首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 580 毫秒
1.
18 Swedish forest lakes covering a wide range of dystrophy were studied in order to quantify and characterize the organic matter in the water with respect to origin (allochthonous or autochthonous), physical state (particulate or dissolved) and phosphorus content. Samples were collected repeatedly during a two-year period with unusually variable hydrological conditions. Water from three different depths and from tributaries was analysed with standard monitoring methods, including water colour, Secchi disk transparency, total organic carbon (TOC), CODCr, CODMn, total phosphorus and molybdate reactive phosphorus. Interrelationships were used to compare different methods and to assess the concentration and composition of organic matter. It is estimated that in remote softwater lakes of the Swedish forest region, autochthonous carbon is typically < 5 g m−3. Most lakes in this region receive significant amounts of humic matter originating from coniferous forest soils or peatland in the catchment area. In most humic lakes with a water colour of ≥ 50 g Pt m−3, more than half of the organic carbon in the surface water is of allochthonous origin, and in polyhumic lakes (> 200 g Pt m−3) the proportion can exceed 90%. Secchi depth readings were related similarly to organic matter from both sources and provided good estimates of TOC with a single optical measurement. Water colour was used to distinguish allochthonous and autochthonous matter. High concentrations of phosphorus were found in humic waters, most of it being molybdate reactive, and probably associated with humic matter rather than as dissolved free inorganic forms. CODMn yielded only 25–60% of TOC and appears to include mainly truly dissolved substances of low molecular weight.  相似文献   

2.
Coloured dissolved organic matter (CDOM) modifies the light penetration into water bodies due to stronger absorbance of UV and short wavelengths of light. Therefore, in natural waters with high CDOM concentration, the spectrum of sunlight is shifted towards brown, also referred to as brownification. Here, the relation between the spectrophotometrically measured water colour (CDOM) and landscape properties is examined. These properties explained at best > 40% of the CDOM variability among the study lakes larger than 10 km2. The key “permanent” landscape variables were lake percentage (Lake%) in the uppermost catchment area, and the peat land coverage (Peat%) of the catchment, which indeed was strongly correlated with lake elevation above the sea level. High Lake % indicated low CDOM concentration, while high Peat% indicated the opposite. Relative to the Peat% of the catchment, the CDOM concentrations were, on average, slightly higher in medium-size lakes (area 10–100 km2) than in large lakes (area > 100 km2), while relative to Lake% the concentrations declined more in medium-size lakes.  相似文献   

3.
Large parts of the remaining tropical moist forests of South-east Asia are encroached at their margins by selective logging, rattan harvesting and the establishment of small agroforest plantations under the rainforest canopy. These slight to heavy disturbances affect aboveground forest structure by reducing wood biomass and canopy cover; however, they may also have a profound impact on the belowground compartment. In a lower montane moist forest of Central Sulawesi, we studied the profile totals of fine root biomass (FRBtot, roots <2 mm until 50 cm of soil depth) and of fine root necromass (FRNtot), the vertical distribution of fine root mass, and the fine root live/dead ratio by root coring in 12 forest stands that represented a gradient in forest use (or disturbance) intensity (forest use type A: undisturbed natural forest, B and C: slightly or moderately disturbed forests with selective timber extraction, D: heavily disturbed cacao agroforest systems under a remaining rainforest cover; each forest types being replicated three times). FRBtot decreased significantly from forest A to the disturbed B, C and D forests, and reached less than 60% of the FRBtot value of A in the agroforest systems D. A similar decrease with increasing disturbance intensity was found for FRNtot. Forest disturbance intensity had no significant influence on the vertical distribution of fine root biomass in the profiles. According to correlation and principal components analyses, fractional canopy cover was the most important factor influencing FRBtot and FRNtot, whereas diameter at breast height, stand basal area, stem density, soil pH and base saturation had only a minor or no influence on root mass. A reduction in canopy cover from 90% (forest type A) to 75% (types C and D) was associated with a reduction in FRBtot by about 45% which indicates that timber extraction leads not only to canopy gaps but to corresponding ‘root gaps’ in the soil as well. We conclude that forest encroachment that is widespread in large parts of South-east Asia’s remaining rainforests significantly reduces tree fine root biomass and associated carbon sequestration, even if it is conducted at moderate intensities only.  相似文献   

