首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In protein tyrosine phosphatase 1B (PTP1B), the flexible WPD loop adopts a closed conformation (WPDclosed) in the active state of PTP1B, bringing the catalytic Asp181 close to the active site pocket, while WPD loop is in an open conformation (WPDopen) in the inactive state. Previous studies showed that Asp181 may be protonated at physiological pH, and ordered water molecules exist in the active site. In the current study, molecular dynamics simulations are employed at different Asp181 protonation states and initial positions of active site water molecules, and compared with the existing crystallographic data of PTP1B. In WPDclosed conformation, the active site is found to maintain its conformation only in the protonated state of Asp181 in both free and liganded states, while Asp181 is likely to be deprotonated in WPDopen conformation. When the active site water molecule network that is a part of the free WPDclosed crystal structure is disrupted, intermediate WPD loop conformations, similar to that in the PTPRR crystal structure, are sampled in the MD simulations. In liganded PTP1B, one active site water molecule is found to be important for facilitating the orientation of Cys215 and the phosphate ion, thus may play a role in the reaction. In conclusion, conformational stability of WPD loop, and possibly catalytic activity of PTP1B, is significantly affected by the protonation state of Asp181 and position of active site water molecules, showing that these aspects should be taken into consideration both in MD simulations and inhibitor design. © Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
The structures of three bacterial outer membrane proteins (OmpA, OmpX and PagP) have been determined by both X-ray diffraction and NMR. We have used multiple (7 × 15 ns) MD simulations to compare the conformational dynamics resulting from the X-ray versus the NMR structures, each protein being simulated in a lipid (DMPC) bilayer. Conformational drift was assessed via calculation of the root mean square deviation as a function of time. On this basis the ‘quality’ of the starting structure seems mainly to influence the simulation stability of the transmembrane β-barrel domain. Root mean square fluctuations were used to compare simulation mobility as a function of residue number. The resultant residue mobility profiles were qualitatively similar for the corresponding X-ray and NMR structure-based simulations. However, all three proteins were generally more mobile in the NMR-based than in the X-ray simulations. Principal components analysis was used to identify the dominant motions within each simulation. The first two eigenvectors (which account for >50% of the protein motion) reveal that such motions are concentrated in the extracellular loops and, in the case of PagP, in the N-terminal α-helix. Residue profiles of the magnitude of motions corresponding to the first two eigenvectors are similar for the corresponding X-ray and NMR simulations, but the directions of these motions correlate poorly reflecting incomplete sampling on a ∼10 ns timescale.  相似文献   

3.
The major cysteine protease of Trypanosoma cruzi, cruzain (CRZ), has been described as a therapeutic target for Chagas’ disease, which affects millions of people worldwide. Thus, a series of CRZ inhibitors has been studied, including a new competitive inhibitor, Nequimed176 (NEQ176). Nevertheless, the structural and dynamic basis for CRZ inhibition remains unclear. Hoping to contribute to this ever-growing understanding of timescale dynamics in the CRZ inhibition mechanism, we have performed the first study using 100 ns of molecular dynamics (MD) simulations of two CRZ systems in an aqueous solvent under pH 5.5: CRZ in the apo form (ligand free) and CRZ complexed to NEQ176. According to the MD simulations, the enzyme adopts an open conformation in the apo form and a closed conformation in the NEQ176–CRZ complex. We also suggest that this closed conformation is related to the hydrogen-bonding interactions between NEQ176 and CRZ, which occurs through key residues, mainly Gly66, Met68, Asn69, and Leu160. In addition, the cross-correlation analysis shows evidence of the correlated motions among Ala110–Asp140, Leu160–Gly189, and Glu190–Gly215 subdomains, as well as, the movements related to Ala1–Thr59 and Asp60–Pro90 regions seem to be crucial for CRZ activity.  相似文献   

