首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The catabolic or biodegradative threonine dehydratase (E.C. 4.2.1. 16) of Escherichia coli is an isoleucine feedback-resistant enzyme that catalyzes the degradation of threonine to alpha-ketobutyrate, the first reaction of the isoleucine pathway. We cloned and expressed this enzyme in Corynebacterium glutamicum. We found that while the native threonine dehydratase of C. glutamicum was totally inhibited by 15 mM isoleucine, the heterologous catabolic threonine dehydratase expressed in the same strain was much less sensitive to isoleucine; i.e., it retained 60% of its original activity even in the presence of 200 mM isoleucine. To determine whether expressing the catabolic threonine dehydratase (encoded by the tdcB gene) provided any benefit for isoleucine production compared to the native enzyme (encoded by the ilvA gene), fermentations were performed with the wild-type strain, an ilvA-overexpressing strain, and a tdcB-expressing strain. By expressing the heterologous catabolic threonine dehydratase in C. glutamicum, we were able to increase the production of isoleucine 50-fold, whereas overexpression of the native threonine dehydratase resulted in only a fourfold increase in isoleucine production. Carbon balance data showed that when just one enzyme, the catabolic threonine dehydratase, was overexpressed, 70% of the carbon available for the lysine pathway was redirected into the isoleucine pathway.  相似文献   

2.
Pyruvate kinase activity is an important element in the flux control of the intermediate metabolism. The purified enzyme from Corynebacterium glutamicum demonstrated a marked sigmoidal dependence of the initial rate on the phosphoenolpyruvate concentration. In the presence of the negative allosteric effector ATP, the phosphoenolpyruvate concentration at the half-maximum rate (S0.5) increased from 1.2 to 2.8 mM, and cooperation, as expressed by the Hill coefficient, increased from 2.0 to 3.2. AMP promoted opposite effects: the S0.5 was decreased to 0.4 mM, and the enzyme exhibited almost no cooperation. The maximum reaction rate was 702 U/mg, which corresponded to an apparent kcat of 2,540 s-1. The enzyme was not influenced by fructose-1,6-diphosphate and used Mn2+ or Co2+ as cations. Sequence determination of the C. glutamicum pyk gene revealed an open reading frame coding for a polypeptide of 475 amino acids. From this information and the molecular mass of the native protein, it follows that the pyruvate kinase is a tetramer of 236 kDa. Comparison of the deduced polypeptide sequence with the sequences of other bacterial pyruvate kinases showed 39 to 44% homology, with some regions being very strongly conserved.  相似文献   

3.
C Cordes  B M?ckel  L Eggeling  H Sahm 《Gene》1992,112(1):113-116
Corynebacterium glutamicum is an industrially important bacterium for the manufacture of amino acids. We constructed genomic libraries of this Gram+ bacterium and screened for clones carrying isoleucine biosynthesis genes (ilv) by complementation of Escherichia coli mutants. Clones complementing ilvA, ilvB, and ilvC were isolated. As based on the functional analysis of the corresponding plasmids in C. glutamicum, the DNA fragments isolated encode threonine dehydratase, acetohydroxy acid synthase, and isomeroreductase, catalyzing three subsequent reactions in Ile synthesis. Subcloning and transposon mutagenesis revealed that ilvB and ilvC reside on a 7-kb chromosomal fragment and that these genes are transcribed in the same direction. A shuttle vector was constructed to allow exonuclease treatment and assay subsets of plasmids for gene expression in the original C. glutamicum background. These constructs and their enzyme activity determinations revealed that despite close linkage ilvC is expressed independently from ilvB. Using Southern blots, a 15-kb fragment of chromosomal DNA carrying the ilvBC cluster was characterized. This fragment does not contain ilvA, demonstrating the entirely different organization of the isoleucine biosynthesis genes in C. glutamicum from that in enterobacteria.  相似文献   