4.
Previous investigations on Sicilian man made lakes suggested that physical factors, along with the specific morphology and hydrology of the water body, are important in selecting phytoplankton species. In particular, the variations of the z mix/z eu ratio due to the operational procedure to which reservoirs are generally subject were recognised as a trigger allowing the assemblage shift. To investigate if these variations may be considered analogous to those occurring in natural lakes as trophic state and phytoplankton biomass increase, causing a transparency decrease and a contraction of the euphotic depth, phytoplankton were collected in two natural water bodies, one mesotrophic (Lake Biviere di Cesarò) the other eutrophic (Lake Soprano), and compared with those collected in two reservoirs with analogous trophic characteristics (Lake Rosamarina, mesotrophic and Lake Arancio, eutrophic). Particular attention was paid to the dynamics of two key groups: Cyanophytes and chlorophytes. In all four water bodies, transparency mainly depended on chlorophyll level. Annual average value of phytoplankton biomass in the mesotrophic environments was below 2.0 mg l–1, whereas in the eutrophic systems it was well above 10 mg l–1. All water bodies showed the presence of cyanophytes (e.g. Anabaena spp., Anabaenopsis spp., Microcystis spp., Planktothrix spp.) and chlorophytes (e.g. Chlamydomonas spp., Botryococcus spp., Oocystis spp., Scenedesmus spp., Pediastrum spp.), but their relative proportions and body size dimensions were different. In particular, small colonial chlorophytes and large-colony forming cyanophytes were most common in the most eutrophic water bodies, whereas larger colonies of green algae in those with a lower trophic state. The results showed that, under the same climatic conditions, autogenic (increase of biomass, decrease in light penetration and euphotic depth) and allogenic (use of the stored waters, anticipated breaking of the thermocline, increase of the mixing depth) processes may shift the structure of phytoplankton assemblage in the same direction even though the quantity of biomass remains linked to nutrient availability.  相似文献   

5.
1. Nutrient and chlorophyll a levels, and bacterial numbers of 84 glacial lakes in the Tatra Mountains (Slovakia and Poland, Central Europe) were determined to assess the impact of catchment vegetation and water acidity on lake trophic status. 2. Catchment vegetation was the crucial factor governing nutrient content of lakes. 3. Concentrations of organic carbon, organic nitrogen, and chlorophyll a, and bacterial numbers were tightly correlated with total phosphorus (TP) content. Their levels were the highest in forest lakes, then decreased in alpine lakes with decreasing amount of catchment vegetation and soil cover, and were the lowest in lakes situated in bare rocks. 4. The above pattern was further modified by lake water acidity. Concentrations of TP, organic carbon, and chlorophyll a were lower in alpine lakes with pH between 5 and 6 than in more or less acid alpine lakes. Zooplankton was absent in all alpine lakes with pH between 5 and 6. 5. Nitrate concentrations followed an inverse trend to TP; lowest values were in forest lakes, then increased with decreasing amount of catchment soils and vegetation. Within the lakes of the same type of catchment vegetation, nitrate concentrations were negatively correlated to TP. N‐saturation of catchment areas and lake primary production were dominant processes controlling nitrate levels in lakes and nitrate contribution to lake acidification.  相似文献   

6.
Northern lakes are ice-covered for considerable portions of the year, where carbon dioxide (CO2) can accumulate below ice, subsequently leading to high CO2 emissions at ice-melt. Current knowledge on the regional control and variability of below ice partial pressure of carbon dioxide (pCO2) is lacking, creating a gap in our understanding of how ice cover dynamics affect the CO2 accumulation below ice and therefore CO2 emissions from inland waters during the ice-melt period. To narrow this gap, we identified the drivers of below ice pCO2 variation across 506 Swedish and Finnish lakes using water chemistry, lake morphometry, catchment characteristics, lake position, and climate variables. We found that lake depth and trophic status were the most important variables explaining variations in below ice pCO2 across the 506 lakes. Together, lake morphometry and water chemistry explained 53% of the site-to-site variation in below ice pCO2. Regional climate (including ice cover duration) and latitude only explained 7% of the variation in below ice pCO2. Thus, our results suggest that on a regional scale a shortening of the ice cover period on lakes may not directly affect the accumulation of CO2 below ice but rather indirectly through increased mobility of nutrients and carbon loading to lakes. Thus, given that climate-induced changes are most evident in northern ecosystems, adequately predicting the consequences of a changing climate on future CO2 emission estimates from northern lakes involves monitoring changes not only to ice cover but also to changes in the trophic status of lakes.  相似文献   

