首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Contrary to most other epithelia, trophoblasts in the human placenta, which form the physical barrier between the fetal and the maternal blood circulation, express high numbers of transferrin receptors on their apical cell surface. This study describes the establishment of a polarized trophoblast-like cell line BeWo, which exhibit a high expression of transferrin receptors on the apex of the cells. Cultured on permeable filter supports, BeWo cells formed a polarized monolayer with microvilli on their apical cell surface. Across the monolayer a transepithelial resistance developed of approximately 600 omega.cm2 within 4 d. Depletion of Ca2+ from the medium decreased the resistance to background levels, showing its dependence on the integrity of tight junctions. Within the same period of time the secretion of proteins became polarized. In addition, the compositions of integral membrane proteins at the apical and basolateral plasma membrane domains were distinct as determined by domain-selective iodination. Similar to placental trophoblasts, binding of 125I-labeled transferrin to BeWo monolayers revealed that the transferrin receptor was expressed at both plasma membrane domains. Apical and basolateral transferrin receptors were found in a 1:2 surface ratio and exhibited identical dissociation constants and molecular weights. After uptake, transferrin recycled predominantly to the domain of administration, indicating separate recycling pathways from the apical and basolateral domain. This was confirmed by using diaminobenzidine cytochemistry, a technique by which colocalization of endocytosed 125I-labeled and HRP-conjugated transferrin can be monitored. No mixing of the two types of ligands was observed, when both ligands were simultaneously internalized for 10 or 60 min from opposite domains, demonstrating that BeWo cells possess separate populations of apical and basolateral early endosomes. In conclusion, the trophoblast-like BeWo cell line can serve as a unique model to compare the apical and basolateral endocytic pathways of a single ligand, transferrin, in polarized epithelial cells.  相似文献   

2.
《The Journal of cell biology》1993,122(6):1223-1230
Trophoblast-like BeWo cells form well-polarized epithelial monolayers, when cultured on permeable supports. Contrary to other polarized cell systems, in which the transferrin receptor is found predominantly on the basolateral cell surface, BeWo cells express the transferrin receptor at both apical and basolateral cell surfaces (Cerneus, D.P., and A. van der Ende. 1991. J. Cell Biol. 114: 1149-1158). In the present study we have addressed the question whether BeWo cells use a different sorting mechanism to target transferrin receptors to the cell surface, by examining the biosynthetic and transcytotic pathways of the transferrin receptor in BeWo cells. Using trypsin and antibodies to detect transferrin receptors at the cell surface of filter-grown BeWo cells, we show that at least 80% of newly synthesized transferrin receptor follows a direct pathway to the basolateral surface, demonstrating that the transferrin receptor is efficiently intracellularly sorted. After surface arrival, pulse-labeled transferrin receptor equilibrates between apical and basolateral cell surfaces, due to ongoing transcytotic transport in both directions. The subsequent redistribution takes over 120 min and results in a steady state distribution with 1.5-2.0 times more transferrin receptors at the basolateral surface than at the apical surface. By monitoring the fate of surface-bound 125I-transferrin, internalized either from the apical or basolateral surface transcytosis of the transferrin receptor was studied. About 15% of 125I-transferrin is transcytosed in the basolateral to apical direction, whereas 25% is transcytosed in the opposite direction, indicated that the fraction of receptors involved in transcytosis is roughly twofold higher for the apical receptor pool, as compared to the basolateral pool. Upon internalization, both apical and basolateral receptor pools become redistributed on both surfaces, resulting in a twofold higher number of transferrin receptors at the basolateral surface. Our results indicate that in BeWo cells bidirectional transcytosis is the main factor in surface distribution of transferrin receptors on apical and basolateral surfaces, which may represent a cell type-specific, post-endocytic, sorting mechanism.  相似文献   

