首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although cannabinoids are associated with antineoplastic activity in a number of cancer cell types, the effect in gastric cancer cells has not been clarified. In the present study, we investigated the effects of a cannabinoid agonist on gastric cancer cell proliferation and invasion. The cannabinoid agonist WIN 55,212‐2 inhibited the proliferation of human gastric cancer cells in a dose‐dependent manner and that this effect was mediated partially by the CB1 receptor. We also found that WIN 55,212‐2 induced apoptosis and down‐regulation of the phospho‐AKT expression in human gastric cancer cells. Furthermore, WIN 55,212‐2 treatment inhibited the invasion of gastric cancer cells, and down‐regulated the expression of MMP‐2 and VEGF‐A through the cannabinoid receptors. Our results open the possibilities in using cannabinoids as a new gastric cancer therapy. J. Cell. Biochem. 110: 321–332, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

2.
Recent reports have shown that cannabinoid 1 receptors (CB1Rs) are expressed in pancreatic β cells, where they induce cell death and cell cycle arrest by directly inhibiting insulin receptor activation. Here, we report that CB1Rs regulate the expression of the anti-apoptotic protein Bcl-2 and cell cycle regulator cyclin D2 in pancreatic β cells. Treatment of MIN6 and βTC6 cells with a synthetic CB1R agonist, WIN55,212–2, led to a decrease in the expression of Bcl-2 and cyclin D2, in turn inducing cell cycle arrest in G0/G1 phase and caspase-3-dependent apoptosis. Additionally, genetic deletion and pharmacological blockade of CB1Rs after injury in mice led to increased levels of Bcl-2 and cyclin D2 in pancreatic β cells. These findings provide evidence for the involvement of Bcl-2 and cyclin D2 mediated by CB1Rs in the regulation of β-cell survival and growth, and will serve as a basis for developing new therapeutic interventions to enhance β-cell function and growth in diabetes.  相似文献   

3.
Cannabinoids have neuroprotective potentials, and the expression of endocannabinoids as well as cannabinoid receptors is induced after cerebral ischemia. They also induce hypothermia by lowering the hypothalamic set point. We have estimated the significance of such hypothermia in ischemic neuroprotection following systemic administration of WIN 55,212-2, a synthetic cannabinoid receptor agonist. Results showed that WIN 55,212-2 significantly reduced infarct volumes of rats subjected to focal cerebral ischemia (middle cerebral artery occlusion) and significantly decreased ischemic CA1 damage in rats subjected to global cerebral ischemia (two-vessel occlusion). A significant (approximately 50%) part of this neuroprotection was provided by WIN 55,212-2 induced hypothermia (33.7+/-1.1 degrees C/34.9+/-1.6 degrees C), because prevention of hypothermia by maintaining body core temperatures between 37.0 and 38.0 degrees C dissolved the neuroprotective effect into a hypothermic component and an unidentified component. Finally, the ability of WIN 55,212-2 to reduce levels of the proinflammatory cytokine IFNgamma in the infarcted hemisphere of rats subjected to focal cerebral ischemia required hypothermia. For the cannabinoid WIN 55,212-2, we have isolated and directly demonstrated that hypothermia is only part of, although significant, cannabinoid mediated neuroprotection in both global and focal cerebral ischemia. We conclude that cannabinoids are reliable candidates for drug-induced hypothermia and neuroprotection. These neuroprotective effects of cannabinoids could provide the basis for potential therapeutic uses of cannabinoids and/or endocannabinoids in stroke.  相似文献   

4.
We have recently shown that the expression levels of both cannabinoid receptors CB(1) and CB(2) are higher in human prostate cancer cells than in normal prostate epithelial cells, and treatment of LNCaP cells with WIN-55,212-2 (a mixed CB(1)/CB(2) agonist) resulted in inhibition of cell growth and induction of apoptosis (Sarfaraz, S., Afaq, F., Adhami, V. M., and Mukhtar, H. (2005) Cancer Res. 65, 1635-1641). This study was conducted to understand the mechanistic basis of these effects. Treatment of LNCaP cells with WIN-55,212-2 (1-10 microm; 24 h) resulted in: (i) an arrest of the cells in the G(0)/G(1) phase of the cell cycle; (ii) an induction of p53 and p27/KIP1; (iii) down-regulation of cyclins D1, D2, E; (iii) decrease in the expression of cdk-2, -4, and -6; (iv) decrease in protein expression of pRb; (v) down-regulation of E2F (1-4); and (vi) decrease in the protein expression of DP1 and DP2. Similar effects were also observed when androgen-independent PC3 cells were treated with WIN-55,212-2 (5-30 microm). We further observed sustained up-regulation of ERK1/2 and inhibition of PI3k/Akt pathways in WIN-55,212-2-treated cells. Inhibition of ERK1/2 abrogated WIN-55,212-2-indued cell death suggesting that sustained activation of ERK1/2 leads to cell cycle dysregulation and arrest of cells in G(0)/G(1) phase subsequently leading to an induction of apoptosis. Further, WIN-55,212-2 treatment of cells resulted in a dose-dependent increase in Bax/Bcl-2 ratio in such a way that favors apoptosis. The induction of apoptosis proceeded through down-regulation of caspases 3, 6, 7, and 9 and cleavage of poly (ADP-ribose) polymerases. Based on these data we suggest that cannabinoid receptor agonists should be considered as novel agents for the management of prostate cancer.  相似文献   