7.
We show that sediment respiration is one of the key factors contributing to the high CO2 supersaturation in and evasion from Finnish lakes, and evidently also over large areas in the boreal landscape, where the majority of the lakes are small and shallow. A subpopulation of 177 randomly selected lakes (<100 km2) and 32 lakes with the highest total phosphorus (Ptot) concentrations in the Nordic Lake Survey (NLS) data base were sampled during four seasons and at four depths. Patterns of CO2 concentrations plotted against depth and time demonstrate strong CO2 accumulation in hypolimnetic waters during the stratification periods. The relationship between O2 departure from the saturation and CO2 departure from the saturation was strong in the entire data set (r2=0.79, n=2 740, P<0.0001). CO2 concentrations were positively associated with lake trophic state and the proportion of agricultural land in the catchment. In contrast, CO2 concentrations negatively correlated with the peatland percentage indicating that either input of easily degraded organic matter and/or nutrient load from agricultural land enhance degradation. The average lake‐area‐weighted annual CO2 evasion based on our 177 randomly selected lakes and all Finnish lakes >100 km2 ( Rantakari & Kortelainen, 2005 ) was 42 g C m?2 LA (lake area), approximately 20% of the average annual C accumulation in Finnish forest soils and tree biomass (covering 51% of the total area of Finland) in the 1990s. Extrapolating our estimate from Finland to all lakes of the boreal region suggests a total annual CO2 evasion of about 50 TgC, a value upto 40% of current estimates for lakes of the entire globe, emphasizing the role of small boreal lakes as conduits for transferring terrestrially fixed C into the atmosphere.  相似文献   

8.
One of the most important algal groups in Finnish lakes are the Cryptophyceae. Changes in the community structure of Cryptophyceae in a total of 22 lakes belonging to the Vuoksi river basin in eastern Finland were studied. The existence of lakes with water qualities varying from oligotrophic to eutrophic, often loaded by human activities, provides a good opportunity to study the effects of environmental variables on the occurrence and size variation of Cryptophyceae. In the Vuoksi river basin, the main soil type is moraine. Twelve of the lakes were large or moderately large and with clear, i.e. oligo-humic water, and one lake could be described as a small clear water lake. Eight large or moderately large lakes were humic, with a water colour number of 40–70 mg l?1 Pt, including three lakes impacted by nutrient loads. One lake was naturally eutrophic, with a high water colour number of 100 mg l?1 Pt, and was also impacted by municipal and pulping effluents. CCA-ordination analysis grouped the studied lakes into: (1) clear water lakes, (2) humic lakes and (3) the naturally eutrophic brown water lake. In the CCA-ordination analysis based on cell numbers small Cryptophyceae (Cryptomonadales), Rhodomonas lacustris and the katablepharid Katablepharis ovalis were grouped into the first axis, which was positively correlated with Secchi depth (r=0.58) and NO3N - nitrogen (r=0.24) and negatively with Ptot (r=-0.69), PO4P (r=-0.69) and water colour number (r=-0.66). In humic lakes, medium-sized Cryptophyceae were abundant. The naturally eutrophic lake was grouped into first axis, which is positively correlated with Ptot (r=0.69), PO4P (r=0.69) and water colour number (r=0.66). The lake formed a distinct group with large Cryptophyceae. Only in this lake was the heterotrophic Katablepharis ovalis rather abundant. However, large-sized taxa dominated the biomass of the Cryptophyceae assemblage in all lake types excluding large clear water lakes, where Rhodomonas lacustris dominated and large Cryptophyceae co-dominated.  相似文献   

9.
Planted forests are increasing in many upland regions worldwide, but knowledge about their potential effects on algal communities of catchment lakes is relatively unknown. Here, the effects of afforestation were investigated using palaeolimnology at six upland lake sites in the north‐west of Ireland subject to different extents of forest plantation cover (4–64% of catchment area). 210Pb‐dated sediment cores were analysed for carotenoid pigments from algae, stable isotopes of bulk carbon (δ13C) and nitrogen (δ15N), and C/N ratios. In lakes with >50% of their catchment area covered by plantations, there were two‐ to sixfold increases in pigments from cryptophytes (alloxanthin) and significant but lower increases (39–116%) in those from colonial cyanobacteria (canthaxanthin), but no response from biomarkers of total algal abundance (β‐carotene). In contrast, lakes in catchments with <20% afforestation exhibited no consistent response to forestry practices, although all lakes exhibited fluctuations in pigments and geochemical variables due to peat cutting and upland grazing prior to forest plantation. Taken together, patterns suggest that increases in cyanobacteria and cryptophyte abundance reflect a combination of mineral and nutrient enrichment associated with forest fertilization and organic matter influx which may have facilitated growth of mixotrophic taxa. This study demonstrates that planted forests can alter the abundance and community structure of algae in upland humic lakes of Ireland and Northern Ireland, despite long histories of prior catchment disturbance.  相似文献   

