首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
王佳一  邹伟  刘晶 《生物工程学报》2020,36(10):1970-1978
当前新型冠状病毒肆虐,全球确诊患者超过3 500万例,累计死亡患者超过50万例,对于突发疫情,临床尚缺乏有效特异性治疗,新型冠状病毒已成为危害人类健康、社会发展的主要公共卫生问题。间充质干细胞具有抗炎和免疫调节功能,可降低重症患者体内由冠状病毒引发的细胞因子风暴,改善患者肺部纤维化,促进损伤肺组织修复,有望降低新冠肺炎的死亡率。目前已开展多项间充质干细胞治疗新型冠状病毒肺炎临床试验,初步证实了间充质干细胞应用在新冠肺炎方面的安全及有效性。在间充质干细胞治疗新冠肺炎取得进展的同期,还应看到该疗法独有特点及疫情严峻形势对临床试验开和及评价带来的问题与挑战,包括临床试验方案设计、干细胞质量管理以及治疗中的伦理考量。只有对其加以重视,才能保证在严峻疫情下安全有效地开展间充质干细胞治疗新型冠状病毒肺炎的临床试验。  相似文献   

2.
COVID-19 is an infectious disease caused by the SARSCoV-2 virus, which has given rise to a global sanitary emergency. The clinical characteristics of COVID-19 are varied and can range from an asymptomatic infection to a mild to severe pneumonia. Recent studies have shown that different laboratory parameters become altered in these patients, and as such are useful as biomarkers to assess the progression of the disease and categorize patients that may present a severe and/or fatal clinical condition. This review analyzes biochemical and immunological markers that become altered in COVID-19 patients and their impact on different organs at a hepatic, cardiac, renal and pancreatic level, as well as markers of inflammation, analyzing their implications in the evolution of the disease.  相似文献   

3.
当前因SARS-CoV-2感染而引起的2019新型冠状病毒肺炎(COVID-19)肆虐全球,严重危害人类健康。SARS-CoV-2感染性强,危重症患者死亡率高,尽管各种各样的治疗正在进行临床试验,但目前尚无有效的治疗方法。间充质干细胞(mesenchymal stem cell,MSC)在临床前试验中对多种疾病有良好的治疗效果,因而受到了广泛地关注。MSC可能利用分化潜能诱导分化成功能性肺样细胞、免疫调节与免疫细胞互作、抑制炎症来降低促炎细胞因子分泌、迁移和归巢靶向损伤肺部、抗病毒作用来减少肺上皮细胞中的病毒复制、产生细胞外囊泡来修复受损的组织,进而使COVID-19患者肺功能逐渐恢复正常,缓解并达到治疗COVID-19的目的。综合讨论了COVID-19的基本特征和当前主要治疗手段,同时总结了MSC在COVID-19中的临床研究和当前面临的挑战,探讨了MSC治疗COVID-19的应用前景,为MSC在COVID-19中的治疗提供了理论基础和现实依据。  相似文献   

4.
The new coronavirus, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which emerged in December 2019 in Wuhan, China, has reached worldwide pandemic proportions, causing coronavirus disease 2019 (COVID-19). The clinical manifestations of COVID-19 vary from an asymptomatic disease course to clinical symptoms of acute respiratory distress syndrome and severe pneumonia. The lungs are the primary organ affected by SARS-CoV-2, with a very slow turnover for renewal. SARS-CoV-2 enters the lungs via angiotensin-converting enzyme 2 receptors and induces an immune response with the accumulation of immunocompetent cells, causing a cytokine storm, which leads to target organ injury and subsequent dysfunction. To date, there is no effective antiviral therapy for COVID-19 patients, and therapeutic strategies are based on experience treating previously recognized coronaviruses. In search of new treatment modalities of COVID-19, cell-based therapy with mesenchymal stem cells (MSCs) and/or their secretome, such as soluble bioactive factors and extracellular vesicles, is considered supportive therapy for critically ill patients. Multipotent MSCs are able to differentiate into different types of cells of mesenchymal origin, including alveolar epithelial cells, lung epithelial cells, and vascular endothelial cells, which are severely damaged in the course of COVID-19 disease. Moreover, MSCs secrete a variety of bioactive factors that can be applied for respiratory tract regeneration in COVID-19 patients thanks to their trophic, anti-inflammatory, immunomodulatory, anti-apoptotic, pro-regenerative, and proangiogenic properties.  相似文献   

