首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In most animal species, males are predicted to compete for reproductive opportunities, while females are expected to choose between potential mates. However, when males' rate of reproduction is constrained, or females vary widely in 'quality', male mate choice is also predicted to occur. Such conditions exist in the promiscuous mating system of feral Soay sheep on St Kilda, Scotland, where a highly synchronized mating season, intense sperm competition and limitations on sperm production constrain males' potential reproductive rate, and females vary substantially in their ability to produce successful offspring. We show that, consistent with predictions, competitive rams focus their mating activity and siring success towards heavier females with higher inclusive fitness. To our knowledge, this is the first time that male mate choice has been identified and shown to lead to assortative patterns of parentage in a natural mammalian system, and occurs despite fierce male-male competition for mates. An additional consequence of assortative mating in this population is that lighter females experience a series of unstable consorts with less adept rams, and hence are mated by a greater number of males during their oestrus. We have thus also identified a novel male-driven mechanism that generates variation in female promiscuity, which suggests that the high levels of female promiscuity in this system are not part of an adaptive female tactic to intensify post-copulatory competition between males.  相似文献   

2.
Mate choice and mate competition can both influence the evolution of sexual isolation between populations. Assortative mating may arise if traits and preferences diverge in step, and, alternatively, mate competition may counteract mating preferences and decrease assortative mating. Here, we examine potential assortative mating between populations of Drosophila pseudoobscura that have experimentally evolved under either increased (‘polyandry’) or decreased (‘monogamy’) sexual selection intensity for 100 generations. These populations have evolved differences in numerous traits, including a male signal and female preference traits. We use a two males: one female design, allowing both mate choice and competition to influence mating outcomes, to test for assortative mating between our populations. Mating latency shows subtle effects of male and female interactions, with females from the monogamous populations appearing reluctant to mate with males from the polyandrous populations. However, males from the polyandrous populations have a significantly higher probability of mating regardless of the female's population. Our results suggest that if populations differ in the intensity of sexual selection, effects on mate competition may overcome mate choice.  相似文献   

3.
Positive size assortative mating can arise if either one or both sexes prefer bigger mates or if the success of larger males in contests for larger females leaves smaller males to mate with smaller females. Moreover, body size could not only influence pairing patterns before copulation but also the covariance between female size and size of ejaculate (number of spermatophores) transferred to a mate. In this field study, we examine the pre-copulatory mate choice, as well as insemination, patterns in the Cook Strait giant weta (Deinacrida rugosa). D. rugosa is a large orthopteran insect that exhibits strong female-biased sexual dimorphism, with females being nearly twice as heavy as males. Contrary to the general expectation of male preference for large females in insects with female-biased size dimorphism, we found only weak support for positive size assortative mating based on size (tibia length). Interestingly, although there was no correlation between male body size and the number of spermatophores transferred, we did find that males pass more spermatophores to lighter females. This pattern of sperm transfer does not appear to be a consequence of those males that mate heavier females being sperm depleted. Instead, males may provide lighter females with more spermatophores perhaps because these females pose less of a sperm competition risk to mates.  相似文献   

4.
In many animals, body size plays a crucial role in mating success in the context of competition and preference for mates. Increasing evidence has shown that male mate preference can be size‐dependent and, therefore, an important driver of size‐assortative mating. To test this theory, mate choice experiments were performed during the three consecutive stages of mating behaviour, namely trail following, shell mounting and copulation, in the dioecious mangrove snail, Littoraria ardouiniana. These experiments identified two possible forms of size‐dependent male mate preference which could contribute to the formation of size‐assortative mating in these snails. Firstly, whereas small males were unselective, large males were selective and preferred to follow mucus trails laid by large females. Alternatively, the results can also be interpreted as all males were selective and adopted a mating strategy of selecting females similar to, or larger than, their own sizes. Both small and large males also copulated for longer with large than with small females, and this was more pronounced in large males. When two males encountered a female, they engaged in physical aggression, with the larger male excluding the smaller male from copulating with the female. This study, therefore, demonstrated that size‐dependent male mate preference may, along with male–male competition, play an important role in driving size‐assortative mating in these mangrove snails, and this may also be the case in other species that exhibit male mate choice.  相似文献   