10.
Eleven lakes in the South Island of New Zealand were sampled in summer 1996. Water column profiles of ultraviolet radiation (UVR) at four wavelengths and photosynthetically available radiation (PAR) were obtained, along with analyses of dissolved organic carbon (DOC) concentration, total suspended solids (TSS), and catchment vegetation, including forest and natural grassland. Downward attenuation coefficients (K d) and lake water transparency (1/K d) for UVR were examined in relation to these variables. Consistent with other regions of the world, DOC concentration and variables related to DOC were the best predictors of UVR penetration. With our data set, we calculated ratios of water column integrals (RI) of UVR/PAR irradiance, using equations from the literature. At DOC concentrations below 4 g m−3, a progressive increase in RI shows that lakes become increasingly transparent to UVR. We also normalized chromophoric dissolved organic matter (CDOM) absorption of UVR at 380 nm (a 380) to DOC concentration and found that the UVR-absorbing capacity per unit DOC increases with increasing percentage of forest in the catchment area. This indicates that not only DOC concentration but also DOC type or composition is important in determining the transparency of lake water to UVR, and that qualitative differences in DOC are dictated by the type and amount of vegetation present in the lake's catchment area. Received: September 18, 2000 / Accepted: December 14, 2000  相似文献   

11.
Data from two surveys of the Tatra Mountain lakes (Slovakia and Poland) performed in the autumns of 1984 (53 lakes) and 1993 or 1994 (92 lakes) were used to estimate spatial variability in water chemistry in this lake district during the period of maximum European acid deposition. The ionic content of the lakes was generally low, with conductivity (at 20°C) ranging from 1.1 to 4.7 mS m?1 and 23% of the lakes had a depleted carbonate buffering system. Major factors governing differences in lake-water chemistry were bedrock composition and amount of soil and vegetation in their catchment areas. Compared to lakes in the predominantly granitic central part of the Tatra Mountains, lakes in the West Tatra Mountains had higher concentrations of base cations and alkalinity due to the presence of metamorphic rocks in the bedrock. Concentrations of phosphorus, organic carbon, organic nitrogen, and chlorophyll-a were highest in forest lakes and decreased with decreasing density of vegetation and soil cover in the catchment areas. Concentrations of nitrate showed an opposite trend. Several exceptions to these general patterns in chemical and biological composition were due to exceptional geology or hydrology of the lake catchments.  相似文献   

12.
Organic and inorganic carbon concentrations in lakes and the links to catchment and water quality were studied in variable landscapes using the Finnish Lake Survey data base including 874 randomly selected lakes sampled during autumn overturn. The median total organic carbon (TOC) in these boreal lakes was 7.8 mg l?1, the median total inorganic carbon (TIC) 1.6 mg l?1 and the median partial pressure of CO2 (pCO2) 900 μatm. When the data was divided into subgroups according to land use in the catchment, the proportion of TIC of the total carbon (TC) in lakes was highest (31%) in agricultural areas and lowest (10%) in peatland areas. Elevated TIC concentrations were associated with agricultural land in the catchment, whereas elevated TOC concentrations were observed in lakes with high peatland proportion in the catchment. Two contrasting important sources of CO2 in lakes were identified on the basis of statistical analysis of the data; weathering processes in the catchments and decomposition of organic matter. CO2 was also strongly associated with total nutrients TN and TP, implying the importance of quality of organic matter and availability of nutrients for the decomposition processes.  相似文献   

