules predict an association between specific adaptive morphological and physiological traits with cooler conditions due to higher latitude, elevation, or climate change. Such ecogeographical effects are often most evident in ancient species due to continuous selective adaptation occurring over long periods of time. Here, we use the suitably ancient Chinese pygmy dormouse (Typhlomys cinereus) to test whether body-size, appendage length and heart size vary in accordance with Bergmann's, Allen's and Hesse's rule, respectively. Based on a sample of 67 adult individuals (female, n = 29; male n = 38) trapped at 37 sites transcending an elevational range from 414 to 1757 m, we tested for trait concordance with Bergmann's rule (body mass, length and SMI), Allen's rule (length of tail, foot, ear, snout), and Hesse's rule (wet and dry heart mass). Effects of elevation (and thus temperature lapse rate; calculated as 0.61 °C per 100 m) on body size, appendage length and heart size, were tested by fitting Standardized Major Axis (SMA) models. We observed substantial heterogeneity in morphometric traits allowing for the detection of ecogeographical clines. However, none conformed with Bergmann's, Allen's (except ear size), or Hesse's rule. However, our results indicate some support for Geist's rule of net primary productivity. We conclude that pervasive functional life-history adaptations in this blind, arboreal, echolocating ancient species exceeded selection for morphological energy efficiency constraints, with the notable exception of reduced ear pinnae size at colder, elevated sites. This is an important consideration for predicting how species, and populations in general, may adapt to human induced rapid environmental change, contrary to expectations of warming driving selection for smaller body-size.  相似文献   

3.
Ecogeographical rules attempt to explain large‐scale spatial patterns in biological traits. One of the most enduring examples is Bergmann''s rule, which states that species should be larger in colder climates due to the thermoregulatory advantages of larger body size. Support for Bergmann''s rule, however, is not consistent across taxonomic groups, raising questions about what factors may moderate its effect. Behavior may play a crucial, yet so far underexplored, role in mediating the extent to which species are subject to environmental selection pressures in colder climates. Here, we tested the hypothesis that nest design and migration influence conformity to Bergmann''s rule in a phylogenetic comparative analysis of the birds of the Western Palearctic, a group encompassing dramatic variation in both climate and body mass. We predicted that migratory species and those with more protected nest designs would conform less to the rule than sedentary species and those with more exposed nests. We find that sedentary, but not short‐ or long‐distance migrating, species are larger in colder climates. Among sedentary species, conformity to Bergmann''s rule depends, further, on nest design: Species with open nests, in which parents and offspring are most exposed to adverse climatic conditions during breeding, conform most strongly to the rule. Our findings suggest that enclosed nests and migration enable small birds to breed in colder environments than their body size would otherwise allow. Therefore, we conclude that behavior can substantially modify species’ responses to environmental selection pressures.  相似文献   

4.
Gloger''s rule posits that darker birds are found more often in humid environments than in arid ones, especially in the tropics. Accordingly, desert-inhabiting animals tend to be light-colored. This rule is also true for certain mammalian groups, including humans. Gloger''s rule is manifested at 2 levels: (1) at the species level (different populations of the same species have different pigmentation at different latitudes), and (2) at the species assembly level (different taxa at a certain geography have different pigmentation than other taxa found at different habitats or latitudes). Concerning plants, Gloger''s rule was first proposed to operate in many plant species growing in sand dunes, sandy shores and in deserts, because of being white, whitish, or silver colored, based on white trichomes, because of sand grains and clay particles glued to sticky glandular trichomes, or because of light-colored waxes. Recently, Gloger''s rule was shown to also be true at the intraspecific level in relation to protection of anthers from UV irradiation. While Gloger''s rule is true in certain plant taxa and ecologies, there are others where “anti-Gloger” coloration patterns exist. In some of these the selective agents are known and in others they are not. I present both Gloger and “anti-Gloger” cases and argue that this largely neglected aspect of plant biology deserves much more research attention.  相似文献   

