首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The epitopes recognized by pathogenic T cells in systemic autoimmune disease remain poorly defined. Certain MHC class II-bound self peptides from autoimmune MRL/lpr mice are not found in eluates from class II molecules of MHC-identical C3H mice. Eleven of 16 such peptides elicited lymph node cell and spleen cell T cell proliferation in both MRL/lpr (stimulation index = 2.03-5.01) and C3H mice (stimulation index = 2.03-3.75). IL-2 and IFN-gamma production were detected, but not IL-4. In contrast to what was seen after immunization, four self peptides induced spleen cell proliferation of T cells from naive MRL/lpr, but not from C3H and C57BL/6.H2(k), mice. These peptides were derived from RNA splicing factor SRp20, histone H2A, beta(2)-microglobulin, and MHC class II I-A(k)beta. The first three peptides were isolated from I-E(k) molecules and the last peptide was bound to I-A(k). T cell responses, evident as early as 1 mo of age, depended on MHC class II binding motifs and were inhibited by anti-MHC class II Abs. Thus, although immunization can evoke peripheral self-reactive T cells in normal mice, the presence in MRL/lpr mice of spontaneous T cells reactive to certain MHC-bound self peptides suggests that these T cells actively participate in systemic autoimmunity. Peptides eluted from self MHC class II molecules may yield important clues to T cell epitopes in systemic autoimmunity.  相似文献   

2.
T cell expression of class II MHC/peptide complexes may be important for maintenance of peripheral self-tolerance, but mechanisms underlying the genesis of class II MHC glycoproteins on T cells are not well resolved. T cell APC (T-APC) used herein were transformed IL-2-dependent clones that constitutively synthesized class II MHC glycoproteins. When pulsed with myelin basic protein (MBP) and injected into Lewis rats, these T-APC reduced the severity of experimental autoimmune encephalomyelitis, whereas unpulsed T-APC were without activity. Normal MBP-reactive clones cultured without APC did not express class II MHC even when activated with mitogens and exposed to IFN-gamma. However, during a 4-h culture with T-APC or macrophage APC, recognition of MBP or mitogenic activation of responder T cells elicited high levels of I-A and I-E expression on responders. Acquisition of class II MHC glycoproteins by responders was resistant to the protein synthesis inhibitor cycloheximide, coincided with transfer of a PKH26 lipophilic dye from APC to responders, and resulted in the expression of syngeneic and allogeneic MHC glycoproteins on responders. Unlike rested I-A- T cell clones, rat thymic and splenic T cells expressed readily detectable levels of class II MHC glycoproteins. When preactivated with mitogens, naive T cells acquired APC-derived MHC class II molecules and other membrane-associated proteins when cultured with xenogeneic APC in the absence of Ag. In conclusion, this study provides evidence that APC donate membrane-bound peptide/MHC complexes to Ag-specific T cell responders by a mechanism associated with the induction of tolerance.  相似文献   

3.
Islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP) has been identified as a novel CD8(+) T cell-specific autoantigen in NOD mice. This study was undertaken to identify MHC class II-specific CD4(+) T cell epitopes of IGRP. Peptides named P1, P2, P3, P4, P5, P6, and P7 were synthesized by aligning the IGRP protein amino acid sequence with peptide-binding motifs of the NOD MHC class II (I-A(g7)) molecule. Peptides P1, P2, P3, and P7 were immunogenic and induced both spontaneous and primed responses. IGRP peptides P1-, P2-, P3-, and P7-induced responses were inhibited by the addition of anti-MHC class II (I-A(g7)) Ab, confirming that the response is indeed I-A(g7) restricted. Experiments using purified CD4(+) and CD8(+) T cells from IGRP peptide-primed mice also showed a predominant CD4(+) T cell response with no significant activation of CD8(+) T cells. T cells from P1-, P3-, and P7-primed mice secreted both IFN-gamma and IL-10 cytokines, whereas P2-primed cells secreted only IFN-gamma. Peptides P3 and P7 prevented the development of spontaneous diabetes and delayed adoptive transfer of diabetes. Peptides P1 and P2 delayed the onset of diabetes in both these models. In summary, we have identified two I-A(g7)-restricted CD4(+) T cell epitopes of IGRP that can modulate and prevent the development of diabetes in NOD mice. These results provide the first evidence on the role of IGRP-specific, MHC class II-restricted CD4(+) T cells in disease protection and may help in the development of novel therapies for type 1 diabetes.  相似文献   