13.
Macrophytes and factors affecting their distribution were studied in 19 coastal lakes of Estonia. The aim of the study was to determine the factors influencing the distribution of macrophytes in coastal lakes and to assess the suitability of valid macrophyte metrics. Our hypothesis was that in coastal lakes most of the macrophyte distribution patterns are caused by lake-specific variables. Morphological, physico-chemical and catchment area characteristics of the lakes varied greatly. Lakes were in different development stages—lakes nearest to the Baltic Sea were younger and more influenced by brackish water and the furthest lakes were older with more freshwater. All that variability was reflected in macrophyte parameters. Factor analysis of environmental indices divided them into three groups—catchment area, morphometric and water chemistry factors. The first factor may be considered as a pressure and the other two as lake-type-specific factors. Lake catchment area parameters had an influence on Bolboschoenus maritimus, Chara tomentosa and Typha latifolia abundance. Morphometric parameters had an influence on the depth distribution of macrophytes and water chemistry factors on the abundance of helophytes. Current indicator species showed more variability associated with lake-specific factors than with changes in status or the influence of pressures.  相似文献   

14.
I addressed the question how lake and catchment morphometry influences water chemistry and water quality over a large scale of European lakes, and developed the regression equations between most closely related morphometric and water quality indices. I analysed the data of 1,337 lakes included in the European Environment Agency (EEA) database, carrying out separate analyses for three basic lake types: large lakes (area ≥100 km2, 138 lakes), shallow lakes (mean depth ≤3 m, 153 lakes) and large and shallow lakes (area ≥100 km2 and mean depth ≤8 m, 35 lakes). The study revealed that in Europe, the lakes towards North are larger but shallower and have smaller catchment areas than the southern lakes; lakes at higher altitudes are deeper and smaller and have smaller catchment areas than the lowland lakes. Larger lakes have generally larger catchment areas and bigger volumes, and they are deeper than smaller lakes, but the relative depth decreases with increasing surface area. The lakes at higher latitudes have lower alkalinity, pH and conductivity, and also lower concentrations of nitrogen and phosphorus while the concentration of organic matter is higher. In the lakes at higher altitudes, the concentration of organic matter and nutrient contents are lower and water is more transparent than in lowland lakes. In larger lakes with larger catchment area, the alkalinity, pH, conductivity and the concentrations of nutrients and organic matter are generally higher than in smaller lakes with smaller catchments. If the lake is deep and/or its residence time is long, the water is more transparent and the concentrations of chlorophyll a, organic matter and nutrients are lower than in shallower lakes with shorter residence times. The larger the catchment area is with respect to lake depth, area and volume, the lower is the water transparency and the higher are the concentrations of the nutrients, organic matter and chlorophyll as well as pH, alkalinity and conductivity. The links between lake water quality and morphometry become stronger towards large and shallow lakes. Along the decreasing gradients of latitude, altitude and relative depth, the present phosphorus concentration and its deviation from the reference concentration increases.  相似文献   

15.
16.
Data for the vegetation periods (May–November) of 1985–2003 were used to collate the nutrient content and biomass of the most important phytoplankton groups in Lake Peipsi (Estonia). Two periods differing in external nutrient load and water level were compared by analysis of variance. The years 1985–1988 were characterized by the highest loads of nitrogen and phosphorus, high water level and cool summers. The years 2000–2003 were distinguished by low or medium water levels and warm summers. The first period showed statistically significantly higher values of total nitrogen (Ntot) and a higher Ntot:Ptot mass ratio. The second period showed a higher content of total phosphorus (Ptot), a higher ratio of dissolved inorganic compounds N to P and higher phytoplankton and cyanobacterial biomasses. Comparison between parts of the lake demonstrated that the differences between the two periods were more evident in the shallower and strongly eutrophic parts, Lake Pihkva and Lake Lämmijärv, than in the largest and deepest part, the moderately eutrophic Lake Peipsi s.s. Temperature and water level acted synergistically and evidently influenced phytoplankton via nutrients, promoting internal loading when the water level was low and the temperature high. The effect of water level was stronger in the shallowest part, Lake Pihkva. The difference in Ptot content between the southern and northern parts was twofold; the Ntot:Ptot mass ratio was significantly lower in the southern parts, and phytoplankton biomass (particularly the biomass of cyanobacteria) was significantly higher for Lake Pihkva and Lake Lämmijärv than for Lake Peipsi s.s.  相似文献   