5.
Support for macroecological rules in insects is mixed, with potential confounding interrelations between patterns rarely studied. We here investigate global patterns in body and wing size, sexual size dimorphism and range size in common fruit flies (Diptera: Drosophilidae) and explore potential interrelations and the predictive power of Allen's, Bergmann's, Rensch's and Rapoport's rules. We found that thorax length (r2 = 0.05) and wing size (r2 = 0.09) increased with latitude, supporting Bergmann's rule. Contrary to patterns often found in endothermic vertebrates, relative wing size increased towards the poles (r2 = 0.12), a pattern against Allen's rule, which we attribute to selection for increased flight capacity in the cold. Sexual size dimorphism decreased with size, evincing Rensch's rule across the family (r2 = 0.14). Yet, this pattern was largely driven by the virilis–repleta radiation. Finally, range size did not correlate with latitude, although a positive relationship was present in a subset of the species investigated, providing no convincing evidence for Rapoport's rule. We further found little support for confounding interrelations between body size, wing loading and range size in this taxon. Nevertheless, we demonstrate that studying several traits simultaneously at minimum permits better interpretation in case of multiple, potentially conflicting trends or hypotheses concerning the macroecology of insects.  相似文献   

6.
Ecogeographical rules that associate climate with organismal form and function can reveal patterns of climatic adaptation. Two rules link animal coloration with climate: Gloger's rule (darker coloration where wet and warm), and Bogert's rule (darker coloration where cold). Whereas Gloger's rule was proposed for endotherms, and Bogert's rule for ectotherms, both rules may apply more broadly, despite their seemingly opposing effects. Here, we test this contradiction on a global scale across passerine birds. Consistent with Gloger's rule, birds were darker in wetter areas and, following Bogert's rule, lighter where warm, although birds became lighter again at very low temperatures. Rainfall and temperature had antagonistic or additive effects depending on their pattern of covariation, and this predicted whether birds followed the rules. We integrate both rules into a general framework to explain heterogeneity in climatic effects on coloration, which has implications to understand patterns of diversification, climatic adaptation and climate change impacts.  相似文献   

7.
The green anole, Anolis carolinensis, has long been an important model organism for studies of physiology and behaviour, and recently became the first reptile to have its genome sequenced. With a large and environmentally heterogeneous distribution, especially in relation to well‐studied Antillean relatives, A. carolinensis is also emerging as an important organism for novel studies of geographical differentiation and adaptation. In the present study, we quantify the degree of morphological variation in this species and test for environmental correlates of this variation. We also examine adherence to Bergmann's and Allen's rule, two eco‐geographical principles that have been well studied over large species ranges. We sampled from 14 populations across the distribution of the species in North America and measured 28 distinct morphological traits. We also collected a suite of environmental variables for each site, including those related to temperature, precipitation, and vegetation. Ultimately, we found a large degree of geographical variation in morphology, with head traits contributing the most to differences among populations. Morphological variation was correlated with variation in temperature, precipitation, and latitude across sites. We found no support for reverse Bergmann's rule typical of squamates, although we did find a trend of reverse Allen's rule. Ultimately, the present study provides a novel look at A. carolinensis and establishes it as a strong candidate for further studies of variation and adaptation over a large range.  相似文献   

8.
Point 1: Stereo‐video camera systems (SVCSs) are a promising tool to remotely measure body size of wild animals without the need for animal handling. Here, we assessed the accuracy of SVCSs for measuring straight carapace length (SCL) of sea turtles.Point 2: To achieve this, we hand captured and measured 63 juvenile, subadult, and adult sea turtles across three species: greens, Chelonia mydas (n = 52); loggerheads, Caretta caretta (n = 8); and Kemp''s ridley, Lepidochelys kempii (n = 3) in the waters off Eleuthera, The Bahamas and Crystal River, Florida, USA, between May and November 2019. Upon release, we filmed these individuals with the SVCS. We performed photogrammetric analysis to extract stereo SCL measurements (eSCL), which were then compared to the (manual) capture measurements (mSCL).Point 3: mSCL ranged from 25.9 to 89.2 cm, while eSCL ranged from 24.7 to 91.4 cm. Mean percent bias of eSCL ranged from −0.61% (±0.11 SE) to −4.46% (±0.31 SE) across all species and locations. We statistically analyzed potential drivers of measurement error, including distance of the turtle to the SVCS, turtle angle, image quality, turtle size, capture location, and species.Point 4: Using a linear mixed effects model, we found that the distance between the turtle and the SVCS was the primary factor influencing measurement error. Our research suggests that stereo‐video technology enables high‐quality measurements of sea turtle body size collected in situ without the need for hand‐capturing individuals. This study contributes to the growing knowledge base that SVCS are accurate for body size measurements independent of taxonomic clade.  相似文献   