4.
All antibodies (Abs) with effector function are produced in mammalian cells, whereas bacterial production is restricted to smaller targeting fragments (scFv and Fab) without effector functions. In this project, we isolated different peptides that bind one of several Ab effector molecules. We have developed bacterial expression vectors for direct cloning of these peptides as fusions to scFv and Fab, and have obtained targeting fragments that also have the ability to bind Ab effector molecules. Some of these fusions (pepbodies) may also initiate Ab effector functions. We have also genetically inserted T-cell epitopes into Abs with specificity for antigen-presenting cell (APC) surface molecules to target the Ab-T-cell epitope fusions (Troybodies) to APCs. The approach is to exchange loops in Ig constant domains with single copies of well-defined T-cell epitopes. We have shown that a number of such T-cell epitopes are loaded on to MHC class II on APCs and are presented to specific T-cells. An increase in T-cell activation of up to four orders of magnitude is achieved compared with synthetic peptide. Our current goal is to identify all the loops in all Ig constant domains that may be loaded with T-cell epitopes to produce a multi-vaccine.  相似文献   

5.
Intrathymic, Ia-bearing antigen-presenting cells (APC) are believed to play an important role in the development of a mature, functional T-cell repertoire. We used chronic in vivo treatment of neonatal mice with anti-I-A monoclonal Ab (MAb) to examine the expression of I-A and I-E antigens on intrathymic and peripheral APC. Three weeks after continuous treatment with anti-I-A MAb, FACS analysis of unfractionated spleen cells revealed a 75-90% reduction in the number of I-A bearing cells. Splenic antigen-presenting capacity measured by the ability of unseparated or density gradient-enriched APC to stimulate I-A- or I-E-reactive T-cell hybridomas was also greatly reduced. In contrast to the expression of I-A and I-E molecules in the splenic APC, anti-I-A MAb treatment resulted in decreased thymic APC I-A expression without significant changes in I-E as measured by FACS analysis. This was confirmed in functional studies in which allo-I-A- or auto-I-A-reactive T-cell hybridomas could not be stimulated by treated thymic APC. Unlike splenic APC, anti-I-A-treated thymic APC did not differ significantly from normals in their ability to stimulate allo-I-E-reactive T hybridomas. This lack of linkage or comodulation of I-A and I-E expression on thymic but not splenic APC may allow us to study the role of I-A molecules and I-E molecules on the development and expansion of functional, mature T-cell repertoires.  相似文献   

6.
MHC class II molecules influence antigen-specific CD4+ T lymphocyte responses primed by immunization and infection. CD4+ T cell responses are important for controlling infection by many bacterial pathogens including Anaplasma marginale and are observed in cattle immunized with the protective A. marginale outer membrane (OM) vaccine. Immunogenic proteins that comprise the protective OM vaccine include type IV secretion system (T4SS) proteins VirB9-1, VirB9-2 and VirB10, candidates for inclusion in a multiepitope vaccine. Our goal was to determine the breadth of the VirB9-1, VirB9-2 and VirB10 T cell response and MHC class II restriction elements in six cattle with different MHC class II haplotypes defined by DRB3, DQA and DQB allele combinations for each animal. Overlapping peptides spanning each T4SS protein were tested in T cell proliferation assays with autologous antigen-presenting cells (APC) and artificial APC expressing combinations of bovine DR and DQ molecules. Twenty immunostimulatory peptides were identified; three representing two or more epitopes in VirB9-1, ten representing eight or more epitopes in VirB9-2 and seven representing seven or more epitopes in VirB10. Of the eight DRA/DRB3 molecules, four presented 15 peptides, which was biased as DRA/DRB3*1201 presented ten and DRA/DRB3*1101 presented four peptides. Four DQA/DQB molecules composed of two intrahaplotype and two interhaplotype pairs presented seven peptides, of which five were uniquely presented by DQ molecules. In addition, three functional mixed isotype (DQA/DRB3) restriction elements were identified. The immunogenicity and broad MHC class II presentation of multiple VirB9-1, VirB9-2 and VirB10 peptide epitopes justify their testing as a multiepitope vaccine against A. marginale.  相似文献   