5.
《Cytotherapy》2022,24(8):755-766
Currently, treating coronavirus disease 2019 (COVID-19) patients, particularly those afflicted with severe pneumonia, is challenging, as no effective pharmacotherapy for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exists. Severe pneumonia is recognized as a clinical syndrome characterized by hyper-induction of pro-inflammatory cytokine production, which can induce organ damage, followed by edema, dysfunction of air exchange, acute respiratory distress syndrome, acute cardiac injury, secondary infection and increased mortality. Owing to the immunoregulatory and differentiation potential of mesenchymal stem cells (MSCs), we aimed to outline current insights into the clinical application of MSCs in COVID-19 patients. Based on results from preliminary clinical investigations, it can be predicted that MSC therapy for patients infected with SARS-CoV-2 is safe and effective, although multiple clinical trials with a protracted follow-up will be necessary to determine the long-term effects of the treatment on COVID-19 patients.  相似文献   

6.
The ongoing outbreak of coronavirus disease 2019 (COVID-19) caused by the novel severe acute respiratory syndrome coronavirus 2 has become a sudden public emergency of international concern and seriously threatens millions of people’s life health. Two current studies have indicated a favorable role for mesenchymal stem/stromal cells (MSCs) in clinical remission of COVID-19 associated pulmonary diseases, yet the systematical elaboration of the therapeutics and underlying mechanism is far from satisfaction. In the present review, we summarize the therapeutic potential of MSCs in COVID-19 associated pulmonary diseases such as pneumonia induced acute lung injury, acute respiratory distress syndrome, and pulmonary fibrosis. Furthermore, we review the underlying mechanism of MSCs including direct- and trans-differentiation, autocrine and paracrine anti-inflammatory effects, homing, and neovascularization, as well as constitutive microenvironment. Finally, we discuss the prospects and supervision of MSC-based cytotherapy for COVID-19 management before large-scale application in clinical practice. Collectively, this review supplies overwhelming new references for understanding the landscapes of MSCs in the remission of COVID-19 associated pulmonary diseases.  相似文献   

7.
The coronavirus disease 2019 (COVID-19) produces severe respiratory symptoms such as bilateral pneumonia associated to a high morbidity and mortality, especially in patients of advanced age. Vitamin D deficiency has been reported in several chronic conditions associated with increased inflammation and dysregulation of the immune system. Vitamin D in modulates immune function too. Vitamin D receptor (VDR) is expressed by most immune cells, including B and T lymphocytes, monocytes, macrophages, and dendritic cells and the signalling of vitamin D and VDR together has an anti-inflammatory effect. Some studies have reported that vitamin D treatment could be useful for the prevention and treatment of COVID-19 because vitamin D plays an important role as a modulator of immunocompetence. Over the last few months, some studies have hypothesized the possible beneficial effect of vitamin D supplementation in patients with COVID-19 in order to improve the immune balance and prevent the hyperinflammatory cytokine storm. Some preliminary studies have already shown promising results with vitamin D supplementation in hospitalized COVID-19 patients. Vitamin D should be administered daily until adequate levels are achieved due to vitamin D behaves as a negative acute phase reactant (APR). Despite the lack of evidence on specific doses of vitamin D to treat COVID-19 in older adults, authors consider it is necessary to standardize the use in clinical practice. These recommendations advice supplement vitamin D in a protocoled fashion based on expert opinions, level of evidence 5.  相似文献   

8.
Rationale: Coronavirus disease 2019 (COVID-19) has caused a global pandemic. A classifier combining chest X-ray (CXR) with clinical features may serve as a rapid screening approach.Methods: The study included 512 patients with COVID-19 and 106 with influenza A/B pneumonia. A deep neural network (DNN) was applied, and deep features derived from CXR and clinical findings formed fused features for diagnosis prediction.Results: The clinical features of COVID-19 and influenza showed different patterns. Patients with COVID-19 experienced less fever, more diarrhea, and more salient hypercoagulability. Classifiers constructed using the clinical features or CXR had an area under the receiver operating curve (AUC) of 0.909 and 0.919, respectively. The diagnostic efficacy of the classifier combining the clinical features and CXR was dramatically improved and the AUC was 0.952 with 91.5% sensitivity and 81.2% specificity. Moreover, combined classifier was functional in both severe and non-serve COVID-19, with an AUC of 0.971 with 96.9% sensitivity in non-severe cases, which was on par with the computed tomography (CT)-based classifier, but had relatively inferior efficacy in severe cases compared to CT. In extension, we performed a reader study involving three experienced pulmonary physicians, artificial intelligence (AI) system demonstrated superiority in turn-around time and diagnostic accuracy compared with experienced pulmonary physicians.Conclusions: The classifier constructed using clinical and CXR features is efficient, economical, and radiation safe for distinguishing COVID-19 from influenza A/B pneumonia, serving as an ideal rapid screening tool during the COVID-19 pandemic.  相似文献   