5.
The synthetic cannabinoid WIN 55,212-2 is a potent cannabinoid receptor agonist with anticancer potential. Experiments were performed to determine the effects of WIN on proliferation, cell cycle distribution, and programmed cell death in human osteosarcoma MG63 and Saos-2 cells. Results show that WIN induced G2/M cell cycle arrest, which was associated with the induction of the main markers of ER stress (GRP78, CHOP and TRB3). In treated cells we also observed the conversion of the cytosolic form of the autophagosome marker LC3-I into LC3-II (the lipidated form located on the autophagosome membrane) and the enhanced incorporation of monodansylcadaverine and acridine orange, two markers of the autophagic compartments such as autolysosomes. WIN also induced morphological effects in MG63 cells consisting in an increase in cell size and a marked cytoplasmic vacuolization. However, WIN effects were not associated with a canonical apoptotic pathway, as demonstrated by the absence of specific features, and only the addition of TRAIL to WIN-treated cells led to apoptotic death probably mediated by up-regulation of the tumor suppressor factor PAR-4, whose levels increased after WIN treatment, and by the translocation of GRP78 on cell surface.  相似文献   

6.
Alzheimer´s disease (AD), a neurodegenerative illness involving synaptic dysfunction with extracellular accumulation of Aβ1-42 toxic peptide, glial activation, inflammatory response and oxidative stress, can lead to neuronal death. Endogenous cannabinoid system is implicated in physiological and physiopathological events in central nervous system (CNS), and changes in this system are related to many human diseases, including AD. However, studies on the effects of cannabinoids on astrocytes functions are scarce. In primary cultured astrocytes we studied cellular viability using MTT assay. Inflammatory and oxidative stress mediators were determined by ELISA and Western-blot techniques both in the presence and absence of Aβ1-42 peptide. Effects of WIN 55,212-2 (a synthetic cannabinoid) on cell viability, inflammatory mediators and oxidative stress were also determined. Aβ1-42 diminished astrocytes viability, increased TNF-α and IL-1β levels and p-65, COX-2 and iNOS protein expression while decreased PPAR-γ and antioxidant enzyme Cu/Zn SOD. WIN 55,212-2 pretreatment prevents all effects elicited by Aβ1-42. Furthermore, cannabinoid WIN 55,212-2 also increased cell viability and PPAR-γ expression in control astrocytes. In conclusion cannabinoid WIN 55,212-2 increases cell viability and anti-inflammatory response in cultured astrocytes. Moreover, WIN 55,212-2 increases expression of anti-oxidant Cu/Zn SOD and is able to prevent inflammation induced by Aβ1-42 in cultured astrocytes. Further studies would be needed to assess the possible beneficial effects of cannabinoids in Alzheimer''s disease patients.  相似文献   

7.
Agonist-induced internalization of G protein-coupled receptors (GPCRs) is an important mechanism for regulating signaling transduction of functional receptors at the plasma membrane. We demonstrate here that both caveolae/lipid-rafts- and clathrin-coated-pits-mediated pathways were involved in agonist-induced endocytosis of the cannabinoid type 1 receptor (CB1R) in stably transfected human embryonic kidney (HEK) 293 cells and that the internalized receptors were predominantly sorted into recycling pathway for reactivation. The treatment of CB1 receptors with the low endocytotic agonist Δ9-THC induced a faster receptor desensitization and slower resensitization than the high endocytotic agonist WIN 55,212-2. In addition, the blockade of receptor endocytosis or recycling pathway markedly enhanced agonist-induced CB1 receptor desensitization. Furthermore, co-expression of phospholipase D2, an enhancer of receptor endocytosis, reduced CB1 receptor desensitization, whereas co-expression of a phospholipase D2 negative mutant significantly increased the desensitization after WIN 55,212-2 treatment. These findings provide evidences for the importance of receptor endocytosis in counteracting CB1 receptor desensitization by facilitating receptor reactivation. Moreover, in primary cultured neurons, the low endocytotic agonist Δ9-THC or anandamide exhibited a greater desensitization of endogenous CB1 receptors than the high endocytotic agonist WIN 55,212-2, CP 55940 or 2-arachidonoyl glycerol, indicating that cannabinoids with high endocytotic efficacy might cause reduced development of cannabinoid tolerance to some kind cannabinoid-mediated effects.  相似文献   