17.
Carbon to chlorophyll a (C:Chl) ratios, assimilation numbers (A.N.) and turnover times of natural populations of individual species and taxonomic groups were extracted from a long-term database of phytoplankton wet-weight biomass, chlorophyll a concentrations, and primary production in Lake Kinneret, Israel. From a database spanning more than a decade, we selected data for samples dominated by a single species or taxonomic group. The overall average of C:Chl was highest for cyanophytes and lowest for diatoms, while chlorophytes and dinoflagellates showed intermediate values. When converting chlorophyll a to algal cellular carbon this variability should be taken into account. The variability in C:Chl within each phylum and species (when data were available) was high and the variability at any particular sampling date tended to be greater than the temporal variability. The average chlorophyll a-normalized rate of photosynthetic activity of cyanophytes was higher and that of the dinoflagellates lower than that of other phyla. Turnover time of phytoplankton, calculated using primary productivity data at the depth of maximal photosynthetic rate, was longest in dinoflagellates and shortest in cyanophytes, with diatoms and chlorophytes showing intermediate values. The more extreme C:Chl and turnover times of dinoflagellates and cyanobacteria in comparison with chlorophytes and diatoms should be taken into consideration when employed in ecological modeling.  相似文献   

18.
Conifer plantation forestry is recognised as a potential source of diffuse pollution to surface waters and represents a risk to their ecological status. In this study, the water chemistry and Chydoridae (Cladocera) communities of 26 small blanket bog lakes were investigated to assess the impact of plantation forestry. The study was conducted over a 12-month period in 2009?C2010 by comparing lakes with three distinct catchment land uses: (i) unplanted blanket bog only present in the catchment, (ii) mature conifer plantation forests only present in the catchment and (iii) catchments containing mature conifer plantation forests with recently clearfelled areas. All three catchment land uses were replicated across two geologies: sandstone and granite. Lakes with afforested catchments had very high concentrations of plant nutrients (P and N), total dissolved organic carbon (TDOC) and heavy metals (Al and Fe), the highest concentrations being recorded from the clearfelled lakes. Similarly, the chydorid communities differed between lakes of contrasting catchment land use. The dominance of Alonopsis elongata in the unplanted blanket bog lakes shifted to dominance by the smaller bodied Chydorus sphaericus, along with Alonella nana, Alonella excisa and Alonella exigua, in the plantation forestry-effected lakes, consistent with a shift in lake trophy. Our findings have shown that plantation forestry can have a profound impact on the water quality of small peatland lakes, especially at the clearfell stage. The response of the chydorid communities is consistent with plantation forestry exerting a trophic, rather than an acidic or toxic, effect on lake ecosystems.  相似文献   

19.
《Aquatic Botany》2007,86(4):299-308
River plants and water chemistry in wet and dry seasons were sampled in a wide range of rivers with variable catchments in the forest zone of Ghana, in order to examine the relationships between the floristic composition within the river and river water and catchment environmental variables.Plant species occurring in the river or on its seasonally flooded banks along 500 m sample stretches were listed in 26 sites. Sample species richness was low (1–17 species per sample, mean 5.9). Only nine species were recorded that are confined to rivers. Cluster analysis defined five floristic groups which differed in catchment area, geology, turbidity and dissolved minerals.Analysis of water chemistry variables by principal components analysis revealed a strong principal gradient (42% of total variance) related to annual rainfall with low ionic concentrations under high rainfall. The second component described seasonal differences in water chemistry. Nitrate and chloride were more concentrated in the dry season, but sulphate and calcium were more concentrated in the wet season.Catchments with higher forest cover yielded more oligotrophic and less turbid water. Catchment geology influenced water chemistry so that sandstone areas yielded clear water, and ancient peneplain areas with bauxitic soil were characterised by exceptionally low silicon concentrations.The association of macrophyte composition with river chemistry and catchment conditions was somewhat tenuous, due to the low number of species, but the low turbidity, oligotrophic rivers under high rainfall and with a high percentage of species-rich forest cover were the more species rich. Prediction of river water quality at the scale of this study are more readily made from a knowledge of catchment rainfall and forest cover than from assessments of river plant composition.  相似文献   

20.
The regulation of surface water pCO2 was studied in a set of 33 unproductive boreal lakes of different humic content, situated along a latitudinal gradient (57°N to 64°N) in Sweden. The lakes were sampled four times during one year, and analyzed on a wide variety of water chemistry parameters. With only one exception, all lakes were supersaturated with CO2 with respect to the atmosphere at all sampling occasions. pCO2 was closely related to the DOC concentration in lakes, which in turn was mainly regulated by catchment characteristics. This pattern was similar along the latitudinal gradient and at different seasons of the year, indicating that it is valid for a variety of climatic conditions within the boreal forest zone. We suggest that landscape characteristics determine the accumulation and subsequent supply of allochthonous organic matter from boreal catchments to lakes, which in turn results in boreal lakes becoming net sources of atmospheric CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号