4.
The 36 residue villin headpiece helical subdomain (HP36) is one of the fastest cooperatively folding proteins, folding on the microsecond timescale. HP36's simple three helix topology, fast folding and small size have made it an attractive model system for computational and experimental studies of protein folding. Recent experimental studies have explored the denatured state of HP36 using fragment analysis coupled with relatively low-resolution spectroscopic techniques. These studies have shown that there is apparently only a small tendency to form locally stabilized secondary structure. Here, we complement the experimental studies by using replica exchange molecular dynamics with explicit solvent to investigate the structural features of these peptide models of unfolded HP36. To ensure convergence, two sets of simulations for each fragment were performed with different initial structures, and simulations were continued until these generated very similar final ensembles. These simulations reveal low populations of native-like structure and early folding events that cannot be resolved by experiment. For each fragment, calculated J-coupling constants and helical propensities are in good agreement with experimental trends. HP-1, corresponding to residues 41 to 53 and including the first alpha-helix, contains the highest helical population. HP-3, corresponding to residues 62 through 75 and including the third alpha-helix, contains a small population of helical turn residing at the N terminus while HP-2, corresponding to residues 52 through 61 and including the second alpha-helix, formed little to no structure in isolation. Overall, HP-1 was the only fragment to adopt a native-like conformation, but the low population suggests that formation of significant structure only occurs after formation of specific tertiary interactions.  相似文献   

5.
The circular dichroism spectrum of the 20-residue immunogenic peptide from the foot-and-mouth disease virus (VP1; 141-160 of serotype A, subtype 12) was solvent- and temperature-dependent. Careful solvent titration revealed two isodichroic points and plateaux consistent with stepwise unfolding of specific stable conformations. Variable temperature studies in cryogenic solvents and urea perturbation were consistent with the existence of three conformational moieties, the left-handed extended helix, the alpha-helix, and the 3(10) helix. The number of residues in each helix was confirmed by CD spectral simulations. The strategy described here can be used to determine the components of a conformational equilibrium and their statistical weights, to study peptide folding and unfolding and to determine the bioactive conformation(s) of linear peptides. The conclusions were supported by 2D-NMR studies. A new mechanism for the stabilization of left-handed extended helices and destabilization of alpha-helices by urea is proposed. The structure of the peptide as resolved by CD spectroscopy is of particular significance since the conformation of this antigenic sequence in situ has so far not been solved by X-ray crystallography.  相似文献   

6.
In this work, we explored the acid-induced unfolding pathway of non-porin outer membrane protein (OMP), an immunogenic protein from Salmonella Typhi, by monitoring the conformational changes over a pH range of 1.0–7.0 by circular dichroism, intrinsic fluorescence, ANS binding, acrylamide quenching, and dynamic light scattering. The spectroscopic measurements showed that OMP in its native state at pH 7.0 exists in more stable and compact conformation. In contrast, at pH 2.0, OMP retains substantial amount of secondary structure, disrupted side chain interactions, increased hydrodynamic radii, and nearly four-fold increase in ANS fluorescence with respect to the native state, indicating that MG state exists at pH 2.0. Quenching of tryptophan fluorescence by acrylamide further confirmed the accumulation of a partially unfolded state between native and unfolded state. The effect of pH on the conformation and thermostability of OMP points towards its heat resistance at neutral pH (T m?~?69 °C at pH 7.0, monitored by change in MRE222 nm). Acid unfolded state was also characterized by the lack of a cooperative thermal transition. All these results suggested that acid-induced unfolded state of OMP at pH 2.0 represented the molten globule state. The chemical denaturation studies with GuHCl and urea as denaturants showed dissimilar results. The chemical unfolding experiments showed that in both far-UV CD and fluorescence measurements, GuHCl is more efficient than urea. GuHCl is characterized by low C m (~1 M), while urea is characterized by high C m (~3 M). The fully unfolded states were reached at 2 M GuHCl and 4 M urea concentration, respectively. This study adds to several key considerations of importance in the development of therapeutic agents against typhoid fever for clinical purposes.  相似文献   