4.
The specific activity of inducible biodegradative threonine dehydratase (EC 4.2.1.16) in Escherichia coli K-12 increased significantly when the standard tryptone-yeast extract medium or a synthetic mixture of 18 L-amino acids was supplemented with 10 mM KNO3 or 50 mM fumarate and with 4 mM cyclic AMP. In absolute terms, almost four times as much enzyme was produced in the amino acid medium as in the tryptone-yeast extract medium. Enzyme induction in the amino acid medium was sensitive to catabolite repression by glucose, gluconate, glycerol, and pyruvate. An analysis of amino acid requirements for enzyme induction showed that a combination of only four amino acids, threonine, serine, valine, and isoleucine, produced high levels of threonine dehydratase provided that both fumarate and cyclic AMP were present. Immunochemical data revealed that the enzyme synthesized in the presence of these four amino acids was indistinguishable from that produced in the tryptone-yeast extract or the medium with 18 amino acids. We interpret these results to mean that not the amino acids themselves but some metabolites derived anaerobically in reactions involving an electron acceptor may function as putative regulatory molecule(s) in the anaerobic induction of this enzyme.  相似文献   

5.
Feedback inhibition of the regulatory enzyme threonine deaminase by isoleucine provides an important level of enzymic control over branched chain amino acid biosynthesis in Escherichia coli. Cloning ilvA, the structural gene for threonine deaminase, under control of the trc promoter results in expression of active enzyme upon induction by isopropyl 1-thio-beta-D-galactoside to levels of approximately 20% of the soluble protein in cell extracts. High level expression of threonine deaminase has facilitated the development of a rapid and efficient protocol for the purification of gram quantities of enzyme with a specific activity 3-fold greater than previous preparations. The catalytic activity of threonine deaminase is absolutely dependent on the presence of pyridoxal phosphate, and the tetrameric molecule is isolated containing 1 mol of cofactor/56,000-Da chain. Wild-type threonine deaminase demonstrates a sigmoidal dependence of initial velocity on threonine concentration in the absence of isoleucine, consistent with a substrate-promoted conversion of the enzyme from a low activity to a high activity conformation. The enzymic dehydration of threonine to alpha-ketobutyrate measured by steady-state kinetics, performed at 20 degrees C in 0.05 M potassium phosphate, pH 7.5, is described by a Hill coefficient, nH, of 2.3 and a K0.5 of 8.0 mM. The negative allosteric effector L-isoleucine strongly inhibits the enzyme, yielding a value for nH of 3.9 and K0.5 of 74 mM whereas enzyme activity is greatly increased by L-valine, which yields nearly hyperbolic kinetics characterized by a value for nH of 1.0 and a K0.5 of 5.7 mM. Thus, these effectors promote dramatic and opposing effects on the transition from the low activity to the high activity conformation of the tetrameric enzyme.  相似文献   

6.
The catabolic or biodegradative threonine dehydratase (E.C. 4.2.1.16) of Escherichia coli is an isoleucine feedback-resistant enzyme that catalyzes the degradation of threonine to α-ketobutyrate, the first reaction of the isoleucine pathway. We cloned and expressed this enzyme in Corynebacterium glutamicum. We found that while the native threonine dehydratase of C. glutamicum was totally inhibited by 15 mM isoleucine, the heterologous catabolic threonine dehydratase expressed in the same strain was much less sensitive to isoleucine; i.e., it retained 60% of its original activity even in the presence of 200 mM isoleucine. To determine whether expressing the catabolic threonine dehydratase (encoded by the tdcB gene) provided any benefit for isoleucine production compared to the native enzyme (encoded by the ilvA gene), fermentations were performed with the wild-type strain, an ilvA-overexpressing strain, and a tdcB-expressing strain. By expressing the heterologous catabolic threonine dehydratase in C. glutamicum, we were able to increase the production of isoleucine 50-fold, whereas overexpression of the native threonine dehydratase resulted in only a fourfold increase in isoleucine production. Carbon balance data showed that when just one enzyme, the catabolic threonine dehydratase, was overexpressed, 70% of the carbon available for the lysine pathway was redirected into the isoleucine pathway.  相似文献   