8.
Local acidosis has been found in various pain-generating conditions such as inflammation and tissue injury. Cannabinoids exert a powerful inhibitory control over pain initiation via peripheral cognate receptors. However, the peripheral molecular targets responsible for the antinociceptive effects of cannabinoids are still poorly understood. Here, we have found that WIN55,212-2, a cannabinoid receptor agonist, inhibits the activity of native acid-sensing ion channels (ASICs) in rat dorsal root ganglion (DRG) neurons. WIN55,212-2 dose-dependently inhibited proton-gated currents mediated by ASICs. WIN55,212-2 shifted the proton concentration–response curve downwards, with an decrease of 48.6±3.7% in the maximum current response but with no significant change in the EC50 value. The inhibition of proton-gated current induced by WIN55,212-2 was almost completely blocked by the selective CB1 receptor antagonist AM 281, but not by the CB2 receptor antagonist AM630. Pretreatment of forskolin, an AC activator, and the addition of cAMP also reversed the inhibition of WIN55,212-2. Moreover, WIN55,212-2 altered acid-evoked excitability of rat DRG neurons and decreased the number of action potentials induced by acid stimuli. Finally, WIN55,212-2 attenuated nociceptive responses to injection of acetic acid in rats. These results suggest that WIN55,212-2 inhibits the activity of ASICs via CB1 receptor and cAMP dependent pathway in rat primary sensory neurons. Thus, cannabinoids can exert their analgesic action by interaction with ASICs in the primary afferent neurons, which was novel analgesic mechanism of cannabinoids.  相似文献   

9.
The proto-oncogene c-myc is a key player in cell-cycle regulation and is deregulated in a broad range of human cancers and cell proliferation disorders. Here we reported that overexpression of c-myc in human embryonic lung fibroblasts (HEL) that have low endogenous c-myc enriched S phase cells with increased expression of cyclin D3, E, A, Cdk2, and Cdk4, and decreased expression of p21 and p27. To the opposite, using RNAi to downregulate c-myc expression in A549 cells that have high endogenous c-myc enriched G1 phase cells with decreased expression of cyclin D3, E, A, Cdk2, Cdk4, and increased expression of p21 and p27. We found that cyclin A expression was the most susceptive to changes in c-myc levels and essential in c-myc-modulated cell cycle pathway via co-transfection, however, cyclin D1 showed no change between treated and control groups in either HEL or A549 cells. Our results indicated that upregulation of c-myc expression promotes cell cycling in HEL cells, whereas downregulation of c-myc expression causes G1 phase arrest in A549 cells, and the c-myc-mediated cell-cycle regulation pathway was dependent on cyclin A and involved cyclin D3, E, Cdk2, Cdk4, p21, and p27, but not cyclin D1.  相似文献   

10.
Lu MC  Yang SH  Hwang SL  Lu YJ  Lin YH  Wang SR  Wu YC  Lin SR 《Life sciences》2006,78(20):2378-2383
Squamocin is one of the annonaceous acetogenins and has been reported to have anticancer activity. Squamocin was found to inhibit the growth of K562 cells in a time- and dose-dependent manner. Cell cycle analysis showed G2/M phase arrest in K562 cells following 24 h exposure to squamocin. During the G2/M arrest, cyclin-dependent kinase inhibitors (CDKIs), p21 and p27 were increased in a dose-dependent manner. Analysis of the cell cycle regulatory proteins demonstrated that squamocin did not change the steady-state levels of Cdk2, Cdk4, cyclin A, cyclin B1, cyclin D3 and cyclin E, but decreased the protein levels of Cdk1 and Cdc25C. These results suggest that squamocin inhibits the proliferation of K562 cells via G2/M arrest in association with the induction of p21, p27 and the reduction of Cdk1 and Cdc25C kinase activities.  相似文献   