7.
Helper (CD4+) T lymphocytes recognize protein Ag as peptides associated to MHC class II molecules. The polymorphism of class II alpha- and beta-chains has a major influence on the nature of the peptides presented to CD4+ T lymphocytes. For instance, T cell responses in H-2k and H-2b mice are directed at different epitopes of the hen egg lysozyme (HEL) molecule. The current studies were undertaken with the aim of defining the role of mixed haplotype I-A (alpha k beta b and alpha b beta k) molecules in T cell responses to HEL in (H-2k x H-2b)F1 mice, as well as the nature of the immunogenic peptides of HEL recognized in the context of I-A alpha k beta b and I-A alpha b beta k. A series of HEL-reactive T cell lines and hybridomas derived from MHC class II heterozygous (C57BL/6 x C3H F1) mice were established. Their responsiveness to HEL and synthetic HEL peptides was analyzed with the use of L cells transfected with either I-A alpha k beta b or I-A alpha b beta k as APC. Out of 28 clonal T cell hybridomas tested, 13 (46%) only responded to HEL presented by I-A alpha k beta b, 11 (40%) by I-A alpha b beta k (and to a minor extent I-A alpha k beta k), only 4 (14%) were primarily restricted by I-Ak, and none by I-Ab. All the I-A alpha k beta b-restricted T cell hybridomas responded to the HEL peptide 46-61 and to its shorter fragment 52-61, even at concentrations as low as 0.3 nM. As this determinant has been previously defined as immunodominant for I-Ak but not for I-Ab mice, these results suggest a role for the I-A alpha k chain in the selection and immunodominance of HEL 52-61 in H-2k mice. The fine specificity of I-A alpha k beta b-restricted T cell hybridomas for a series of different HEL peptides around the sequence 52 to 61 suggests that peptide 52-61 binds to I-A alpha k beta b with higher affinity than to I-A alpha k beta k. The peptides recognized in the context of I-A alpha b beta k and I-A alpha k beta k were not identified.  相似文献   

8.
A single injection of anti-I-Ak antibody (AB) into H-2k mice resulted in abrogation of splenic antigen-presenting cell (APC) function for protein antigen-primed T cells or alloantigen-specific T cells. Spleen cells from anti-I-A-treated mice are not inhibitory in cell mixing experiments when using cloned antigen-specific T cells as indicator cells, thus excluding a role for suppressor cells in the observed defect. Also, nonspecific toxic effects and carry-over of blocking Ab were excluded as causes for the defect. Experiments with anti-I-Ak Ab in (H-2b X H-2k)F1 mice showed abrogation of APC function for T cells specific for both parental I-A haplotypes. In homozygous H-2k mice, anti-I-Ak treatment not only abrogated APC function for I-Ak-restricted cloned T cells but also for I-AekE alpha k-restricted cloned T cells. FACS analysis of spleen cells from anti-I-Ak-treated (H-2b X H-2k)F1 mice revealed the disappearance of all Ia antigens (both I-A and I-E determined), whereas the number of IgM-bearing cells was unaffected. The reappearance of APC function with time after injection was correlated with the reappearance of I-A and I-E antigen expression. In vitro incubation of spleen cells from anti-I-A-treated mice led to the reappearance of Ia antigen expression and APC function within 8 hr. Thus, it appears that B cells (as determined by FACS analysis) and APC (as determined by functional analysis) behave similarly in response to in vivo anti-I-A Ab treatment. We interpret these findings as suggesting that in vivo anti-I-A treatment temporarily reduces the expression of Ia molecules through co-modulation on all Ia-bearing spleen cells, thereby rendering them incompetent as APC. Such modulation of Ia molecules does not occur when spleen cells are incubated in vitro with anti-I-A antibodies. These results imply that a primary defect purely at the level of APC in anti-I-A-treated mice may be responsible for the observed T cell nonresponsiveness when such mice are subsequently primed with antigen.  相似文献   