3.
In Madin-Darby canine kidney (MDCK) cells (a polarized epithelial cell line) infected with influenza virus, the hemagglutinin behaves as an apical plasma membrane glycoprotein. To determine biochemically the domain on the plasma membrane, apical or basolateral, where newly synthesized hemagglutinin first appears, cells were cultured on Millipore filters to make both cell surface domains independently accessible. Hemagglutinin in virus-infected cells was pulse-labeled, chased, and detected on the plasma membrane with a sensitive trypsin assay. Under all conditions tested, newly made hemagglutinin appeared simultaneously on both domains, with the bulk found in the apical membrane. When trypsin was continuously present on the basolateral surface during the chase, little hemagglutinin was cleaved relative to the amount transported apically. In addition, specific antibodies against the hemagglutinin placed basolaterally had no effect on transport to the apical domain. These observations suggested that most newly synthesized hemagglutinin does not transiently appear on the basolateral surface but rather is delivered directly to the apical surface in amounts that account for its final polarized distribution.  相似文献   

4.
Despite the important role of prolactin (PRL) in mammary gland development and function, little is known about the distribution of the different forms of the prolactin receptor (PRLR) under various physiological circumstances. Here, the distribution of the long (LF) and the short (S3 in mouse) receptor common to both mice and rats was determined by immunofluorescence on frozen sections of virgin, pregnant and lactating mouse mammary gland. Myoepithelial cells were consistently and intensely stained for both receptors. For luminal cells at all stages (ducts and alveoli), a large proportion of PRLR staining was unexpectedly present on the apical face. In the non-lactating state, no basal staining of luminal cells was detectable. During lactation, a proportion of both receptors moved to the basolateral surface. In vitro, HC11 cells showed constitutive expression of LF but expression of S3 only upon the formation of adherent junctions. Tight junction formation was accelerated by incubation in pseudo-phosphorylated PRL, as measured by transepithelial resistance and the expression and placement of the tight junction protein, zonula occludens-1. Once an intact monolayer had formed, all LF and S3 receptors were apical (akin to the non-lactating state) and only apical application of PRL activated the Jak2-STAT5 and ERK pathways. By contrast, basolateral application of PRL resulted in a reduction in basal ERK phosphorylation, suggesting an involvement of a dual specificity protein phosphatase. Normal human breast samples also showed apical PRLRs. These results demonstrate important contextual aspects of PRL-PRLR interactions with implications for the analysis of the role of PRL in breast cancer.  相似文献   

5.
Polymeric immunoglobulin receptor expressed in MDCK cells transcytoses IgA   总被引:48,自引:0,他引:48  
K E Mostov  D L Deitcher 《Cell》1986,46(4):613-621
We expressed cDNA for the rabbit polymeric immunoglobulin receptor in polarized Madin-Darby Canine Kidney epithelial cells, which normally do not produce this receptor. The receptor appeared to function as in vivo; dimeric IgA was transported from the basolateral to the apical surface and released into the apical medium, together with the cleaved fragment of the receptor, known as secretory component. This system enabled us, for the first time, to study quantitatively IgA transcytosis in vitro and thus make the following observations. First, greater than 90% of the newly made receptor that is ultimately cleaved to secretory component and released into the apical medium goes first to the basolateral surface. Second, transport of the receptor does not depend on ligand binding. Third, transcytosis of bound ligand has a t 1/2 of 30 min.  相似文献   

6.
The HT29 cell line, derived from a human colon adenocarcinoma, is able to differentiate if galactose replaces glucose in the culture medium. We have isolated a clone (HT29-18) from this cell line which displays differentiated properties of the parent cell line. HT29-18 cells grown in glucose-containing medium form multiple layers of round cells without specific cell-cell adhesion. In contrast, when grown in galactose-containing medium, they form a monolayer with tight junctions and exhibit a well differentiated brush border at their apical membrane, which faces the culture medium. The polarized properties of HT29-18 cells grown in galactose-containing medium were demonstrated by immunofluorescent techniques with antibodies against 2 plasma membrane proteins. Class I histocompatibility antigens (HLA) and transferrin receptors, 2 well characterized integral membrane proteins, are uniformly distributed on the cell surface of undifferentiated HT29-18 cells, but acquire a polarized distribution during differentiation, localized on the basolateral membranes and absent from the apical surface. Binding of 125I-labeled transferrin was used to determine transferrin receptor distribution on apical and basolateral membranes. Functional tight junctions in the differentiated cultures were demonstrated, as the monolayer was impermeable to a permeation dye (ruthenium red) as well as to antibodies. The sealing of these tight junctions is, as in vivo, Ca++-dependent as they could be opened by a short incubation in Ca++-free medium.  相似文献   