11.
We studied the effect of 2-(6-(2-thieanisyl)-3(Z)-hexen-1,5-diynyl)aniline(THDA), a newly developed anti-cancer agent, on cell proliferation, cell cycle progression, and induction of apoptosis in K562 cells. THDA was found to inhibit the growth of K562 cells in a time-and dose-dependent manner. Cell cycle analysis showed G2/M phase arrest and apoptosis in K562 cells following 24 h exposure to THDA. During the G2/M arrest, cyclin-dependent kinase inhibitors (CDKIs), p21 and p27 were increased in a time-dependent manner. Analysis of the cell cycle regulatory proteins demonstrated that THDA did not change the steady-state levels of cyclin B1, cyclin D3 and Cdc25C, but decreased the protein levels of Cdk1, Cdk2 and cyclin A. THDA also caused a marked increase in apoptosis, which was associated with activation of caspase-3 and proteolytic cleavage of poly (ADP-ribose) polymerase. These molecular alterations provide an insight into THDA-caused growth inhibition, G2/M arrest and apoptotic death of K562 cells.  相似文献   

12.
13.
Cross-talk between cannabinoid CB1 and serotonin 5-HT receptors in rat cerebellar membranes was investigated using radioligand binding. In competition against the CB1 antagonist, [3 H]SR141716A, the agonist, WIN 55,212-2 yielded a biphasic isotherm. The majority of binding was to a high-affinity state that was significantly reduced by the GTP analogue, Gpp(NH)p. Interestingly, 5-HT enhanced the high-affinity binding constant of WIN 55,212-2 while attenuating the proportion of high-affinity binding. 5-HT also significantly reduced the proportion of high-affinity binding of the cannabinoid agonist, HU 210, but had no effect on the agonist, CP 55,940. The effect of 5-HT on WIN 55,212-2 binding was inhibited by the 5-HT2 receptor antagonist ritanserin as well as Gpp(NH)p, suggesting a dependence on the 5-HT2 receptor and on G protein-receptor interactions, respectively. Subsequent [3 H]WIN 55,212-2 dissociation kinetic experiments revealed that 5-HT promoted a slower-dissociating species of radiolabelled agonist-receptor complex. Our findings support a membrane-delimited cross-talk between two G protein-coupled receptors that are co-localized in certain cells of the central nervous system. Intriguingly, the cannabinoid agonist dependence of the 5-HT modulatory effect suggests that agonist-specific conformations of the CB1 receptor may also be important in determining the extent of this cross-talk.  相似文献   

14.
Down-regulation of p53 expression has been found in a broad range of human cancers and cell proliferation disorders, indicating that p53 plays a key role in cell cycle regulation and tumor suppression. In our current study, we transfected human embryonic lung fibroblast (HELF) cells with pcDNA3-wild-type p53 (pcDNA3-wtp53) plasmid, or pcDNA3-H179Y-mutated p53 (pcDNA3-mtp53) plasmid that mimics the mutation found in some human lung tumors, and further studied the role of p53 in the regulation of cell proliferation. Over expression of wild-type p53 caused cell cycle arrest at G1 phase with reduced cell size, decreased expression of cyclin D3, cyclin E, Cdk2 and Cdk4, and increased expression of p21. In contrast, over expression of H179Y-mutant p53 promoted G1 to S phase transition with enlarged cell size and increased cyclin A1 and Cdk4 expression in HELF cells. These results indicate that mutation at the p53 H179Y residue up-regulates cyclin A1 and Cdk4 expression, and promotes HELF cell proliferation.  相似文献   