5.
Theory predicts that mate choice can lead to an increase in female fecundity if the secondary sexual traits used by females to assess male quality covary with the number of sperm transferred during copulation. Where females mate multiply, such a relationship between male attractiveness and ejaculate size may, additionally (or alternatively), serve to augment the effect of indirect selection by biasing paternity in favour of preferred males. In either case, a positive correlation between male attractiveness and the size of ejaculates delivered at copulation is predicted. To date, some of the most convincing (indirect) evidence for this prediction comes from the guppy, a species of fish exhibiting a resource-free mating system in which attractive males tend to have larger sperm reserves. We show that, during solicited copulations, male guppies with preferred phenotypes actually transfer more sperm to females than their less-ornamented counterparts, irrespective of the size of their initial sperm stores. Our results also reveal that, during coercive copulations, the relationship between ejaculate size and the male's phenotype breaks down. This latter result, in conjunction with our finding that mating speed--a factor under the female's control-is a significant predictor of ejaculate size, leads us to speculate that females may exert at least partial control over the number of sperm inseminated during cooperative matings.  相似文献   

6.
Gametic asymmetry implies that females invest more per gamete than males do and thus sperm is considered to be a relatively cheap resource. However, contrary to this classic view, sperm has been shown to be frequently in short supply; hence, selection favouring females that mate for fertility benefits should occur. For this reason, we determined whether males signalling fertility are preferred by female newts of the species Triturus alpestris . We performed paired female–male trials using unmated and previously inseminated females to determine potential criteria for female interest in a courting male, to establish what factors lead to successful mating and to assess the importance of female choice for direct and indirect benefits. We found that female interest in any potential mate and mating success decreased once mating had occurred. Furthermore, we detected an increase in spermatophore deposition rate and rapid spermatophore transfer in encounters that resulted in a successful mating. The results obtained indicate that female alpine newts are attracted to males showing signs of relatively high fertility and that females exhibit a decreased propensity to mate once initial sperm reserves have been acquired. Our results support the theory of initial female choice for fertility benefits.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 91 , 483–491.  相似文献   

7.
Yu TL  Lu X 《Zoological science》2010,27(11):856-860
The large-male mating advantage and size-assortative mating are two different size-based patterns, which deviate from random mating in toads. These two pairing patterns may arise due to female choice, male-male competition, male choice, or a combination of these. This study investigated the mating system of Minshan's toad (Bufo minshanicus) from three populations along an altitudinal gradient during two breeding reasons in the northeastern Tibetan plateau. Our study shows that males found in amplexus with females were larger on average than non-amplectant males in two sites with higher operational sex ratios. Similarly, in those sites, males and females found in amplexus maintained an optimal size ratio. These data suggest that male-male competition leads to size-assortative mating in the lack of mate choice (female and male mate choice) by Minshan's toad, as larger males performed higher frequencies for taking-over other low quality ones with amplectant females.  相似文献   

8.
Assortative mating promotes reproductive isolation and allows allopatric speciation processes to continue in secondary contact. As mating patterns are determined by mate preferences and intrasexual competition, we investigated male–male competition and behavioral isolation in simulated secondary contact among allopatric populations. Three allopatric color morphs of the cichlid fish Tropheus were tested against each other. Dyadic male–male contests revealed dominance of red males over bluish and yellow‐blotch males. Reproductive isolation in the presence of male–male competition was assessed from genetic parentage in experimental ponds and was highly asymmetric among pairs of color morphs. Red females mated only with red males, whereas the other females performed variable degrees of heteromorphic mating. Discrepancies between mating patterns in ponds and female preferences in a competition‐free, two‐way choice paradigm suggested that the dominance of red males interfered with positive assortative mating of females of the subordinate morphs and provoked asymmetric hybridization. Between the nonred morphs, a significant excess of negative assortative mating by yellow‐blotch females with bluish males did not coincide with asymmetric dominance among males. Hence, both negative assortative mating preferences and interference of male–male competition with positive assortative preferences forestall premating isolation, the latter especially in environments unsupportive of competition‐driven spatial segregation.  相似文献   