7.
The membrane glycoprotein, PAS-O, is a major differentiation antigen on mammary epithelial cells and is located exclusively in the apical domain of the plasma membrane. We have used 734B cultured human mammary carcinoma cells as a model system to study the role of tight junctions, cell-substratum contacts, and submembraneous cytoskeletal elements in restricting PAS-O to the apical membrane. Immunofluorescence and immunoelectronmicroscopy experiments demonstrated that while tight junctions demarcate PAS-O distribution in confluent cultures, apical polarity could be established at low culture densities when cells could not form tight junctions with neighboring cells. In such cultures the boundary between apical and basal domains was observed at the point of cell contact with the substratum. Immunocytochemical analysis of these cell-substratum contacts revealed the absence of a characteristic basement membrane containing laminin, collagen (IV), and heparan sulfate proteoglycan. However, serum-derived vitronectin was associated with the basal cell surface and the cells were shown to express the vitronectin receptor on their basolateral membranes. Additionally, treatment of cultures with antibodies against the vitronectin receptor caused cell detachment. We suggest, then, that interactions between vitronectin and its receptor, are responsible for establishment of membrane domains in the absence of tight junctions. The role of cytoskeletal elements in restricting PAS-O distribution was examined by treating cultures with cytochalasin D, colchicine, or acrylamide. Cytochalasin D led to a redistribution of PAS-O while colchicine and acrylamide did not. We hypothesize that PAS-O is restricted to the apical membrane by interactions with a microfilament network and that the cytoskeletal organization is dependent upon cell-cell and cell-substratum interactions.  相似文献   

8.
Carcinoma cells typically show little or no polarity as compared to normal, differentiated epithelial cells. We have studied polarity in two established human breast carcinoma cell lines, T47D and MCF-7, by various techniques (electron microscopic enzyme- and immunocytochemistry, freeze-fracture) and show that one of them (MCF-7) is characterized by a high degree of polarity. Thus, in contrast to T47D cells, MCF-7 cells in monolayer culture form apical tight junctions, do not allow a ricin-horseradish peroxidase conjugate, which binds to terminal galactose residues on the apical surface, to stain the basolateral membrane domain, and express a surface antigen (MFGM-A) only in the apical surface membrane domain, as do normal mammary epithelial cells in vivo. This polarization is independent of a basement membrane, since it is maintained when MCF-7 cells, which do not deposit type IV collagen themselves, are grown directly on plastic. Moreover, even though MCF-7 cells express estrogen receptors rather homogeneously, estrogen has no effect on this polarity, neither in vitro nor after transplantation to nude mice. We conclude that polarity is a stable, differentiated feature of MCF-7 cells.  相似文献   

9.
Madin-Darby canine kidney (MDCK) cells (strain I) grown on 0.45 micron pore size nitrocellulose filters formed monolayers which were highly polarized and had high transepithelial electrical resistance (greater than 3000 ohm X cm2). Morphometric analysis showed that the area of the basolateral surface domain was 7.6 times larger than that of the apical. The uptake of fluid-phase markers [3H]inulin and horseradish peroxidase (HRP) was studied from the apical and the basal side of the monolayer. Uptake of [3H]inulin was biphasic and the rate during the first 40 min corresponded to a fluid phase uptake of 20.5 X 10(-8) nl/min per cell from the basolateral side, and 1.0 X 10(-8) nl/min per cell from the apical side. Electron micrographs of the monolayers after HRP uptake showed that the marker was rapidly delivered into endosome-like vesicles and into multivesicular bodies. No labelling of the Golgi complex could be observed during 2 h of uptake. Evidence was obtained for the transport of fluid phase markers across the cell. HRP and fluorescein isothiocyanate-dextran crossed the monolayers in either direction at a rate corresponding to approximately 3 X 10(-8) nl of fluid/min/cell. Adding the transcytosis rate to the rate of fluid accumulation into the cell yielded a total basolateral endocytic rate which was 6-fold greater than the apical rate. When the uptake rates were normalized for membrane area the apical and basolateral endocytic rates were about equal per unit cell surface area.  相似文献   