9.
1. Bergmann's rule states that organisms inhabiting colder environments show an increase in body size or mass in comparison to their conspecifics living in warmer climates. Although originally proposed for homoeothermic vertebrates, this rule was later extended to ectotherms. In social insects, only a few studies have tested this rule and the results were ambiguous. Here, ‘body size’ can be considered at two different levels (the size of the individual workers or the size of the colony). 2. In this study, data from 53 nests collected along altitudinal gradients in the Alps were used to test the hypotheses that the worker body size and colony size of the ant Leptothorax acervorum increase with increasing altitude and therefore follow Bergmann's rule. 3. The results show that the body size of workers but not the colony size increases with altitude. Whether this pattern is driven by starvation resistance or other mechanisms remains to be investigated.  相似文献   

10.
Gloger's rule is an ecogeographical rule that links animal colouration with climatic variation. This rule is named after C.W.L. Gloger who was one of the first to summarise the associations between climatic variation and animal colouration, noting in particular that birds and mammals seemed more pigmented in tropical regions. The term ‘Gloger's rule' was coined by B. Rensch in 1929 and included different patterns of variation from those described by Gloger. Rensch defined the rule in two ways: a simple version stating that endothermic animals are predicted to be darker in warmer and humid areas due to the increased deposition of melanin pigments; and a complex version that includes the differential effects of humidity and temperature on both main types of melanin pigments – eu‐ and phaeo‐melanin. The blackish eu‐melanins are predicted to increase with humidity, and decrease only at extreme low temperatures, while the brown‐yellowish phaeomelanins prevail in dry and warm regions and decrease rapidly with lower temperatures. A survey of the literature indicates that there is considerable variation/confusion in the way Gloger's rule is understood (based on 271 studies that define the rule). Whereas the complex version is hardly mentioned, only a quarter of the definitions are consistent with the simple version of Gloger's rule (darker where warm and wet), and most definitions mention only the effects of humidity (darker where wet). A smaller subset of studies define the rule based on other correlated climatic and environmental variables such as vegetation, latitude, altitude, solar radiation, etc., and a few even contradict the original definition (darker where cold). Based on the literature survey, I synthesised the qualitative (N = 124 studies) and quantitative (meta‐analytically, N = 38 studies, 241 effects) evidence testing the simple version of Gloger's rule (I found no tests of the complex version). Both lines of evidence supported the predicted effects of humidity (and closely linked variables) on colour variation, but not the effects of temperature. Moreover, humidity effects are not restricted to birds and mammals, as the data indicate that these effects also apply to insects. This suggests that the simple version of Gloger's rule as originally defined may not be valid, and possibly that the rule should be re‐formulated in terms of humidity effects only. I suggest, however, that more data are needed before such a reformulation, due to potential publication biases. In conclusion, I recommend that authors cite Rensch when referring to Gloger's rule and that they make clear which version they are referring to. Future research should concentrate on rigorously testing the validity and generality of both versions of Gloger's rule and establishing the mechanism(s) responsible for the patterns it describes. Since humidity seems to be the core climatic variable behind Gloger's rule, I suggest that the two most plausible mechanisms are camouflage and protection against parasites/pathogens, the latter possibly through pleiotropic effects on the immune system. Understanding the processes that lead to climatic effects on animal colouration may provide insights into past and future patterns of adaptation to climatic change.  相似文献   