9.
Parasites may exert negative effects on host survivorship and reproductive success. The effects of parasites on female host fitness have been well documented; however, the effects of parasites on the reproductive success of male hosts and particularly the underlying mechanisms that alter male fitness are not well understood. Previous studies demonstrated that infection by rat tapeworm (Hymenolepis diminuta) reduced the fitness of male red flour beetles (Tribolium castaneum) in an environment of female mate choice and strong male-male competition. The present study determined the role of female mate choice and male insemination capacity on observed fitness reduction of male beetles by the tapeworm parasites. We found that infected males showed reduced mating vigor and consequently inseminated fewer females than did uninfected males. Specifically, tapeworm infection reduced the number of offspring sired by a male by 14-22% even when male-male competition and female mate choice were absent. Further, the insemination capacity of males diminished by 30% because of infection. Female beetles did not discriminate against infected males in precopulatory mate choice experiments. Copulatory courtship, a determinant of postcopulatory female choice, was not significantly different between infected and uninfected males. Hence, we concluded that female beetles did not show either pre- or postcopulatory choice against tapeworm-infected males. Therefore, tapeworm-induced reduction in the reproductive success of male beetles possibly results from altered reproductive biology, such as lower mating vigor and decreased sperm quantity or quality.  相似文献   

10.
The mating system of Tegrodera aloga is similar to other blister beetles that have evolved sizeassortative mating in that males pass a cantharidin-rich spermatophore to their mates and females vary in size and fecundity. Despite this, previous studies found no assortative mating in this beetle. Results of this study suggest that nonassortative mating is not due to absolute constraints on mate choice. Males courted large females more frequently than small females, suggesting that males prefer big mates. Similarly, female choice is suggested by a large-male mating advantage in the absence of size-related male-male competition. In contrast to previous work, my results suggest that assortative mating may occur under certain conditions and may be due to large-phenotype mating advantages. The question remains, why does assortative mating occur only some of the time? One hypothesis is that assortative mating breaks down when sex ratios become male biased and males no longer discriminate between mates. However, although sex ratios can vary from day to day, assortative mating is not associated with periods when females outnumber males. Rather, the pattern appears to be associated with times of low overall population density. Hypotheses for density-dependent assortative mating are presented.  相似文献   

11.
Males' evolutionary responses to experimental removal of sexual selection   总被引:7,自引:0,他引:7  
We evaluated the influence of pre- and post-copulatory sexual selection upon male reproductive traits in a naturally promiscuous species, Drosophila melanogaster. Sexual selection was removed in two replicate populations through enforced monogamous mating with random mate assignment or retained in polyandrous controls. Monogamous mating eliminates all opportunities for mate competition, mate discrimination, sperm competition, cryptic female choice and, hence, sexual conflict. Levels of divergence between lines in sperm production and male fitness traits were quantified after 38-81 generations of selection. Three a priori predictions were tested: (i) male investment in spermatogenesis will be lower in monogamy-line males due to the absence of sperm competition selection, (ii) due to the evolution of increased male benevolence, the fitness of females paired with monogamy-line males will be higher than that of females paired with control-line males, and (iii) monogamy-line males will exhibit decreased competitive reproductive success relative to control-line males. The first two predictions were supported, whereas the third prediction was not. Monogamy males evolved a smaller body size and the size of their testes and the number of sperm within the testes were disproportionately further reduced. In contrast, the fitness of monogamous males (and their mates) was greater when reproducing in a non-competitive context: females mated once with monogamous males produced offspring at a faster rate and produced a greater total number of surviving progeny than did females mated to control males. The results indicate that sexual selection favours the production of increased numbers of sperm in D. melanogaster and that sexual selection favours some male traits conferring a direct cost to the fecundity of females.  相似文献   

12.
Deleterious mutations can accumulate in the germline with age, decreasing the genetic quality of sperm and imposing a cost on female fitness. If these mutations also affect sperm competition ability or sperm production, then females will benefit from polyandry as it incites sperm competition and, consequently, minimizes the mutational load in the offspring. We tested this hypothesis in the guppy (Poecilia reticulata), a species characterized by polyandry and intense sperm competition, by investigating whether age affects post‐copulatory male traits and sperm competition success. Females did not discriminate between old and young males in a mate choice experiment. While old males produced longer and slower sperm with larger reserves of strippable sperm, compared to young males, artificial insemination did not reveal any effect of age on sperm competition success. Altogether, these results do not support the hypothesis that polyandry evolved in response to costs associated with mating with old males in the guppy.  相似文献   