9.
In this perspective, the potential application of stem cells for the treatment of COVID-19 related pneumonia and their potential mechanism of action have been overviewed.  相似文献   

10.
COVID-19 displays diverse disease severities and symptoms including acute systemic inflammation and hypercytokinemia, with subsequent dysregulation of immune cells. Bacterial superinfections in COVID-19 can further complicate the disease course and are associated with increased mortality. However, there is limited understanding of how SARS-CoV-2 pathogenesis and hypercytokinemia impede the innate immune function against bacterial superinfections. We assessed the influence of COVID-19 plasma hypercytokinemia on the functional responses of myeloid immune cells upon bacterial challenges from acute-phase COVID-19 patients and their corresponding recovery-phase. We show that a severe hypercytokinemia status in COVID-19 patients correlates with the development of bacterial superinfections. Neutrophils and monocytes derived from COVID-19 patients in their acute-phase showed an impaired intracellular microbicidal capacity upon bacterial challenges. The impaired microbicidal capacity was reflected by abrogated MPO and reduced NETs production in neutrophils along with reduced ROS production in both neutrophils and monocytes. Moreover, we observed a distinct pattern of cell surface receptor expression on both neutrophils and monocytes, in line with suppressed autocrine and paracrine cytokine signaling. This phenotype was characterized by a high expression of CD66b, CXCR4 and low expression of CXCR1, CXCR2 and CD15 in neutrophils and low expression of HLA-DR, CD86 and high expression of CD163 and CD11b in monocytes. Furthermore, the impaired antibacterial effector function was mediated by synergistic effect of the cytokines TNF-α, IFN-γ and IL-4. COVID-19 patients receiving dexamethasone showed a significant reduction of overall inflammatory markers in the plasma as well as exhibited an enhanced immune response towards bacterial challenge ex vivo. Finally, broad anti-inflammatory treatment was associated with a reduction in CRP, IL-6 levels as well as length of ICU stay and ventilation-days in critically ill COVID-19 patients. Our data provides insights into the transient functional dysregulation of myeloid immune cells against subsequent bacterial infections in COVID-19 patients and describe a beneficial role for the use of dexamethasone in these patients.  相似文献   

11.
The efficacy of tocilizumab on the prognosis of severe/critical COVID-19 patients is still controversial so far. We aimed to delineate the inflammation characteristics of severe/critical COVID-19 patients and determine the impact of tocilizumab on hospital mortality. Here, we performed a retrospective cohort study which enrolled 727 severe or critical inpatients (≥18 years old) with laboratory-confirmed COVID-19 from Huoshenshan Hospital (Wuhan, China), among which 50 patients received tocilizumab. This study confirmed that most recovered patients manifested relatively normal inflammation levels at admission, whereas most of the deceased cases presented visibly severe inflammation at admission and even progressed into extremely aggravated inflammation before their deaths, proved by some extremely high concentrations of interleukin-6, procalcitonin, C-reactive protein and neutrophil count. Moreover, based on the Cox proportional-hazards models before or after propensity score matching, we demonstrated that tocilizumab treatment could lessen mortality by gradually alleviating excessive inflammation and meanwhile continuously enhancing the levels of lymphocytes within 14 days for severe/critical COVID-19 patients, indicating potential effectiveness for treating COVID-19.  相似文献   