10.
Classically, the polymeric immunoglobulin receptor and its ligand, IgA, are thought to be sorted from basolateral early endosomes into transcytotic vesicles that directly fuse with the apical plasma membrane. In contrast, we have found that in MDCK cells IgA is delivered from basolateral endosomes to apical endosomes and only then to the apical cell surface. When internalized from the basolateral surface of MDCK cells IgA is found to accumulate under the apical plasma membrane in a compartment that is accessible to two apically added membrane markers: anti-secretory component Fab fragments, and avidin internalized from the biotinylated apical pole of the cell. This accumulation occurs in the presence of apical trypsin, which prevents internalization of the ligand from the apical cell surface. Using a modification of the diaminobenzidine density-shift assay, we estimate that approximately 80% of basolaterally internalized IgA resides in the apical endosomal compartment. In addition, approximately 50% of basolaterally internalized transferrin, a basolateral recycling protein, has access to this apical endosomal compartment and is efficiently recycled back to the basolateral surface. Microtubules are required for the organization of the apical endosomal compartment and it is dispersed in nocodazole-treated cells. Moreover, this compartment is largely inaccessible to fluid-phase markers added to either pole of the cell, and therefore seems analogous to the recycling endosome described in nonpolarized cells. We propose a model in which transcytosis is not a specialized pathway that uses unique transcytotic vesicles, but rather combines portions of pathways used by non- transcytosing molecules.  相似文献   

11.
Scatter Factor, also known as Hepatocyte Growth Factor (SF/HGF), has pleiotropic functions including direct control of cell-cell and cell- substrate adhesion in epithelia. The subcellular localization of the SF/HGF receptor is controversial. In this work, the cell surface distribution of the SF/HGF receptor was studied in vivo in epithelial tissues and in vitro in polarized MDCK monolayers. A panel of monoclonal antibodies against the beta chain of the SF/HGF receptor stained the basolateral but not the apical surface of epithelia lining the lumen of human organs. Radiolabeled or fluorescent-tagged anti- receptor antibodies selectively bound the basolateral cell surface of MDCK cells, which form a polarized monolayer sealed by intercellular junctions, when grown on polycarbonate filters in a two-chamber culture system. The receptor was concentrated around the cell-cell contact zone, showing a distribution pattern overlapping with that of the cell adhesion molecule E-cadherin. The basolateral localization of the SF/HGF receptor was confirmed by immunoprecipitation after domain selective cell surface biotinylation. When cells were fully polarized the SF/HGF receptor became resistant to non-ionic detergents, indicating interaction with insoluble component(s). In pulse-chase labeling and surface biotinylation experiments, the newly synthesized receptor was found exclusively at the basolateral surface. We conclude that the SF/HGF receptor is selectively exposed at the basolateral plasma membrane domain of polarized epithelial cells and is targeted after synthesis to that surface by direct delivery from the trans-Golgi network.  相似文献   