13.
The outcome of mate choice depends on complex interactions between males and females both before and after copulation. Although the competition between males for access to mates and premating choice by females are relatively well understood, the nature of interactions between cryptic female choice and male sperm competition within the female reproductive tract is less clear. Understanding the complexity of postcopulatory sexual selection requires an understanding of how anatomy, physiology and behaviour mediate sperm transfer and storage within multiply mated females. Here we use a newly developed molecular technique to directly quantify mixed sperm stores in multiple mating females of the black field cricket, Teleogryllus commodus. In this species, female postcopulatory choice is easily observed and manipulated as females delay the removal of the spermatophore in favour of preferred males. Using twice‐mated females, we find that the proportion of sperm in the spermatheca attributed to the second male to mate with a female (S2) increases linearly with the time of spermatophore attachment. Moreover, we show that the insemination success of a male increases with its attractiveness and decreases with the size of the female. The effect of male attractiveness in this context suggests a previously unknown episode of mate choice in this species that reinforces the sexual selection imposed by premating choice and conflicts with the outcome of postmating male harassment. Our results provide some of the clearest evidence yet for how sperm transfer and displacement in multiply mated females can lead directly to cryptic female choice, and that three distinct periods of sexual selection operate in black field crickets.  相似文献   

14.
Luttbeg  Barney 《Behavioral ecology》2004,15(2):239-247
Explanations for the existence of alternative male mating tacticsfocus primarily on male–male competition. Mating systems,however, are composed of interactions both within and betweenthe sexes, and the role of female behavior in shaping male matingtactics should not be overlooked. By using a dynamic state variablegame model, I examine how female mate assessment and choicebehavior affect the frequency of alternative male mating tactics.When females can accurately assess the quality of males, onlymales with high quality are likely to be chosen as mates, andthus, lower-quality males gain little fitness from courtingfemales. This leads lower-quality males to switch to an alternativemating tactic that attempts to circumvent female mate choice.In contrast, if the abilities of females to accurately assessmales are constrained by assessment costs, imperfect information,or time constraints, or if the pool of available males is smaller,then lower-quality males are increasingly chosen as mates andthey less often use alternative mating tactics. Thus, femalebehavior shapes the frequency of alternative male mating tactics.A consequence of this game between the sexes is that male behavior(i.e., increased alternative mating tactics) decreases the benefitsfemales might otherwise gain from lower assessment costs, clearersignals of male quality, more time to choose a male, and moremales from which to choose a mate.  相似文献   

15.
Female remating rate dictates the level of sperm competition in a population, and extensive research has focused on how sperm competition generates selection on male ejaculate allocation. Yet the way ejaculate allocation strategies in turn generate selection on female remating rates, which ultimately influence levels of sperm competition, has received much less consideration despite increasing evidence that both mating itself and ejaculate traits affect multiple components of female fitness. Here, we develop theory to examine how the effects of mating on female fertility, fecundity and mortality interact to generate selection on female remating rate. When males produce more fertile ejaculates, females are selected to mate less frequently, thus decreasing levels of sperm competition. This could in turn favour decreased male ejaculate allocation, which could subsequently lead to higher female remating. When remating simultaneously increases female fecundity and mortality, females are selected to mate more frequently, thus exacerbating sperm competition and favouring male traits that convey a competitive advantage even when harmful to female survival. While intuitive when considered separately, these predictions demonstrate the potential for complex coevolutionary dynamics between male ejaculate expenditure and female remating rate, and the correlated evolution of multiple male and female reproductive traits affecting mating, fertility and fecundity.  相似文献   