9.
In an effort to develop peptide vaccines against the influenza virus, we have successfully synthesized a disulfide-linked octameric homodimer that bears four copies of the influenza virus M2 protein ectodomain as well as two copies each of T-helper cell hemagglutinin epitopes, the I-E(d) restricted S1 and the I-A(d) restricted S2 fragments. Peptide attachment was via intermolecular disulfide formation from free sulfhydryl-bearing cysteine derivatives in solution. This reaction was efficient only when the amino-group of the cysteine was Fmoc-protected.  相似文献   

10.
We quantitated the amounts of peptides from hen egg-white lysozyme presented by I-A(k) molecules in APC lines. The large chemical gradient of presentation of the four hen egg-white lysozyme epitopes observed in cell lines expressing HLA-DM or H-2DM (referred to in this study as DM) was significantly diminished in the T2.A(k) line lacking DM. Differences in levels of presentation between wild-type and DM-deficient APC were observed for all four epitopes, but differences were most evident for the highest affinity epitope. As a result of these quantitative differences in display, presentation of all four epitopes to T cells was impaired in the line lacking DM. The binding affinity of the pool of naturally processed peptides from DM-expressing lines was higher than that from the DM-deficient line. Thus, using a direct biochemical approach in APC, we demonstrate that DM influences the selection of peptides bound to MHC class II by favoring high affinity peptides.  相似文献   

11.
T cell reactivity toward self MHC class II molecules has been recognized in syngeneic MLR in a number of studies, where the T cells are believed to recognize the combination of self/nonself peptide and self MHC molecule. We investigated the stimulation of T cell proliferation by synthetic peptides of sequences corresponding to the first polymorphic amino terminal domain of alpha- and beta-chains of self I-A molecules. Both unprimed and primed T cells responded to a number of peptides of alpha 1 and beta 1 domains of self I-Ad molecules. The response was dependent on the presentation of I-Ad peptides by syngeneic APC and was blocked by anti-class II MHC mAb. Upon further investigation it was observed that I-Ad peptides could inhibit the stimulation of Ag-specific MHC class II-restricted T cell hybridoma due to self presentation of peptides rather than to direct binding of free peptides to the TCR, further supporting their affinity/interaction with intact self MHC class II molecules. The peptide I-A beta d 62-78 showed high affinity toward intact self MHC II molecule as determined by the inhibition of Ag-specific T cell stimulation and yet was nonstimulatory for syngeneic T cells, therefore representing an MHC determinant that may have induced self tolerance. Thus we have shown that strong T cell proliferative responses can be generated in normal mice against the peptides derived from self MHC class II molecules and these cells are part of the normal T cell repertoire. Therefore complete tolerance toward potentially powerful immunodominant but cryptic determinants of self Ag may not be necessary to prevent autoimmune diseases.  相似文献   