12.
Coronavirus disease 2019(COVID-19), a pandemic disease caused by the severe acute respiratory syndrome coronavirus 2(SARS-Co V2), is growing at an exponential rate worldwide. Manifestations of this disease are heterogeneous; however, advanced cases often exhibit various acute respiratory distress syndrome-like symptoms, systemic inflammatory reactions, coagulopathy, and organ involvements. A common theme in advanced COVID-19 is unrestrained immune activation, classically referred to as a "cytokine storm", as well as deficiencies in immune regulatory mechanisms such as T regulatory cells. While mesenchymal stem cells(MSCs) themselves are objects of cytokine regulation, they can secrete cytokines to modulate immune cells by inducing antiinflammatory regulatory Treg cells, macrophages and neutrophils; and by reducing the activation of T and B cells, dendritic and nature killer cells. Consequently, they have therapeutic potential for treating severe cases of COVID-19. Here we discuss the unique ability of MSCs, to act as a "living antiinflammatory", which can "rebalance" the cytokine/immune responses to restore equilibrium. We also discuss current MSC trials and present different concepts for optimization of MSC therapy in patients with COVID-19 acute respiratory distress syndrome.  相似文献   

13.
This study sought to evaluate the candidacy of plasma osteopontin (OPN) as a biomarker of COVID-19 severity and multisystem inflammatory condition in children (MIS-C) in children. A retrospective analysis of 26 children (0–21 years of age) admitted to Children’s Healthcare of Atlanta with a diagnosis of COVID-19 between March 17 and May 26, 2020 was undertaken. The patients were classified into three categories based on COVID-19 severity levels: asymptomatic or minimally symptomatic (control population, admitted for other non-COVID-19 conditions), mild/moderate, and severe COVID-19. A fourth category of children met the Centers for Disease Control and Prevention''s case definition for MIS-C. Residual blood samples were analyzed for OPN, a marker of inflammation using commercial ELISA kits (R&D), and results were correlated with clinical data. This study demonstrates that OPN levels are significantly elevated in children hospitalized with moderate and severe COVID-19 and MIS-C compared to OPN levels in mild/asymptomatic children. Further, OPN differentiated among clinical levels of severity in COVID-19, while other inflammatory markers including maximum erythrocyte sedimentation rate, C-reactive protein and ferritin, minimum lymphocyte and platelet counts, soluble interleukin-2R, and interleukin-6 did not. We conclude OPN is a potential biomarker of COVID-19 severity and MIS-C in children that may have future clinical utility. The specificity and positive predictive value of this marker for COVID-19 and MIS-C are areas for future larger prospective research studies.  相似文献   

14.
BackgroundPatients with severe viral pneumonia are likely to receive high-dose immunomodulatory drugs to prevent clinical worsening. Aspergillus species have been described as frequent secondary pneumonia agents in severely ill influenza patients receiving steroids. COVID-19 patients admitted to Intensive Care Unit (ICU) are receiving steroids as part of their treatment and they share clinical characteristics with other patients with severe viral pneumonias. COVID-19 patients receiving steroids should be considered a putative risk group of invasive aspergillosis.Case reportWe are reporting a SARS-CoV-2/Aspergillus section Fumigati coinfection in an elderly intubated patient with a history of pulmonary embolism treated with corticosteroids. The diagnosis was made following the ad hoc definitions described for patients admitted to ICU with severe influenza, including clinical criteria (fever for 3 days refractory to the appropriate antibiotic therapy, dyspnea, pleural friction rub, worsening of respiratory status despite antibiotic therapy and need of ventilator support), a radiological criterion (pulmonary infiltrate) and a mycological criterion (several positive galactomannan tests on serum with ratio ≥0.5). In addition, Aspergillus section Fumigati DNA was found in serum and blood samples. These tests were positive 4 weeks after the patient was admitted to the ICU. The patient received voriconazole and after two month in ICU his respiratory status improved; he was discharged after 6 weeks of antifungal treatment.ConclusionsSeverely ill COVID-19 patients would be considered a new aspergillosis risk group. Galactomannan and Aspergillus DNA detection would be useful methods for Aspergillus infection diagnosis as they allow avoiding the biosafety issues related to these patients.  相似文献   

15.
The devastating global impact of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has prompted scientists to develop novel strategies to fight Coronavirus Disease of 2019 (COVID-19), including the examination of pre-existing treatments for other viral infections in COVID-19 patients. This review provides a reasoned discussion of the possible use of Mesenchymal Stromal Cells (MSC) or their products as a treatment in SARS-CoV-2-infected patients. The main benefits and concerns of using this cellular therapy, guided by preclinical and clinical data obtained from similar pathologies will be reviewed. MSC represent a highly immunomodulatory cell population and their use may be safe according to clinical studies developed in other pathologies. Notably, four clinical trials and four case reports that have already been performed in COVID-19 patients obtained promising results. The clinical application of MSC in COVID-19 is very preliminary and further investigational studies are required to determine the efficacy of the MSC therapy. Nevertheless, these preliminary studies were important to understand the therapeutic potential of MSC in COVID-19. Based on these encouraging results, the United States Food and Drug Administration (FDA) authorized the compassionate use of MSC, but only in patients with Acute Respiratory Distress Syndrome (ARDS) and a poor prognosis. In fact, patients with severe SARS-CoV-2 can present infection and tissue damage in different organs, such as lung, heart, liver, kidney, gut and brain, affecting their function. MSC may have pleiotropic activities in COVID-19, with the capacity to fight inflammation and repair lesions in several organs.  相似文献   