7.
Multiple self‐guided Langevin dynamics (SGLD) simulations were performed to examine structural and dynamical properties of the receiver domain of nitrogen regulatory protein C (NtrCr). SGLD and MD simulations of the phosphorylated active form structure suggest a mostly stable but broad structural ensemble of this protein. The finite difference Poisson–Boltzmann calculations of the pKa values of the active site residues suggest an increase in the pKa of His‐84 on phosphorylation of Asp‐54. In SGLD simulations of the phosphorylated active form with charged His‐84, the average position of the regulatory helix α4 is found closer to the starting structure than in simulations with the neutral His‐84. To model the transition pathway, the phosphate group was removed from the simulations. After 7 ns of simulations, the regulatory helix α4 was found approximately halfway between positions in the NMR structures of the active and inactive forms. Removal of the phosphate group stimulated loss of helix α4, suggesting that the pathway of conformational transition may involve partial unfolding mechanism. The study illustrates the potential utility of the SGLD method in studies of the coupling between ligand binding and conformational transitions. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
Multistate computational protein design (MSD) with backbone ensembles approximating conformational flexibility can predict higher quality sequences than single‐state design with a single fixed backbone. However, it is currently unclear what characteristics of backbone ensembles are required for the accurate prediction of protein sequence stability. In this study, we aimed to improve the accuracy of protein stability predictions made with MSD by using a variety of backbone ensembles to recapitulate the experimentally measured stability of 85 Streptococcal protein G domain β1 sequences. Ensembles tested here include an NMR ensemble as well as those generated by molecular dynamics (MD) simulations, by Backrub motions, and by PertMin, a new method that we developed involving the perturbation of atomic coordinates followed by energy minimization. MSD with the PertMin ensembles resulted in the most accurate predictions by providing the highest number of stable sequences in the top 25, and by correctly binning sequences as stable or unstable with the highest success rate (≈90%) and the lowest number of false positives. The performance of PertMin ensembles is due to the fact that their members closely resemble the input crystal structure and have low potential energy. Conversely, the NMR ensemble as well as those generated by MD simulations at 500 or 1000 K reduced prediction accuracy due to their low structural similarity to the crystal structure. The ensembles tested herein thus represent on‐ or off‐target models of the native protein fold and could be used in future studies to design for desired properties other than stability. Proteins 2014; 82:771–784. © 2013 Wiley Periodicals, Inc.  相似文献   

9.
The prediction of protein–protein interactions and their structural configuration remains a largely unsolved problem. Most of the algorithms aimed at finding the native conformation of a protein complex starting from the structure of its monomers are based on searching the structure corresponding to the global minimum of a suitable scoring function. However, protein complexes are often highly flexible, with mobile side chains and transient contacts due to thermal fluctuations. Flexibility can be neglected if one aims at finding quickly the approximate structure of the native complex, but may play a role in structure refinement, and in discriminating solutions characterized by similar scores. We here benchmark the capability of some state‐of‐the‐art scoring functions (BACH‐SixthSense, PIE/PISA and Rosetta) in discriminating finite‐temperature ensembles of structures corresponding to the native state and to non‐native configurations. We produce the ensembles by running thousands of molecular dynamics simulations in explicit solvent starting from poses generated by rigid docking and optimized in vacuum. We find that while Rosetta outperformed the other two scoring functions in scoring the structures in vacuum, BACH‐SixthSense and PIE/PISA perform better in distinguishing near‐native ensembles of structures generated by molecular dynamics in explicit solvent. Proteins 2016; 84:1312–1320. © 2016 Wiley Periodicals, Inc.  相似文献   

10.
Tobi D  Elber R  Thirumalai D 《Biopolymers》2003,68(3):359-369
The conformational equilibrium of a blocked valine peptide in water and aqueous urea solution is studied using molecular dynamics simulations. Pair correlation functions indicate enhanced concentration of urea near the peptide. Stronger hydrogen bonding of urea-peptide compared to water-peptide is observed with preference for helical conformation. The potential of mean force, computed using umbrella sampling, shows only small differences between urea and water solvation that are difficult to quantify. The changes in solvent structure around the peptide are explained by favorable electrostatic interactions (hydrogen bonds) of urea with the peptide backbone. There is no evidence for significant changes in hydrophobic interactions in the two conformations of the peptide in urea solution. Our simulations suggest that urea denatures proteins by preferentially forming hydrogen bonds to the peptide backbone, reducing the barrier for exposing protein residues to the solvent, and reaching the unfolded state.  相似文献   