12.
The transfer of membrane proteins from APC to T cells was initially described in the 1970s, and subsequent work has described two mechanisms of transfer: APC-derived exosomes and direct transfer of small packets, while cells remain conjugated. Using fibroblast APC expressing a GFP-tagged I-E(k) molecule with covalently attached antigenic peptide, we observed a third mechanism in live cell imaging: T cells spontaneously dissociating from APC often capture MHC:peptide complexes directly from the immunological synapse. Using two I-E(k)-restricted murine TCR transgenic T cells with different peptide specificity, we show in this study that the MHC transfer is peptide specific. Using blocking Abs, we found that MHC:peptide transfer in this system requires direct TCR-MHC:peptide interactions and is augmented by costimulation through CD28-CD80 interactions. Capture of the GFP-tagged MHC:peptide complexes correlates with an activated phenotype of the T cell, elevated CD69 with down-modulated TCR. The transferred MHC:peptide molecules transferred to the T cell are associated with molecules that imply continued TCR signaling; p56(lck), phosphotyrosine, and polarization of the actin cytoskeleton.  相似文献   

13.
The MHC-encoded cofactor DM catalyzes endosomal loading of peptides onto MHC class II molecules. Despite evidence from in vitro experiments that DM acts to selectively edit the repertoire of class II:peptide complexes, the consequence of DM expression in vivo, or a predictive pattern of DM activity in the specificity of CD4 T cell responses has remained unresolved. Therefore, to characterize DM function in vivo we used wild-type (WT) or DM-deficient (DM(-/-)) mice of the H-2(d) MHC haplotype and tested the hypothesis that DM promotes narrowing of the repertoire of class II:peptide complexes displayed by APC, leading to a correspondingly selective CD4 T cell response. Surprisingly, our results indicated that DM(-/-) mice do not exhibit a broadened CD4 T cell response relative to WT mice, but rather shift their immunodominance pattern to new peptides, a pattern associated with a change in class II isotype-restriction. Specifically, we found that CD4 T cell responses in WT mice were primarily restricted to the I-A class II molecule, whereas DM(-/-) mice recognize peptides in the context of I-E. The observed shift in isotype-restriction appeared to be due in part to a modification in the peripheral CD4 T cell repertoire available for peptide recognition.  相似文献   

14.
A few cases have been described of antigenic determinants that are broadly presented by multiple class II MHC molecules, especially murine I-E or human DR, in which polymorphism is limited to the beta chain, and the alpha chain is conserved. However, no similar cases have been studied for presentation by class I MHC molecules. Because both domains of the MHC peptide binding site are polymorphic in class I molecules, exploring permissiveness in class I presentation would be of interest, and also such broadly presented antigenic determinants would clearly be useful for vaccine development. We had defined an immunodominant determinant, P18, of the HIV-1 gp160 envelope protein recognized by human and murine CTL. To determine the range of class I MHC molecules that could present this peptide and to determine whether two HIV-1 gp160 Th cell determinants, T1 and HP53, could also be presented by class I MHC molecules, we attempted to generate CTL specific for these three peptides in 10 strains of B10 congenic mice, representing 10 MHC types, and BALB/c mice. P18 was presented by at least four different class I MHC molecules from independent haplotypes (H-2d, p, u, and q to CD8+ CTL. In H-2d and H-2q the presentation was mapped to the D-end class I molecule, and for Dd, a requirement for both the alpha 1 and alpha 2 domains of Dd, not Ld, was found. HP53 was also presented by the same four different class I MHC molecules to CD8+ CTL although at higher concentrations. T1 was presented by class I molecules in three different strains of distinct MHC types (B10.M, H-2f; B10.A, H-2a; and B10, H-2b) to CTL. The CTL specific for P18 and HP53 were shown to be CD8+ and CD4- and to kill targets expressing endogenously synthesized whole gp160 as well as targets pulsed with the corresponding peptide. To compare the site within each peptide presented by the different class I molecules, we used overlapping and substituted peptides and found that the critical regions of each peptide are the similar for all four MHC molecules. Thus, antigenic sites are broadly or permissively presented by class I MHC molecules even without a nonpolymorphic domain as found in DR and I-E, and these sequences may be of broad usefulness in a synthetic vaccine.  相似文献   