11.
Intestinal barrier dysfunction and intestinal inflammation interact in the progression of Crohn''s disease (CD). A recent study indicated that Epac‐2 protected the intestinal barrier and had anti‐inflammatory effects. The present study examined the function of Epac‐2 in CD‐like colitis. Interleukin‐10 gene knockout (Il10 −/−) mice exhibit significant spontaneous enteritis and were used as the CD model. These mice were treated with Epac‐2 agonists (Me‐cAMP) or Epac‐2 antagonists (HJC‐0350) or were fed normally (control), and colitis and intestinal barrier structure and function were compared. A Caco‐2 and RAW 264.7 cell co‐culture system were used to analyse the effects of Epac‐2 on the cross‐talk between intestinal epithelial cells and inflammatory cells. Epac‐2 activation significantly ameliorated colitis in mice, which was indicated by reductions in the colitis inflammation score, the expression of inflammatory factors and intestinal permeability. Epac‐2 activation also decreased Caco‐2 cell permeability in an LPS‐induced cell co‐culture system. Epac‐2 activation significantly suppressed nuclear factor (NF)‐κB/mitogen‐activated protein kinase (MAPK) signalling in vivo and in vitro. Epac‐2 may be a therapeutic target for CD based on its anti‐inflammatory functions and protective effects on the intestinal barrier.  相似文献   

12.
Bergmann's rule states that endotherms have a large body size in high latitudes and cold climates. However, previous empirical studies have reported mixed evidence on the relationships between body size and latitude, raising the question of why some clades of endotherms follow Bergmann's rule, whereas others do not. Here, we synthesized the interspecific relationships between body size and latitude among 16,187 endothermic species (5422 mammals and 10,765 birds) using Bayesian phylogenetic generalized linear mixed models to examine the strength and magnitude of Bergmann's rule. We further assessed the effect of biological and ecological factors (i.e., body mass categories, dietary guild, winter activity, habitat openness, and climate zone) on the variations in the body mass–latitude relationships by adding an interaction term in the models. Our results revealed a generally weak but significant adherence to Bergmann's rule among all endotherms at the global scale. Despite taxonomic variation in the strength of Bergmann's rule, the body mass of species within most animal orders showed an increasing trend toward high latitudes. Generally, large-bodied, temperate species, non-hibernating mammals, and migratory and open-habitat birds tend to conform to Bergmann's rule more than their relatives do. Our results suggest that whether Bergmann's rule applies to a particular taxon is mediated by not only geographic and biological features, but also potential alternate strategies that species might have for thermoregulation. Future studies could explore the potential of integrating comprehensive trait data into phylogenetic comparative analysis to re-assess the classic ecogeographic rules on a global scale.  相似文献   

13.
Consistent responses by various organisms to common environmental pressures represent strong evidence of natural selection driving geographical variation. According to Bergmann's and Allen's rules, animals from colder habitats are larger and have smaller limbs than those from warmer habitats to minimize heat loss. Although evidence supporting both rules in different organisms exists, most studies have considered only elevational or latitudinal temperature gradients. We tested for the effects of temperature associated with both elevation and latitude on body and appendage size of torrent ducks (Merganetta armata), a widespread species in Andean rivers. We found a negative relationship between body size and temperature across latitude consistent with Bergmann's rule, whereas there was a positive relationship between these variables along replicate elevational gradients at different latitudes. Limb‐size variation did not support Allen's rule along latitude, nor along elevation. High‐elevation ducks were smaller and had longer wings than those inhabiting lower elevations within a river. We hypothesize that temperature is likely a major selective pressure acting on morphology across latitudes, although hypoxia or air density may be more important along elevational gradients. We conclude that the effect of temperature on morphology, and hence the likelihood of documenting ecogeographical ‘rules’, depends on the environmental context in which temperature variation is examined. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111, 850–862.  相似文献   