11.
The conformational states of two peptide sequences that bind to staphylococcal enterotoxin B are sampled by replica exchange molecular dynamic (REMD) simulations in explicit water. REMD simulations were treated with 52 replicas in the range of 280–501 K for both peptides. The conformational ensembles of both peptides are dominated by random coil, bend and turn structures with a small amount of helical structures for each temperature. In addition, while an insignificant presence of β-bridge structures were observed for both peptides, the β-sheet structure was observed only for peptide 3. The results obtained from simulations at 300 K are consistent with the experimental results obtained from circular dichroism spectroscopy. From the analysis of REMD results, we also calculated hydrophobic and hydrophilic solvent accessible surface areas for both peptides, and it was observed that the hydrophobic segments of the peptides tend to form bend or turn structures. Moreover, the free-energy landscapes of both peptides were obtained by principal component analysis to understand how the secondary structural properties change according to their complex space. From the free-energy analysis, we have found several minima for both peptides at decreased temperature. For these obvious minima of both peptides, it was observed that the random coil, bend and turn structures are still dominant and the helix, β-bridge or β-sheet structures can appear or disappear with respect to minima. On the other hand, when we compare the results of REMD with conventional MD simulations for these peptides, the configurations of peptide 3 might be trapped in energy minima during the conventional MD simulations. Hence, it can be said that the REMD simulations have provided a sufficiently high sampling efficiency.  相似文献   

12.
《Biophysical journal》2022,121(11):2078-2083
Lipoprotein signal peptidase (LspA) is an aspartyl protease that cleaves the transmembrane helix signal peptide of lipoproteins as part of the lipoprotein-processing pathway. Members of this pathway are excellent targets for the development of antibiotic therapeutics because they are essential in Gram-negative bacteria, are important for virulence in Gram-positive bacteria, and may not develop antibiotic resistance. Here, we report the conformational dynamics of LspA in the apo state and bound to the antibiotic globomycin determined using molecular dynamics simulations and electron paramagnetic resonance. The periplasmic helix fluctuates on the nanosecond timescale and samples unique conformations in the different states. In the apo state, the dominant conformation is the most closed and occludes the charged active site from the lipid bilayer. With antibiotic bound there are multiple binding modes with the dominant conformation of the periplasmic helix in a more open conformation. The different conformations observed in both bound and apo states indicate a flexible and adaptable active site, which explains how LspA accommodates and processes such a variety of substrates.  相似文献   

13.
The charge-containing hydrophilic functionalities of encoded charged amino acids are linked to the backbone via different numbers of hydrophobic methylenes, despite the apparent electrostatic nature of protein ion pairing interactions. To investigate the effect of side chain length of guanidinium- and carboxylate-containing residues on ion pairing interactions, α-helical peptides containing Zbb–Xaa (i, i + 3), (i, i + 4) and (i, i + 5) (Zbb = carboxylate-containing residues Aad, Glu, Asp in decreasing length; Xaa = guanidinium residues Agh, Arg, Agb, Agp in decreasing length) sequence patterns were studied by circular dichroism spectroscopy (CD). The helicity of Aad- and Glu-containing peptides was similar and mostly pH independent, whereas the helicity of Asp-containing peptides was mostly pH dependent. Furthermore, the Arg-containing peptides consistently exhibited higher helicity compared to the corresponding Agp-, Agb-, and Agh-containing peptides. Side chain conformational analysis by molecular mechanics calculations showed that the Zbb–Xaa (i, i + 3) and (i, i + 4) interactions mainly involved the χ 1 dihedral combinations (g+, g+) and (g?, g+), respectively. These low energy conformations were also observed in intrahelical Asp–Arg and Glu–Arg salt bridges of natural proteins. Accordingly, Asp and Glu provides variation in helix characteristics associated with Arg, but Aad does not provide features beyond those already delivered by Glu. Importantly, nature may have chosen the side chain length of Arg to support helical conformations through inherent high helix propensity coupled with stabilizing intrahelical ion pairing interactions with the carboxylate-containing residues.  相似文献   

14.
The bacterial outer membrane protein OmpX from Escherichia coli has been investigated by molecular dynamics simulations when embedded in a phospholipid bilayer and as a protein-micelle aggregate. The resulting simulation trajectories were analysed in terms of structural and dynamic properties of the membrane protein. In agreement with experimental observations, highest relative stability was found for the β-barrel region that is embedded in the lipophilic phase, whereas an extracellular protruding β-sheet, which is a unique structural feature of OmpX that supposedly plays an important role in cell adhesion and invasion, shows larger structure fluctuations. Additionally, we investigated water permeation into the core of the β-barrel protein, which contains a tight salt-bridge and hydrogen-bond network, so that extensive water flux is unlikely. Differences between the bilayer and the micellar system were observed in the length of the barrel and its position inside the lipid environment, and in the protein interactions with the hydrophilic part of the lipids near the lipid/water interface. Those variations suggest that micelles and other detergent environments might not offer a wholly membrane-like milieu to promote adoption of the physiological conformational state by OmpX.  相似文献   