15.
Activation of CD4(+) T cells helps establish and sustain CD8(+) T cell responses and is required for the effective clearance of acute infection. CD4-deficient mice are unable to control persistent infection and CD4(+) T cells are usually defective in chronic and persistent infections. We investigated the question of how persistent infection impacted pre-existing lymphocytic choriomeningitis virus (LCMV)-specific CD4(+) T cell responses. We identified class II-restricted epitopes from the entire set of open reading frames from LCMV Armstrong in BALB/c mice (H-2(d)) acutely infected with LCMV Armstrong. Of nine epitopes identified, six were restricted by I-A(d), one by I-E(d) and two were dually restricted by both I-A(d) and I-E(d) molecules. Additional experiments revealed that CD4(+) T cell responses specific for these epitopes were not generated following infection with the immunosuppressive clone 13 strain of LCMV. Most importantly, in peptide-immunized mice, established CD4(+) T cell responses to these LCMV CD4 epitopes as well as nonviral, OVA-specific responses were actively suppressed following infection with LCMV clone 13 and were undetectable within 12 days after infection, suggesting an active inhibition of established helper responses. To address this dysfunction, we performed transfer experiments using both the Smarta and OT-II systems. OT-II cells were not detected after clone 13 infection, indicating physical deletion, while Smarta cells proliferated but were unable to produce IFN-gamma, suggesting impairment of the production of this cytokine. Thus, multiple mechanisms may be involved in the impairment of helper responses in the setting of early persistent infection.  相似文献   

16.
Previous studies have shown that the DM-deficient cell line, T2-I-A(b), is very inefficient at presenting toxic shock syndrome toxin 1 (TSST-1) to T cells, suggesting that I-A(b)-associated peptides play an essential role in the presentation of this superantigen. Consistent with this, the loading of an I-A(b)-binding peptide, staphylococcal enterotoxin B 121-136, onto T2-I-A(b) cells enhanced TSST-1 presentation >1000-fold. However, despite extensive screening, no other peptides have been identified that significantly promote TSST-1 presentation. In addition, the peptide effect on TSST-1 presentation has been demonstrated only in the context of the tumor cell line T2-I-A(b). Here we show that peptides that do not promote TSST-1 presentation can be converted into "promoting" peptides by the progressive truncation of C-terminal residues. These studies result in the identification of two peptides derived from IgGV heavy chain and I-Ealpha proteins that are extremely strong promoters of TSST-1 presentation (47,500- and 12,000-fold, respectively). We have also developed a system to examine the role of MHC class II-associated peptides in superantigen presentation using splenic APC taken directly ex vivo. The data confirmed that the length of the MHC class II-bound peptide plays a critical role in the presentation of TSST-1 by splenic APC and showed that different subpopulations of APC are equally peptide dependent in TSST-1 presentation. Finally, we demonstrated that the presentation of staphylococcal enterotoxin A, like TSST-1, is peptide dependent, whereas staphylococcal enterotoxin B presentation is peptide independent.  相似文献   

17.
The processing by antigen-presenting cells (APC) of the protein hen egg-white lysozyme (HEL) results in the selection of a number of peptide families by the class II major histocompatibility complex (MHC) molecule, I-A(k). Some of these families are expressed in very small amounts, in the order of a few picomoles/10(9) APC. We detected these peptides from an extract of class II MHC molecules by using monoclonal anti-peptide antibodies to capture the MHC-bound peptides prior to their examination by HPLC tandem mass spectrometry. Here, we have identified several members of a family of peptides encompassing residues 20-35, which represent less than 1% of the total HEL peptides. Binding analysis indicated that the core segment of the family was represented by residues 24-32 (SLGNWVCAA). Asn-27 (shown in boldface) is the main MHC-binding residue, mapped as interacting with the P4 pocket of the I-A(k) molecule. Analysis of several T cell hybridomas indicated that three residues contacted the T cell receptor: Tyr-23 (P-1), Leu-25 (P3), and Trp-28 (P5). The HEL peptides isolated from the APC extract were sulfated on Tyr-23, but further analysis showed that this modification did not occur physiologically but took place during the peptide isolation.  相似文献   