15.
16.
As an efficient reactive oxygen species–scavenging enzyme, superoxide dismutase (SOD) has been shown to inhibit tumor growth and interfere with motility and invasiveness of cancer cells. In this study, the molecular mechanisms of cell cycle arrest when S180 tumor cells were exposed to high levels of SOD were investigated. Here, both murine sarcoma S180 tumor cells and NIH‐3T3 mouse fibroblasts were respectively treated with varying concentrations of Cu/Zn‐SOD for 24, 48 and 72 h to determine optimal dose of SOD, which was a concentration of 800 U/ml SOD for 48 h. It is found that SOD induced S180 cell cycle arrest at G1‐phase with decreasing level of superoxide production, whereas SOD had less effect on proliferation of NIH‐3T3 cells. Moreover, the expression rate of Proliferating Cell Nuclear Antigen (PCNA) in S180 tumor cells was suppressed after SOD treatment, which indicated the inhibition of DNA synthesis in S180 cells. Besides, there were significant down‐regulations of cyclin‐E and Cdk‐2 in S180 cells after SOD treatment, which contributed to the blockage of G1/S transition in S180 cell cycle. Together, our data confirmed that SOD could notably inhibit proliferation of S180 tumor cell and induce cell cycle arrest at G1‐phase by down‐regulating expressions of cyclin‐E and Cdk‐2. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Effects of cannabinoids on endogenous potassium and calcium currents in HEK293 cells were studied using the whole-cell variant of the patch-clamp technique. The cannabinoid agonists WIN 55,212-2, methanandamide, and anandamide (1 microM) decreased the calcium current by 53.1 +/- 2.6, 47.5 +/- 1.2, and 38.8 +/- 3.1%, respectively, after transfection of human CB1 cannabinoid receptor (hCB1) cDNA into HEK293 cells. The delayed rectifier-like current was not changed after application of these agonists, but the inward rectifier was increased by 94.0 +/- 3.6, 83.7 +/- 5.1, and 63.0 +/- 2.5% after application of WIN 55,212-2, methanandamide, and anandamide, respectively. The effects of the cannabinoid antagonists (AM251, AM281, and AM630) on the inward rectifier and calcium currents were the opposite of those seen with cannabinoid agonists; thus, these compounds act as inverse agonists in this preparation. These results suggest that endogenous inward rectifier and calcium currents are modulated by cannabinoids in HEK293 cells, and that some expressed receptors may be constitutively active.  相似文献   

18.
19.
Estrogen antagonists inhibit cell cycle progression in estrogen-responsive cells, but the molecular mechanisms are not fully defined. Antiestrogen-mediated G(0)/G(1) arrest is associated with decreased cyclin D1 gene expression, inactivation of cyclin D1-cyclin dependent kinase (Cdk) 4 complexes, and decreased phosphorylation of the retinoblastoma protein (pRb). We now show that treatment of MCF-7 breast cancer cells with the pure estrogen antagonist ICI 182780 results in inhibition of cyclin E-Cdk2 activity prior to a decrease in the G(1) to S phase transition. This decrease was dependent on p21(WAF1/Cip1) since treatment with antisense oligonucleotides to p21 attenuated the effect. Recruitment of p21 to cyclin E-Cdk2 complexes was in turn dependent on decreased cyclin D1 expression since it was apparent following treatment with antisense cyclin D1 oligonucleotides. To define where within the G(0) to S phase continuum antiestrogen-treated cells arrested, we assessed the relative abundance and phosphorylation state of pocket protein-E2F complexes. While both pRb and p107 levels were significantly decreased, p130 was increased 4-fold and was accompanied by the formation of p130.E2F4 complexes and the accumulation of hyperphophorylated E2F4, putative markers of cellular quiescence. Thus, ICI 182780 inhibits both cyclin D1-Cdk4 and cyclin E-Cdk2 activity, resulting in the arrest of MCF-7 cells in a state with characteristics of quiescence (G(0)), as opposed to G(1) arrest.  相似文献   

20.
Retinoids are promising agents for the prevention and treatment of several human malignancies including lung cancer. In this study, the effect of retinoic acid (RA) on cell growth and the mechanism of growth modulation were examined in human lung squamous carcinoma CH27 cells. Here we report that RA mediated the dose- and time-dependent growth arrest in G1 phase, accompanied by the up-regulation of p27(Kip1) and the down-regulation of the cyclin-dependent kinase 3 (Cdk3) and p21(CIP1/Waf1) proteins. Furthermore, RA-induced growth arrest of CH27 cells was also associated with increased retinoic acid receptor beta (RARbeta) and reduced c-Myc expression. However, RA had no effect on the levels of cyclins A, D1, D3, E, or H, or on Cdk2, Cdk4, Cdk5, CDk6, Cdk7, p16(Ink4A), p15(Ink4B), p53, or pRb proteins in CH27 cells. Evaluation of the kinase activity of cyclin-Cdk complexes showed that RA increases p27(Kip1) expression in CH27 cells leading to markedly reduced cyclin A/Cdk2 kinase activity and slightly reduced cyclin E/Cdk2 kinase activity, with no effect on cyclin D/Cdk4 and cyclin D/Cdk6 activities. Moreover, coincident with the decrease in kinase activity was a drastic increase in cyclin A-bound p27(Kip1). These results suggest that increases in the levels of p27(Kip1) and its binding to cyclin A, as well as reduction of Cdk3 protein expression, are strong candidates for the cell cycle regulator that prevents the entry into the S phase in RA-treated CH27 cells, with prolongation of G1 phase and inhibition of DNA synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号