7.
Acetohydroxy acid synthase (AHAS), which catalyzes the key reactions in the biosynthesis pathways of branched-chain amino acids (valine, isoleucine, and leucine), is regulated by the end products of these pathways. The whole Corynebacterium glutamicum ilvBNC operon, coding for acetohydroxy acid synthase (ilvBN) and aceto hydroxy acid isomeroreductase (ilvC), was cloned in the newly constructed Escherichia coli-C. glutamicum shuttle vector pECKA (5.4 kb, Km(r)). By using site-directed mutagenesis, one to three amino acid alterations (mutations M8, M11, and M13) were introduced into the small (regulatory) AHAS subunit encoded by ilvN. The activity of AHAS and its inhibition by valine, isoleucine, and leucine were measured in strains carrying the ilvBNC operon with mutations on the plasmid or the ilvNM13 mutation within the chromosome. The enzyme containing the M13 mutation was feedback resistant to all three amino acids. Different combinations of branched-chain amino acids did not inhibit wild-type AHAS to a greater extent than was measured in the presence of 5 mM valine alone (about 57%). We infer from these results that there is a single binding (allosteric) site for all three amino acids in the enzyme molecule. The strains carrying the ilvNM13 mutation in the chromosome produced more valine than their wild-type counterparts. The plasmid-free C. glutamicum DeltailvA DeltapanB ilvNM13 strain formed 90 mM valine within 48 h of cultivation in minimal medium. The same strain harboring the plasmid pECKAilvBNC produced as much as 130 mM valine under the same conditions.  相似文献   

8.
L Yin  X Hu  D Xu  J Ning  J Chen  X Wang 《Metabolic engineering》2012,14(5):542-550
Threonine dehydratase and acetohydroxy acid synthase are critical enzymes in the l-isoleucine biosynthesis pathway of Corynebacterium glutamicum, but their activities are usually feedback-inhibited. In this study, we characterized a feedback-resistant threonine dehydratase and an acetohydroxy acid synthase from an l-isoleucine producing strain C. glutamicum JHI3-156. Sequence analysis showed that there was only a single amino acid substitution (Phe383Val) in the feedback-resistant threonine dehydratase, and there were three mutated amino acids (Pro176Ser, Asp426Glu, and Leu575Trp) in the big subunit of feedback-resistant acetohydroxy acid synthase. The mutated threonine dehydratase over-expressed in E. coli not only showed completely resistance to l-isoleucine inhibition, but also showed enhanced activity. The mutated acetohydroxy acid synthase over-expressed in E. coli showed more resistance to l-isoleucine inhibition than the wild type. Over-expression of the feedback-resistant threonine dehydratase or acetohydroxy acid synthase in C. glutamicum JHI3-156 led to increase of l-isoleucine production; co-expression of them in C. glutamicum JHI3-156 led to 131.7% increase in flask cultivation, and could produce 30.7g/L l-isoleucine in 72-h fed-batch fermentation. These results would be useful to enhance l-isoleucine production in C. glutamicum.  相似文献   

9.
Carbon destined for lysine synthesis in Corynebacterium glutamicum ATCC 21799 can be diverted toward threonine by overexpression of genes encoding a feedback-insensitive homoserine dehydrogenase (hom(dr)) and homoserine kinase (thrB). We studied the effects of introducing two different threonine dehydratase genes into this threonine-producing system to gauge their effects on isoleucine production. Co-expression of hom(dr), thrB, and ilvA, which encodes a native threonine dehydratase, caused isoleucine to accumulate to a final concentration of 2.2+/-0.2 g l(-1), five-fold more than accumulates in the wild-type strain, and approximately twice as much as accumulates in the strain expressing only hom(dr) and thrB. Comparing these data with previous results, we found that overexpression of the three genes, hom(dr), thrB, and ilvA, in C. glutamicum ATCC 21799 is no better in terms of isoleucine production than the expression of a single gene, tdcB, encoding a catabolic threonine dehydratase from Escherichia coli. Co-expression of hom(dr), thrB, and tdcB, however, caused the concentration of isoleucine to increase 20-fold compared to the wild-type strain, about four times more than the corresponding ilvA-expressing strain. In this system, the apparent yield of isoleucine production was multiplied by a factor of two [2.1 mmol (g dry cell weight)(-1)]. While the balance of excreted metabolites showed that the carbon flow in this strain was completely redirected from the lysine pathway into the isoleucine pathway, it also showed that more pyruvate was diverted into amino acid synthesis.  相似文献   