14.
Diversity of human body size and shape is often biogeographically interpreted in association with climatic conditions. According to Bergmann's and Allen's rules, populations in regions with a cold climate are expected to display an overall larger body and smaller/shorter extremities than those in warm/hot environments. In the present study, the skeletal limb size and proportions of prehistoric Jomon hunter‐gatherers, who extensively inhabited subarctic to subtropical areas in the ancient Japanese archipelago, were examined to evaluate whether or not the inter‐regional differences follow such ecogeographic patterns. Results showed that the Jomon intralimb proportions including relative distal limb lengths did not differ significantly among five regions from northern Hokkaido to the southern Okinawa Islands. This suggests a limited co‐variability of the intralimb proportions with climate, particularly within genealogically close populations. In contrast, femoral head breadth (associated with body mass) and skeletal limb lengths were found to be significantly and positively correlated with latitude, suggesting a north‐south geographical cline in the body size. This gradient therefore comprehensively conforms to Bergmann's rule, and may stem from multiple potential factors such as phylogenetic constraints, microevolutionary adaptation to climatic/geographic conditions during the Jomon period, and nutritional and physiological response during ontogeny. Specifically, the remarkably small‐bodied Jomon in the Okinawa Islands can also be explained as an adjustment to subtropical and insular environments. Thus, the findings obtained in this study indicate that Jomon people, while maintaining fundamental intralimb proportions, displayed body size variation in concert with ambient surroundings. Am J Phys Anthropol, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
16.
Prefectural data of 17-year-old Japanese adolescents' body size were excerpted from the annual series of Reports on School Health Statistics (Ministry of Education) for the last 35 years, and were correlated with the mean annual temperature of prefectural capitals. A negative correlation was found for both height and weight. Thus, it can be stated that children in colder climates conform to Bergmann's rule that they are larger in their height and weight than children growing up in warmer climates. Partial correlation coefficients indicate that body weight is primarily related to the temperature. Further, the results of a multiple regression analysis, using temperature, daily energy intake (National Nutrition Surveys), and annual per capita income (Annual Reports of Prefectural Accounts) as the independent variables among the 12 districts (groups of prefectures) for the last 25 years, suggest that the observed Bergmann's phenomenon is related to geographical differences in nutrition; people in colder regions consume more calories than those in warmer regions. © 1993 Wiley-Liss, Inc.  相似文献   

17.
The most studied ecogeographic rule is Bergmann's rule, but aspects of the original paper are often presented incorrectly even though Bergmann (1847) is explicitly cited. The goal of this paper is to 1) summarize the contents of Bergmann's paper, supported by direct translations, and 2) to discuss the main issues surrounding Bergmann's rule based on Bergmann's intentions and early definitions of the rule. Although Bergmann himself never formulated an explicit rule, based on Bergmann's (1847) intentions and early definitions of Bergmann's rule, Bergmann's rule is: “Within species and amongst closely related species of homeothermic animals a larger size is often achieved in colder climates than in warmer ones, which is linked to the temperature budget of these animals.” Bergmann (1847) assumed that the surface area of an animal is a measure for heat dissipation and an animal's volume a measure of its heat production. As body size increases, an animal's surface area increases less than its volume; however, modifications in morphology and behaviour will also influence the temperature budget. Bergmann hypothesized that when everything but size is equal, the smaller animals should live in warmer areas. This was supported by empirical data on > 300 bird species belonging to 86 genera. Recommendations for use of the term Bergmann's rule include 1) inclusion of a thermoregulatory mechanism, 2) application only to homoeothermic animals, 3) but to any taxonomic group, 4) tests of the rule should test the assumption that larger animals have to produce less heat to increase body temperatures, and 5) future authors should either go back to the original publication (Bergmann 1847) when referring to it or simply not cite it at all. Synthesis Based on Bergmann's (1847) intentions and early definitions, Bergmann's rule is: “Within species and amongst closely related species of homeothermic animals a larger size is often achieved in colder climates than in warmer ones, which is linked to the temperature budget of these animals.” Recommendations for use of the term Bergmann's rule include 1) inclusion of a thermoregulatory mechanism, 2) application only to homoeothermic animals, 3) and to any taxonomic group, 4) tests of the rule should examine whether larger animals have to produce less heat to increase body temperatures, and 5) authors should go back to the original publication (Bergmann 1847) when referring to it.  相似文献   