15.
Proteins perform their function or interact with partners by exchanging between conformational substates on a wide range of spatiotemporal scales. Structurally characterizing these exchanges is challenging, both experimentally and computationally. Large, diffusional motions are often on timescales that are difficult to access with molecular dynamics simulations, especially for large proteins and their complexes. The low frequency modes of normal mode analysis (NMA) report on molecular fluctuations associated with biological activity. However, NMA is limited to a second order expansion about a minimum of the potential energy function, which limits opportunities to observe diffusional motions. By contrast, kino-geometric conformational sampling (KGS) permits large perturbations while maintaining the exact geometry of explicit conformational constraints, such as hydrogen bonds. Here, we extend KGS and show that a conformational ensemble of the α subunit Gαs of heterotrimeric stimulatory protein Gs exhibits structural features implicated in its activation pathway. Activation of protein Gs by G protein-coupled receptors (GPCRs) is associated with GDP release and large conformational changes of its α-helical domain. Our method reveals a coupled α-helical domain opening motion while, simultaneously, Gαs helix α5 samples an activated conformation. These motions are moderated in the activated state. The motion centers on a dynamic hub near the nucleotide-binding site of Gαs, and radiates to helix α4. We find that comparative NMA-based ensembles underestimate the amplitudes of the motion. Additionally, the ensembles fall short in predicting the accepted direction of the full activation pathway. Taken together, our findings suggest that nullspace sampling with explicit, holonomic constraints yields ensembles that illuminate molecular mechanisms involved in GDP release and protein Gs activation, and further establish conformational coupling between key structural elements of Gαs.  相似文献   

16.
On the basis of sequence-specific resonance assignments for the complete polypeptide backbone and most of the amino acid side chains by heteronuclear nuclear magnetic resonance (NMR) spectroscopy, the urea-unfolded form of the outer membrane protein X (OmpX) from Escherichia coli has been structurally characterized. (1)H-(1)H nuclear Overhauser effects (NOEs), dispersion of the chemical shifts, amide proton chemical shift temperature coefficients, amide proton exchange rates, and (15)N[(1)H]-NOEs show that OmpX in 8 M urea at pH 6.5 is globally unfolded, but adopts local nonrandom conformations in the polypeptide segments of residues 73-82 and 137-145. For these two regions, numerous medium-range and longer-range NOEs were observed, which were used as the input for structure calculations of these polypeptide segments with the program DYANA. The segment 73-82 forms a quite regular helical structure, with only loosely constrained amino acid side chains. In the segment 137-145, the tryptophan residue 140 forms the core of a small hydrophobic cluster. Both nonrandom structures are present with an abundance of about 25% of the protein molecules. The sequence-specific NMR assignment and the physicochemical characterization of urea-denatured OmpX presented in this paper are currently used as a platform for investigations of the folding mechanism of this integral membrane protein.  相似文献   

17.
Atomic-level analyses of non-native protein ensembles constitute an important aspect of protein folding studies to reach a more complete understanding of how proteins attain their native form exhibiting biological activity. Previously, formation of hydrophobic clusters in the 6 M urea-denatured state of an ultrafast folding mini-protein known as TC5b from both photo-CIDNP NOE transfer studies and FCS measurements was observed. Here, we elucidate the structural properties of this mini-protein denatured in 6 M urea performing (15)N NMR relaxation studies together with a thorough NOE analysis. Even though our results demonstrate that no elements of secondary structure persist in the denatured state, the heterogeneous distribution of R(2) rate constants together with observing pronounced heteronuclear NOEs along the peptide backbone reveals specific regions of urea-denatured TC5b exhibiting a high degree of structural rigidity more frequently observed for native proteins. The data are complemented with studies on two TC5b point mutants to verify the importance of hydrophobic interactions for fast folding. Our results corroborate earlier findings of a hydrophobic cluster present in urea-denatured TC5b comprising both native and non-native contacts underscoring their importance for ultra rapid folding. The data assist in finding ways of interpreting the effects of pre-existing native and/or non-native interactions on the ultrafast folding of proteins; a fact, which might have to be considered when defining the starting conditions for molecular dynamics simulation studies of protein folding.  相似文献   