10.
Threonine dehydratase (TD; EC.4.2.1.16) is a key enzyme involved in the biosynthesis of isoleucine. Inhibition of TD by isoleucine regulates the flow of carbon to isoleucine. We have identified two different forms of TD in tomato (Lycopersicon esculentum) leaves. One form, present predominantly in younger leaves, is inhibited by isoleucine. The other form of TD, present primarily in older leaves, is insensitive to inhibition by isoleucine. Expression of the latter enzyme increases as the leaf ages and the highest enzyme activity is present in the old, chlorotic leaves. The specific activity of the enzyme present in older leaves is much higher than the one present in younger leaves. Both forms can use threonine and serine as substrates. Whereas TD from the older leaves had the same Km (0.25 mM) for both substrates, the enzyme from the young leaves preferred threonine (Km = 0.25 mM) over serine (Km = 1.7 mM). The molecular masses of TD from the young and the old leaves were 370,000 and 200,000 D, respectively. High levels of the isoleucine-insensitive form of threonine dehydratase in the older leaves suggests an important role of threonine dehydratase in nitrogen remobilization in senescing leaves.  相似文献   

11.
Pyrobaculum islandicum is an anaerobic hyperthermophilic archaeon that is most active at 100 degrees C. A pyridoxal 5'-phosphate-dependent serine racemase called Srr was purified from the organism. The corresponding srr gene was cloned, and recombinant Srr was purified from Escherichia coli. It showed the highest racemase activity toward L-serine, followed by L-threonine, D-serine, and D-threonine. Like rodent and plant serine racemases, Srr is bifunctional, showing high L-serine/L-threonine dehydratase activity. The sequence of Srr is 87% similar to that of Pyrobaculum aerophilum IlvA (a putative threonine dehydratase) but less than 32% similar to any other serine racemases and threonine dehydratases. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration analyses revealed that Srr is a homotrimer of a 44,000-molecular-weight subunit. Both racemase and dehydratase activities were highest at 95 degrees C, while racemization and dehydration were maximum at pH 8.2 and 7.8, respectively. Unlike other, related Ilv enzymes, Srr showed no allosteric properties: neither of these enzymatic activities was affected by either L-amino acids (isoleucine and valine) or most of the metal ions. Only Fe2+ and Cu2+ caused 20 to 30% inhibition and 30 to 40% stimulation of both enzyme activities, respectively. ATP inhibited racemase activity by 10 to 20%. The Km and Vmax values of the racemase activity of Srr for L-serine were 185 mM and 20.1 micromol/min/mg, respectively, while the corresponding values of the dehydratase activity of L-serine were 2.2 mM and 80.4 micromol/min/mg, respectively.  相似文献   

12.
将L-异亮氨酸生产菌谷氨酸棒杆菌(Corynebacterium glutamicum YILW)苏氨酸脱水酶(threonine de-hydratase,TD)的编码基因ilvA在大肠杆菌中进行异源表达及进行初步的酶学性质研究。分别以C.glutamicum ATCC13032、YILW的基因组DNA为模板,利用PCR技术扩增出苏氨酸脱水酶的编码基因ilvA,测序获得编码序列。利用质粒PET-His将该基因在大肠杆菌BL21(DE3)中进行重组表达、金属螯合纯化,对其酶学性质进行初步研究。结果显示C.glutamicum YILW编码基因序列与已报道的ilvA序列相差5个碱基,相似度为99.6%,第383位氨基酸由苯丙氨酸突变为缬氨酸。酶学性质研究表明:重组酶YilwTD最适反应温度为32℃,在20~55℃范围内该酶较稳定,最适pH为6.7,该酶底物专一性强,对最适底物苏氨酸的米氏常数Km=8.32 mmol/L,最大反应速度Vmax=3.18×104U/mg,与野生型酶相比,突变(F383V)后可显著降低终产物对酶的反馈抑制作用。为揭示突变对苏氨酸脱水酶活性的影响及进一步利用基因工程技术改造L-异亮氨酸生产菌,提高L-异亮氨酸产量奠定了基础。  相似文献   