16.
Why do females mate multiply? A review of the genetic benefits   总被引:14,自引:0,他引:14  
The aim of this review is to consider the potential benefits that females may gain from mating more than once in a single reproductive cycle. The relationship between non-genetic and genetic benefits is briefly explored. We suggest that multiple mating for purely non-genetic benefits is unlikely as it invariably leads to the possibility of genetic benefits as well. We begin by briefly reviewing the main models for genetic benefits to mate choice, and the supporting evidence that choice can increase offspring performance and the sexual attractiveness of sons. We then explain how multiple mating can elevate offspring fitness by increasing the number of potential sires that compete, when this occurs in conjunction with mechanisms of paternity biasing that function in copula or post-copulation. We begin by identifying cases where females use pre-copulatory cues to identify mates prior to remating. In the simplest case, females remate because they identify a superior mate and 'trade up' genetically. The main evidence for this process comes from extra-pair copulation in birds. Second, we note other cases where pre-copulatory cues may be less reliable and females mate with several males to promote post-copulatory mechanisms that bias paternity. Although a distinction is drawn between sperm competition and cryptic female choice, we point out that the genetic benefits to polyandry in terms of producing more viable or sexually attractive offspring do not depend on the exact mechanism that leads to biased paternity. Post-copulatory mechanisms of paternity biasing may: (1) reduce genetic incompatibility between male and female genetic contributions to offspring; (2) increase offspring viability if there is a positive correlation between traits favoured post-copulation and those that improve performance under natural selection; (3) increase the ability of sons to gain paternity when they mate with polyandrous females. A third possibility is that genetic diversity among offspring is directly favoured. This can be due to bet-hedging (due to mate assessment errors or temporal fluctuations in the environment), beneficial interactions between less related siblings or the opportunity to preferentially fertilise eggs with sperm of a specific genotype drawn from a range of stored sperm depending on prevailing environmental conditions. We use case studies from the social insects to provide some concrete examples of the role of genetic diversity among progeny in elevating fitness. We conclude that post-copulatory mechanisms provide a more reliable way of selecting a genetically compatible mate than pre-copulatory mate choice. Some of the best evidence for cryptic female choice by sperm selection is due to selection of more compatible sperm. Two future areas of research seem likely to be profitable. First, more experimental evidence is needed demonstrating that multiple mating increases offspring fitness via genetic gains. Second, the role of multiple mating in promoting assortative fertilization and increasing reproductive isolation between populations may help us to understand sympatric speciation.  相似文献   

17.
FEMALES RECEIVE A LIFE-SPAN BENEFIT FROM MALE EJACULATES IN A FIELD CRICKET   总被引:7,自引:0,他引:7  
Abstract.— Mating has been found to be costly for females of some species because of toxic products that males transfer to females in their seminal fluid. Such mating costs seem paradoxical, particularly for species in which females mate more frequently than is necessary to fertilize their eggs. Indeed, some studies suggest that females may benefit from mating more frequently. The effect of male ejaculates on female life span and lifetime fecundity was experimentally tested in the variable field cricket, Gryllus lineaticeps. In field crickets, females will mate repeatedly with a given male and mate with multiple males. Females that were experimentally mated either repeatedly or multiply lived more than 32% longer than singly mated females. In addition, multiply mated females produced 98% more eggs than singly mated females. Because females received only sperm and seminal fluid from males in the experimental matings, these life‐span and fecundity benefits may result from beneficial seminal fluid products that males transfer to females during mating. Mating benefits rather than mating costs may be common in many animals, particularly in species where female mate choice has a larger effect on male reproductive success than does the outcome of sperm competition.  相似文献   

18.
Assortative mating refers to the non-random nature of mating patterns between certain males and females. Thus, males and females may associate negative- or positively, based on different traits. Amongst these associations, assortative mating by size is one of the most common patterns found in natural populations of animals. Two main hypotheses have been proposed to account for the occurrence of assortative mating by size. First, it may be the result of mechanical, temporal, or physiological constraints. Second, it may occur in response to direct or indirect selection on mating preferences. Here we investigate whether the American rubyspot damselfly exhibits true assortative mating by size. Males of this species exhibit high levels of male-male competition, as they compete over territories, to which females are attracted for copulation. There is a documented large male body size advantage: the largest males are better able to hold their territories and thus secure more copulations. Our major results show that i) mated males are more likely to be larger than unmated males, whereas mated and unmated females tend to have similar body sizes; ii) H. americana exhibits true assortative mating by size; as such, this pattern is not driven by seasonal changes in the body sizes of males and females. We suggest that this mating pattern occurs in this species given the advantages of large male size, and the advantages of large female body size (i.e. higher fecundity). We believe that males may be able to evaluate a female’s reproductive value and exert mate choice.  相似文献   