12.
《The Journal of cell biology》1990,111(6):2893-2908
A procedure employing streptolysin O to effect the selective permeabilization of either the apical or basolateral plasma membrane domains of MDCK cell monolayers grown on a filter support was developed which permeabilizes the entire monolayer, leaves the opposite cell surface domain intact, and does not abolish the integrity of the tight junctions. This procedure renders the cell interior accessible to exogenous macromolecules and impermeant reagents, permitting the examination of their effects on membrane protein transport to the intact surface. The last stages of the transport of the influenza virus hemagglutinin (HA) to the apical surface were studied in pulse-labeled, virus-infected MDCK cells that were incubated at 19.5 degrees C for 90 min to accumulate newly synthesized HA in the trans-Golgi network (TGN), before raising the temperature to 35 degrees C to allow synchronized transport to the plasma membrane. In cells permeabilized immediately after the cold block, 50% of the intracellular HA molecules were subsequently delivered to the apical surface. This transport was dependent on the presence of an exogenous ATP supply and was markedly inhibited by the addition of GTP-gamma-S at the time of permeabilization. On the other hand, the GTP analogue had no effect when it was added to cells that, after the cold block, were incubated for 15 min at 35 degrees C before permeabilization, even though at this time most HA molecules were still intracellular and their appearance at the cell surface was largely dependent on exogenous ATP. These findings indicate that GTP-binding proteins are involved in the constitutive process that effects vesicular transport from the TGN to the plasma membrane and that they are charged early in this process. Transport of HA to the cell surface could be made dependent on the addition of exogenous cytosol when, after permeabilization, cells were washed to remove endogenous cytosolic components. This opens the way towards the identification of cell components that mediate the sorting of apical and basolateral membrane components in the TGN and their polarized delivery to the cell surface.  相似文献   

13.
《The Journal of cell biology》1994,126(6):1509-1526
MDCKII cells differentiate into a simple columnar epithelium when grown on a permeable support; the monolayer is polarized for transport and secretion. Individual cells within the monolayer continue to divide at a low rate without disturbing the function of the epithelium as a barrier to solutes. This presents an interesting model for the study of mitosis in a differentiated epithelium which we have investigated by confocal immunofluorescence microscopy. We monitored the distribution of microtubules, centrioles, nucleus, tight junctions, and plasma membrane proteins that are specifically targeted to the apical and basolateral domains. The stable interphase microtubule cytoskeleton was rapidly disassembled at prophase onset and reassembled at cytokinesis. As the interphase microtubules disassembled at prophase, the centrioles moved from their interphase position at the apical membrane to the nucleus and acquired the ability to organize microtubule asters. Orientation of the spindle parallel to the plane of the monolayer occurred between late prophase and metaphase and persisted through cytokinesis. The cleavage furrow formed asymmetrically perpendicular to the plane of the monolayer initiating at the basolateral side and proceeding to the apical domain. The interphase microtubule network reformed after the centrioles migrated from the spindle poles to resume their interphase apical position. Tight junctions (ZO-1), which separate the apical from the basolateral domains, remained assembled throughout all phases of mitosis. E-cadherin and a 58-kD antigen maintained their basolateral plasma membrane distributions, and a 114- kD antigen remained polarized to the apical domain. These proteins were useful for monitoring the changes in shape of the mitotic cells relative to neighboring cells, especially during telophase when the cell shape changes dramatically. We discuss the changes in centriole position during the cell cycle, mechanisms of spindle orientation, and how the maintenance of polarized plasma membrane domains through mitosis may facilitate the rapid reformation of the polarized interphase cytoplasm.  相似文献   

14.
The labeling of specific cell surface proteins with biotin was used to examine both protein distribution and delivery of newly synthesized proteins to the apical and basolateral cell surface in A6 cells. Steady-state metabolic labeling with [35S]methionine followed by specific cell surface biotinylation demonstrated polarization of membrane proteins. The delivery of newly synthesized proteins to the apical or basolateral cell surface was examined by metabolic labeling with [35S]methionine using a pulse-chase protocol in combination with specific cell surface biotinylation. Newly synthesized biotinylated proteins at the apical cell surface reached a maximum after a 5 min chase, and then fell over the remainder of a 2 hr chase. The bulk flow of newly synthesized proteins to the basolateral membrane slowly rose to a maximum after 90 min. The detergent Triton X-114 was used to examine delivery of hydrophilic and hydrophobic proteins to the cell surface. Delivery of both hydrophilic and hydrophobic proteins to the apical cell surface reached a maximum 5 to 10 min into the chase period. The arrival of hydrophilic proteins at the basolateral surface showed early delivery and a maximum peak delivery at 120 min into the chase period. In contrast, only an early peak of delivery of newly synthesized hydrophobic proteins to the basolateral membrane was observed.This work was supported by grants from the American Heart Association, the National Kidney Foundation of the Delaware Valley, and from the Department of Veterans Affairs. T.R.K. is a recipient of an Established Investigatorship Award from the American Heart Association.  相似文献   