13.
InEuglena gracilis the growth inhibition by threonine was accompanied by a rapid accumulation of isoleucine in the cells. Among threonine-catabolizing enzymes only threonine dehydratase was detected in high activity inEuglena, and 2-oxobutyrate, the dehydratase products of threonine, also inhibited as did threonine. Threonine dehydratase was located in the cytosol, and its activity was not affected by isoleucine and related amino acids. 2-Oxobutyrate strongly inhibited the synthesis of valine from pyruvate while augmented the synthesis of isoleucine in mitochondria.  相似文献   

14.
To elucidate the repression mechanism of ammonium ions on the biosynthesis of tylosin in Streptomyces fradiae NRRL 2702, enzyme activities involved in the metabolism of the aspartate family of amino acids were evaluated in relation to the ammonium ion concentration and tylosin production. It was found that aspartate aminotransferase was essential for both cell growth and tylosin production. However, both threonine dehydratase and valine dehydrogenase were repressed by supplemented ammonium ions at concentrations higher than 50 mM. Threonine dehydratase was purified from cell-free extracts by acetone precipitation, ion-exchange chromatography and gel filtration, and its molecular mass was estimated to be 67,200 Da. The optimum pH and temperature for threonine dehydratase activity were 7.5 and 25 degrees C, respectively, and the Km value for threonine under these optimum conditions was 21 mM. The inhibition pattern of ammonium ions on the activity of threonine dehydratase appeared to be a mixed type.  相似文献   

15.
16.
Overproduction of isoleucine, an essential amino acid, was achieved by amplification of the gene encoding threonine dehydratase, the first enzyme in the threonine to isoleucine pathway, in a Corynebacterium lactofermentum threonine producer. Threonine overproduction was previously achieved with C. lactofermentum ATCC 21799, a lysine-hyperproducing strain, by introduction of plasmid pGC42 containing the Corynebacterium hom dr and thrB genes (encoding homoserine dehydrogenase and homoserine kinase respectively) under separate promoters. The pGC42 derivative, pGC77, also contains ilvA, which encodes threonine dehydratase. In a shake-flask fermentation, strain 21799(pGC77) produced 15 g/l isoleucine, along with small amounts of lysine and glycine. A molar carbon balance indicates that most of the carbon previously converted to threonine, lysine, glycine and isoleucine was incorporated into isoleucine by the new strain. Thus, in our system, simple overexpression of wild-type ilvA sufficed to overcome the effects of feedback inhibition of threonine dehydratase by the end-product, isoleucine.  相似文献   

17.
In Escherichia coli, Bacillus subtilis and Corynebacterium glutamicum, homoserine dehydrogenase (HD), the enzyme after the branch point of the threonine/methionine and lysine biosynthetic pathways, is allosterically inhibited by L-threonine. To investigate the regulation of the C. glutamicum HD enzyme by L-threonine, the structural gene, hom, was mutated by UV irradiation of whole cells to obtain a deregulated allele, homdr. L-Threonine inhibits the wild-type (wt) enzyme with a Ki of 0.16 mM. The deregulated enzyme remains 80% active in the presence of 50 mM L-threonine. The homdr gene mutant was isolated and cloned in E. coli. In a C. glutamicum wt host background, but not in E. coli, the cloned homdr gene is genetically unstable. The cloned homdr gene is overexpressed tenfold in C. glutamicum and is active in the presence of over 60 mM L-threonine. Sequence analysis revealed that the homdr mutation is a single nucleotide (G1964) deletion in codon 429 within the hom reading frame. The resulting frame-shift mutation radically alters the structure of the C terminus, resulting in ten amino acid (aa) changes and a deletion of the last 7 aa relative to the wt protein. These observations suggest that the C terminus may be associated with the L-threonine allosteric response. The homdr mutation is unstable and probably deleterious to the cell. This may explain why only one mutation was obtained despite repeated mutagenesis.  相似文献   