18.
Capsella is a model plant genus of the Brassicaceae closely related to Arabidopsis. To disentangle its biogeographical history and intrageneric phylogenetic relationships, 282 individuals of all five currently recognized Capsella species were genotyped using a restriction digest‐based next‐generation sequencing method. Our analysis retrieved two main lineages within Capsella that split c. one million years ago, with western C. grandiflora and C. rubella forming a sister lineage to the eastern lineage consisting of C. orientalis. The split was attributed to continuous latitudinal displacements of the Eurasian steppe belt to the south during Early Pleistocene glacial cycles. During the interglacial cycles of the Late Pleistocene, hybridization of the two lineages took place in the southwestern East European Plain, leading to the allotetraploid C. bursa‐pastoris. Extant genetic variation within C. orientalis postdated any extensive glacial events. Ecological niche modeling showed that suitable habitat for C. orientalis existed during the Last Glacial Maximum around the north coast of the Black Sea and in southern Kazakhstan. Such a scenario is also supported by population genomic data that uncovered the highest genetic diversity in the south Kazakhstan cluster, suggesting that C. orientalis originated in continental Asia and migrated north‐ and possibly eastwards after the last ice age. Post‐glacial hybridization events between C. bursa‐pastoris and C. grandiflora/rubella in the southwestern East European Plain and the Mediterranean gave rise to C. thracica. Introgression of C. grandiflora/rubella into C. bursa‐pastoris resulted in a new Mediterranean cluster within the already existing Eurasian C. bursa‐pastoris cluster. This study shows that the continuous displacement and disruption of the Eurasian steppe belt during the Pleistocene was the driving force in the evolution of Capsella.  相似文献   

19.
Although we know there is considerable variation in gut microbial composition within host species, little is known about how this variation is shaped and why such variation exists. In humans, obesity is associated with the relative abundance of two dominant bacterial phyla: an increase in the proportion of Firmicutes and a decrease in the proportion of Bacteroidetes. As there is evidence that humans have adapted to colder climates by increasing their body mass (e.g. Bergmann''s rule), we tested whether Firmicutes increase and Bacteroidetes decrease with latitude, using 1020 healthy individuals drawn from 23 populations and six published studies. We found a positive correlation between Firmicutes and latitude and a negative correlation between Bacteroidetes and latitude. The overall pattern appears robust to sex, age and bacterial detection methods. Comparisons between African Americans and native Africans and between European Americans and native Europeans suggest no evidence of host genotype explaining the observed patterns. The variation of gut microbial composition described here is consistent with the pattern expected by Bergmann''s rule. This surprising link between large-scale geography and human gut microbial composition merits further investigation.  相似文献   

20.
In semi‐arid environments, aperiodic rainfall pulses determine plant production and resource availability for higher trophic levels, creating strong bottom‐up regulation. The influence of climatic factors on population vital rates often shapes the dynamics of small mammal populations in such resource‐restricted environments. Using a 21‐year biannual capture–recapture dataset (1993 to 2014), we examined the impacts of climatic factors on the population dynamics of the brush mouse (Peromyscus boylii) in semi‐arid oak woodland of coastal‐central California. We applied Pradel''s temporal symmetry model to estimate capture probability (p), apparent survival (φ), recruitment (f), and realized population growth rate (λ) of the brush mouse and examined the effects of temperature, rainfall, and El Niño on these demographic parameters. The population was stable during the study period with a monthly realized population growth rate of 0.993 ± SE 0.032, but growth varied over time from 0.680 ± 0.054 to 1.450 ± 0.083. Monthly survival estimates averaged 0.789 ± 0.005 and monthly recruitment estimates averaged 0.175 ± 0.038. Survival probability and realized population growth rate were positively correlated with rainfall and negatively correlated with temperature. In contrast, recruitment was negatively correlated with rainfall and positively correlated with temperature. Brush mice maintained their population through multiple coping strategies, with high recruitment during warmer and drier periods and higher survival during cooler and wetter conditions. Although climatic change in coastal‐central California will likely favor recruitment over survival, varying strategies may serve as a mechanism by which brush mice maintain resilience in the face of climate change. Our results indicate that rainfall and temperature are both important drivers of brush mouse population dynamics and will play a significant role in predicting the future viability of brush mice under a changing climate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号