19.
1. Mutual mate choice may be rare, occurring when both sexes invest heavily in reproduction, mating opportunities are abundant, and individuals differ in quality. 2. Mountain pine beetles, Dendroctonus ponderosae (Curculionidae: Scolytinae) appear to meet the conditions for mutual mate choice. We introduced males to females in breeding sites and observed the occurrence and speed of a male entering a female's gallery. We tested for consequences of mutual mate choice, namely condition‐dependent choosiness and assortative mating. 3. Males were more likely to enter a female's gallery when the gallery was in a smaller tree with less resin production and when the gallery was larger. Female body size and condition did not influence the probability of entry. Larger males were less likely to enter a gallery than were smaller males, probably because of size‐dependent choosiness rather than physical limitations. 4. Small males took longer to enter galleries of large females than of small females, whereas large males entered as quickly into galleries of large females as small females. This suggests size‐dependent choosiness by females. 5. No assortative mating by body size was detected, probably because males appeared to choose on the basis of female‐associated resources rather than on female traits.  相似文献   

20.
Mate choice by males has been recognized at least since Darwin's time, but its phylogenetic distribution and effect on the evolution of female phenotypes remain poorly known. Moreover, the relative importance of factors thought to underlie the evolution of male mate choice (especially parental investment and mate quality variance) is still unresolved. Here I synthesize the empirical evidence and theory pertaining to the evolution of male mate choice and sex role reversal in insects, and examine the potential for male mating preferences to generate sexual selection on female phenotypes. Although male mate choice has received relatively little empirical study, the available evidence suggests that it is widespread among insects (and other animals). In addition to 'precopulatory' male mate choice, some insects exhibit 'cryptic' male mate choice, varying the amount of resources allocated to mating on the basis of female mate quality. As predicted by theory, the most commonly observed male mating preferences are those that tend to maximize a male's expected fertilization success from each mating. Such preferences tend to favour female phenotypes associated with high fecundity or reduced sperm competition intensity. Among insect species there is wide variation in mechanisms used by males to assess female mate quality, some of which (e.g. probing, antennating or repeatedly mounting the female) may be difficult to distinguish from copulatory courtship. According to theory, selection for male choosiness is an increasing function of mate quality variance and those reproductive costs that reduce, with each mating, the number of subsequent matings that a male can perform ('mating investment') Conversely, choosiness is constrained by the costs of mate search and assessment, in combination with the accuracy of assessment of potential mates and of the distribution of mate qualities. Stronger selection for male choosiness may also be expected in systems where female fitness increases with each copulation than in systems where female fitness peaks at a small number of matings. This theoretical framework is consistent with most of the empirical evidence. Furthermore, a variety of observed male mating preferences have the potential to exert sexual selection on female phenotypes. However, because male insects typically choose females based on phenotypic indicators of fecundity such as body size, and these are usually amenable to direct visual or tactile assessment, male mate choice often tends to reinforce stronger vectors of fecundity or viability selection, and seldom results in the evolution of female display traits. Research on orthopterans has shown that complete sex role reversal (i.e. males choosy, females competitive) can occur when male parental investment limits female fecundity and reduces the potential rate of reproduction of males sufficiently to produce a female-biased operational sex ratio. By contrast, many systems exhibiting partial sex role reversal (i.e. males choosy and competitive) are not associated with elevated levels of male parental investment, reduced male reproductive rates, or reduced male bias in the operational sex ratio. Instead, large female mate quality variance resulting from factors such as strong last-male sperm precedence or large variance in female fecundity may select for both male choosiness and competitiveness in such systems. Thus, partial and complete sex role reversal do not merely represent different points along a continuum of increasing male parental investment, but may evolve via different evolutionary pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号