18.
Whole cells of Corynebacterium glutamicum were loaded with high cytoplasmic l-isoleucine concentrations, and isoleucine excretion from these cells was studied in terms of mechanism and regulation. The transmembrane isoleucine flux could be differentiated into carrier-mediated uptake, carrier-mediated excretion, and diffusion. After discrimination from the other transmembrane solute movements, the outward-directed flux, which was due to the activity of the isoleucine excretion carrier, was characterized with respect to its energy dependence and its regulation at the level of expression. Isoleucine excretion was shown to function as a secondary transport process, driven by the membrane potential and coupled to the movement of protons, presumably with a stoichiometry of 2:1 (H(sup+)/isoleucine). Of a variety of putative transport substrates, only leucine was able to compete for isoleucine at the cis (cytosolic) side of the export carrier. Cytoplasmic isoleucine concentrations higher than 20 mM induce the activity of the isoleucine excretion system. This effect is specific for isoleucine and is inhibited by the presence of chloramphenicol. Apart from leucine, other amino acids and related amino acid analogs are not able to induce isoleucine excretion. The complex pattern of regulation of the isoleucine excretion system at the level of activity and expression is shown to be related to the pattern of regulation of the isoleucine uptake system in C. glutamicum in terms of physiological significance.  相似文献   

19.
The hom-1-thrB operon encodes homoserine dehydrogenase resistant to feedback inhibition by L-threonine and homoserine kinase. Stable expression of this operon has not yet been attained in different Corynebacterium glutamicum strains. We studied the use of chromosomal integration and of a low-copy-number vector for moderate expression of the hom-1-thrB operon to enable an analysis of the physiological consequences of its expression in C. glutamicum. Strains carrying one, two, or three copies of hom-1-thrB were obtained. They showed proportionally increased enzyme activity of feedback-resistant homoserine dehydrogenase and of homoserine kinase. This phenotype was stably maintained in all recombinants for more than 70 generations. In a lysine-producing C. glutamicum strain which does not produce any threonine, expression of one copy of hom-1-thrB resulted in the secretion of 39 mM threonine. Additional copies resulted in a higher, although not proportional, accumulation of threonine (up to 69 mM). This indicates further limitations of threonine production. As the copy number of hom-1-thrB increased, increasing amounts of homoserine (up to 23 mM) and isoleucine (up to 34 mM) were secreted. Determination of the cytosolic concentration of the respective amino acids revealed an increase of intracellular threonine from 9 to 100 mM and of intracellular homoserine from 4 to 74 mM as the copy number of hom-1-thrB increased. These results suggest that threonine production with C. glutamicum is limited by the efflux system for this amino acid. Furthermore, the results show the successful use of moderate and stable hom-1-thrB expression for directing the carbon flux from aspartate to threonine.  相似文献   

20.
Threonine deaminase (l-threonine dehydratase EC 4.2.1.16) has been partially purified from a new extreme thermophilic bacterium, Thermus X-1, which is similar to T. aquaticus YT-1. The threonine deaminase of strain X-1 has a maximal rate of reaction at 85 to 90 C and is more thermostable than the threonine deaminase from mesophilic bacteria. The enzyme has an apparent molecular weight of 100,000 to 115,000, a K(m) for l-threonine of 14 mM, a pH optimum of 8.0, and like other threonine deaminases also catalyzes the deamination of serine. However the Thermus X-1 threonine deaminase does not show a strong feedback inhibition by isoleucine. It is suggested that the regulation of the biosynthesis of isoleucine in this extreme theromophile may resemble that reported in Rodospirillum rubrum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号