15.
The polarity of epithelial cells is dependent on their ability to target proteins and lipids in a directional fashion. The trans-Golgi network, the endosomal compartment, and the plasma membrane act as sorting stations for proteins and lipids. The site of intracellular sorting and pathways used for the apical delivery of glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) are largely unclear. Using biochemical assays and confocal and video microscopy in living cells, we show that newly synthesized GPI-APs are directly delivered to the apical surface of fully polarized Madin-Darby canine kidney cells. Impairment of basolateral membrane fusion by treatment with tannic acid does not affect the direct apical delivery of GPI-APs, but it does affect the organization of tight junctions and the integrity of the monolayer. Our data clearly demonstrate that GPI-APs are directly sorted to the apical surface without passing through the basolateral membrane. They also reinforce the hypothesis that apical sorting of GPI-APs occurs intracellularly before arrival at the plasma membrane.  相似文献   

16.
Zinc uptake mechanisms at the apical and basolateral membrane borders of caco-2 cells were examined. This human-derived cell line possesses many morphological and functional characteristics of absorptive small intestinal cells. By day 14, confluent and well-differentiated monolayers were formed when the cells were grown on porous polycarbonate filters. Labelled zinc was placed on the apical or basal side of the monolayer and its uptake by the cells, as well as its transport across the monolayer, were measured. Zinc uptake by the cells from the apical side was found to be a saturable process (Kt = 41 microM; Vmax = 0.3 nmols/cm2/10 min) with a diffusional term at higher concentrations (1.0 sec/cm). Apical uptake was not affected by metabolic inhibitors or potential zinc ligands. Zinc uptake from the basolateral side was concentration dependent (Kd = 1.3 sec/cm) and was partially inhibited (30%) by ouabain and vanadate, suggesting that the (Na-K)-ATPase on the basolateral membrane is involved in the serosal uptake of zinc by the cell. Transport of zinc across the monolayers from the apical or basolateral compartment was concentration dependent and was not affected by metabolic inhibitors. Zinc transport from the basolateral side was greater than 2-fold greater than apical transport. Hence, separate mechanisms can be distinguished with respect to zinc uptake at the apical and basolateral membranes of caco-2 cells.  相似文献   

17.
Summary We have demonstrated that a human endometrial cell line, HEC-1, maintains a high transepithelial electrical resistance, directionally transports fluids across the cell monolayer, and releases enveloped viruses at distinct plasma membrane domains: influenza virus is released at the apical surfaces and vesicular stomatitis virus (VSV) at the basolateral surfaces. In addition, we have examined the expression of domain-specific endogenous proteins, including the polyimmunoglobulin receptor. Multiple endogenous polypeptides were found to be secreted into the culture medium at basolateral surfaces, whereas no secretion of specific polypeptides was observed from apical cell surfaces. Distinct patterns of endogenous proteins were also observed on apical and basolateral cell surfaces, with a much more complex polypeptide pattern on the basolateral membranes. Using surface biotinylation and immunofluorescence, the polyimmunoglobulin receptor was found to be expressed on the basolateral surfaces of HEC-1 monolayers. The specific binding of poly-immunoglobulin A (pIgA) was found to occur on the basolateral surface, and was followed by transcytosis to the apical surface and release into the apical medium. The observed characteristics indicate that the endometrium-derived HEC-1 epithelial cell line can be employed as a model for studies of protein transport in polarized epithelial cells of human endometrial tissues, as well as for studies of the interaction of microorganisms with epithelial cells in the genital tract.  相似文献   