18.
Subtle differences oppose CD4+ to CD8+ T cell physiologies that lead to different arrays of effector functions. Interestingly, this dichotomy has also unexpected practical consequences such as the inefficacy of many MHC class II tetramers in detecting specific CD4+ T cells. As a mean to study the CD4+ anti-OVA response in H-2(d) and H-2(b) genetic backgrounds, we developed I-A(d)- and I-A(b)-OVA recombinant MHC monomers and tetramers. We were able to show that in this particular system, despite normal biological activity, MHC class II tetramers failed to stain specific T cells. This failure was shown to be associated with a lack of cooperation between binding sites within the tetramer as measured by surface plasmon resonance. This limited cooperativeness translated into a low "functional avidity" and very transient binding of the tetramers to T cells. To overcome this biophysical barrier, recombinant artificial APC that display MHC molecules in a lipid bilayer were developed. The plasticity and size of the MHC-bearing fluorescent liposomes allowed binding to Ag-specific T cells and the detection of low numbers of anti-OVA T cells following immunization. The same liposomes were able, at 37 degrees C, to induce the full reorganization of the T cell signaling molecules and the formation of an immunological synapse. Artificial APC will allow T cell detection and the dissection of the molecular events of T cell activation and will help us understand the fundamental differences between CD4+ and CD8+ T cells.  相似文献   

19.
Due to critical amino acid changes in the 72-89 sequence, the determinant of human (Hu) basic protein (BP) that induces experimental autoimmune encephalomyelitis (EAE) in Lewis rats most likely differs from rat and guinea pig BP. To discern encephalitogenic sequence(s), the immunodominant epitopes recognized by Hu-BP-specific T cell lines were identified using synthetic peptides that corresponded to the Hu-BP sequence. The Hu-BP-reactive T cell line contained two distinct specificities, one directed at the 87-99 (Hu) sequence restricted by I-E, and the second directed at the 55-74 (Hu) sequence restricted by I-A. T cells specific for the 87-99 determinant recognized both Hu- and Rt-BP, were highly encephalitogenic, and accounted for the experimental autoimmune encephalomyelitis-inducing activity of the Hu-BP line. T cells directed at the S55-74 (Hu) sequence did not recognize Rt-BP and were not encephalitogenic. The same TCR V genes (homologous to the mouse V alpha 2 and V beta 8 families) that we showed previously were utilized preferentially in response to the I-A restricted 72-89 encephalitogenic sequence were also present in T cell lines specific for both the S55-74 and S87-99 epitopes. These data indicate that encephalitogenic activity of BP in Lewis rats is related to discrete T cell epitopes that are present on or cross-react with rat-BP. Furthermore it would appear that genes in the TCR V alpha 2 and V beta 8 families are widely used in response to different BP epitopes restricted by either I-A or I-E molecules.  相似文献   

20.
Following antigenic challenge, MHC-restricted T cell responses are directed against a few dominant antigenic epitopes. Here, evidence is provided demonstrating the importance of APC in modulating the hierarchy of MHC class II-restricted T cell responses. Biochemical analysis of class II:peptide complexes in B cells revealed the presentation of a hierarchy of peptides derived from the Ig self Ag. Functional studies of kappa peptide:class II complexes from these cells indicated that nearly 20-fold more of an immunodominant epitope derived from kappa L chains was bound to class II DR4 compared with a subdominant epitope from this same Ag. In vivo, T cell responses were preferentially directed against the dominant kappa epitope as shown using Ig-primed DR4 transgenic mice. The bias in kappa epitope presentation was not linked to differences in class II:kappa peptide-binding affinity or epitope editing by HLA-DM. Rather, changes in native Ag structure were found to disrupt presentation of the immunodominant but not the subdominant kappa epitope; Ag refolding restored kappa epitope presentation. Thus, Ag tertiary conformation along with processing reactions within APC contribute to the selective presentation of a hierarchy of epitopes by MHC class II molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号