18.
BackgroundMultidrug and toxic compound extrusion (MATE) family transporters induce multiple-drug resistance (MDR) of bacterial pathogens and cancer cells, thus causing critical reductions in the therapeutic efficacies of antibiotics and anti-cancer drugs. Unfortunately, to date, the details and intrinsic reason about conformational regulation mechanism of MATE transporters remain elusive.MethodIn this work, molecular dynamics (MD) simulations were conducted to explore the conformational regulation mechanism of PfMATE transporter from Pyrococcus furiosus based on different protonation state of Asp41. Two (MD) simulation systems were investigated: a system with protonation of Asp41 and a system without protonation of Asp41, which were named by D184(H)D41(H) system and D184(H) system, respectively.Results and conclusionsFirstly, MD simulation results indicate that conformational changes mainly happen in extracellular regions of PfMATE protein. Further analysis reveals that PfMATE protein experiences different motion mode and forms different conformation based on different protonation state of Asp41. In the D184(H)D41(H) system, PfMATE experiences an opening motion and forms a more outward-open conformation. As for the D184(H) system, the protein has an anticlockwise rotational motion with the channel axis of protein and the more outward-open conformation does not appear. It can be inferred that protonation of Asp41 is essential for conformational regulation of PfMATE during transporting substrates.General significanceThese findings provide intrinsic information for understanding the conformational regulation mechanism of PfMATE and will be very meaningful to explore the MDR mechanism of PfMATE further.  相似文献   

19.
Simulations comparing the rapid unfolding behaviour of the model protein barnase under explicit and implicit solvent systems have been undertaken in order to validate a faster implicit solvent method for studying proteins which are kinetically stable in silico. A comparison is made between all-atom explicitly solvated simulations of barnase undertaken using Particle Mesh Ewald electrostatic interactions with all-atom implicit solvent simulations undertaken using the generalised born/surface area (GBSA) method with a long non-bonded cut-off. The two explicit solvent unfolding trajectories appear to explore slightly different pathways showing the importance of having statistically valid ensembles which are not accessible from a single trajectory. The 500?K GBSA trajectory is unsuitable for exploring intermediate structures on the unfolding pathway of barnase, as the protein almost immediately jumps to a predominately random coil conformation. However, dropping the temperature to 400?K gives rise to trajectories where the protein is unable to climb out of the energy well containing the first intermediate state, in a reasonable timescale. A similar pattern to the explicit solvent unfolding trajectories is seen in 450?K GBSA runs, with the intermediate states differing between trajectories. The development of computer simulation methods suitable for application to more kinetically stable proteins will offer insight into the atomic detail of the conformational changes associated with protein unfolding diseases.  相似文献   

20.
On the basis of the X-ray structure and results from structure--activity relationship studies, the following GM–CSF analogue was designed and synthesized by solid-phase methodology: hGM–CSF[13-31]-Gly-Pro-Gly-[103–116]-NH2. This analogue was constructed to comprise helices A and D of the native hGM–CSF, covalently linked in an antiparallel orientation by the tripeptide spacer Gly-Pro-Gly, which is known as a turn-inducing sequence. The conformational analysis of the analogue by CD spectroscopy revealed an essentially random structure in water, while α-helix formation was observed upon addition of TFE. In 40% TFE the helix content was ∼45%. By two-dimensional NMR experiments in 1:1 water/trifluoroethanol mixture two helical sequences were identified comprising the segments corresponding to helix A and helix D. In addition to medium-range NOESY connectivities, a long-range cross-peak was found involving the leucine residues at positions 13 and 35. Based on the experimentally derived data (54 NOEs), the structure was refined by restrained molecular dynamics simulations over 120 ps at various temperatures. A representative conformation derived from the computer simulation is mainly characterized by two helical segments connected by a loop region. The overall three-dimensional structure of the analogue is comparable to the X-ray structure of hGM–CSF in that helices A and D are oriented in an antiparallel fashion, forming a two α-helix bundle. Nevertheless, there are small differences in the topology of the helices between the solution structure of the designed analogue and the X-ray structure of hGM–CSF. The possible implications of these conformational features at the effects of biological activity are discussed. © 1997 European Peptide Society and John Wiley & Sons, Ltd. J. Pep. Sci.3: 323–335 No. of Figures: 10. No. of Tables: 5. No. of References: 46  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号