18.
Apical sorting by galectin-3-dependent glycoprotein clustering   总被引:1,自引:0,他引:1  
Epithelial cells are characterized by their polarized organization based on an apical membrane that is separated from the basolateral membrane domain by tight junctions. Maintenance of this morphology is guaranteed by highly specific sorting machinery that separates lipids and proteins into different carrier populations for the apical or basolateral cell surface. Lipid-raft-independent apical carrier vesicles harbour the beta-galactoside-binding lectin galectin-3, which interacts directly with apical cargo in a glycan-dependent manner. These glycoproteins are mistargeted to the basolateral membrane in galectin-3-depleted cells, dedicating a central role to this lectin in raft-independent sorting as apical receptor. Here, we demonstrate that high-molecular-weight clusters are exclusively formed in the presence of galectin-3. Their stability is sensitive to increased carbohydrate concentrations, and cluster formation as well as apical sorting are perturbed in glycosylation-deficient Madin-Darby canine kidney (MDCK) II cells. Together, our data suggest that glycoprotein cross-linking by galectin-3 is required for apical sorting of non-raft-associated cargo.  相似文献   

19.
Tight junctions in epithelial cells have been postulated to act as barriers inhibiting lateral diffusion of lipids and proteins between the apical and basolateral plasma membrane domains. To study the fence function of the tight junction in more detail, we have fused liposomes containing the fluorescent phospholipid N-Rh-PE into the apical plasma membrane of MDCK cells. Liposome fusion was induced by low pH and mediated by the influenza virus hemagglutinin, which was expressed on the apical cell surface after viral infection. Redistribution of N-Rh-PE to the basolateral surface, monitored at 0 degree C by fluorescence microscopy, appeared to be dependent on the transbilayer orientation of the fluorescent lipids in the plasma membrane. Asymmetric liposomes containing over 85% of the N-Rh-PE in the external bilayer leaflet, as shown by a phospholipase A2 assay, were generated by octyl beta-D-glucoside dialysis. When these asymmetric liposomes were fused with the apical plasma membrane, fluorescent lipid did not move to the basolateral side. Symmetric liposomes which contained the marker in both leaflets were obtained by freeze-thawing asymmetric liposomes or by reverse-phase evaporation. Upon fusion of these with the apical membrane, redistribution to the basolateral membrane occurred immediately. Redistribution could be observed with asymmetric liposomes only when the tight junctions were opened by incubation in a Ca2+-free medium. During the normal experimental manipulations the tight junctions remained intact since a high trans-epithelial electrical resistance was maintained over the cell monolayer. We conclude that the tight junction acts as a diffusion barrier for the fluorescent phospholipid N-Rh-PE in the exoplasmic leaflet of the plasma membrane but not in the cytoplasmic leaflet.  相似文献   

20.
Analysis of epithelial cell surface polarity with monoclonal antibodies   总被引:3,自引:0,他引:3  
The hybridoma technique of K?hler and Milstein was utilized to isolate hybrid cell lines secreting monoclonal antibodies against cell surface proteins on the Madin-Darby canine kidney (MDCK) epithelial cell line. These antibodies were employed as high-affinity ligands to study the development and maintenance of epithelial cell polarity in MDCK cells and for the identification of nephron segment-specific proteins. Using standard procedures, we were able to immunoprecipitate glycoproteins with molecular weights of 25,000 ( 25K ), 35,000 ( 35K ), and 50,000 (50K). Immunofluorescence and immunoelectron microscopy of MDCK demonstrated that the 35K and 50K proteins could be localized on both the apical and basolateral membranes of subconfluent cells but primarily on the basolateral membranes of confluent cells. By determining the cell surface distribution of the 35K and 50K proteins on MDCK cells during growth into a confluent monolayer, and after the experimental disruption of tight junctions, evidence was obtained that the polarized distribution of these cell surface glycoproteins required the presence of tight junctions. We propose that confluent MDCK cells have a mechanism that is responsible for the establishment and maintenance of epithelial apical and basolateral membranes as distinct cell surface domains. These monoclonal antibodies were also used to localize the 25K and 35K glycoproteins in the kidney. The distribution of these proteins was mapped by immunofluorescence and immunoelectron microscopy and was determined to be on the basolateral membranes of epithelial cells in only certain tubular segments of the nephron. The possible functional implications of these distributions are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号