16.
当前新型冠状病毒肺炎疾病已在全球大规模蔓延,严重危害人类的健康。新病毒感染性强并且感染后重症患者病死率较高,目前尚无有效的特异性治疗药物,因此亟待寻找安全有效的治疗方法。间充质干细胞(Mesenchymal stem cells,MSCs)具有强大的免疫调节和组织损伤修复与再生的生物学功能,因此作为一种干细胞疗法有潜力降低新冠肺炎重症患者的组织损伤和死亡率。目前,我国和国外多家研究机构已启动多项MSCs治疗新型冠状病毒肺炎的相关临床研究项目,已初步证实该疗法的安全性和有效性,因此具有非常良好的临床治疗前景。  相似文献   

17.
In late December 2019 in Wuhan, China, several patients with viral pneumonia were identified as 2019 novel coronavirus (2019-nCoV). So far, there are no specific treatments for patients with coronavirus disease-19 (COVID-19), and the treatments available today are based on previous experience with similar viruses such as severe acute respiratory syndrome-related coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and Influenza virus. In this article, we have tried to reach a therapeutic window of drugs available to patients with COVID-19. Cathepsin L is required for entry of the 2019-nCoV virus into the cell as target teicoplanin inhibits virus replication. Angiotensin-converting-enzyme 2 (ACE2) in soluble form as a recombinant protein can prevent the spread of coronavirus by restricting binding and entry. In patients with COVID-19, hydroxychloroquine decreases the inflammatory response and cytokine storm, but overdose causes toxicity and mortality. Neuraminidase inhibitors such as oseltamivir, peramivir, and zanamivir are invalid for 2019-nCoV and are not recommended for treatment but protease inhibitors such as lopinavir/ritonavir (LPV/r) inhibit the progression of MERS-CoV disease and can be useful for patients of COVID-19 and, in combination with Arbidol, has a direct antiviral effect on early replication of SARS-CoV. Ribavirin reduces hemoglobin concentrations in respiratory patients, and remdesivir improves respiratory symptoms. Use of ribavirin in combination with LPV/r in patients with SARS-CoV reduces acute respiratory distress syndrome and mortality, which has a significant protective effect with the addition of corticosteroids. Favipiravir increases clinical recovery and reduces respiratory problems and has a stronger antiviral effect than LPV/r. currently, appropriate treatment for patients with COVID-19 is an ACE2 inhibitor and a clinical problem reducing agent such as favipiravir in addition to hydroxychloroquine and corticosteroids.  相似文献   

18.
Clinical intervention in patients with corona virus disease 2019 (COVID-19) has demonstrated a strong upregulation of cytokine production in patients who are critically ill with SARS-CoV2-induced pneumonia. In a retrospective study of 41 patients with COVID-19, most patients with SARS-CoV-2 infection developed mild symptoms, whereas some patients later developed aggravated disease symptoms, and eventually passed away because of multiple organ dysfunction syndrome (MODS), as a consequence of a severe cytokine storm. Guidelines for the diagnosis and treatment of SARS-CoV-2 infected pneumonia were first published January 30th, 2020; these guidelines recommended for the first time that cytokine monitoring should be applied in severely ill patients to reduce pneumonia related mortality. The cytokine storm observed in COVID-19 illness is also an important component of mortality in other viral diseases, including SARS, MERS and influenza. In view of the severe morbidity and mortality of COVID-19 pneumonia, we review the current understanding of treatment of human coronavirus infections from the perspective of a dysregulated cytokine and immune response.  相似文献   

19.
On February 11, 2020, the World Health Organization officially announced the coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as an emerging recent pandemic illness, which currently has approximately taken the life of two million persons in more than 200 countries. Medical, clinical, and scientific efforts have focused on searching for new prevention and treatment strategies. Regenerative medicine and tissue engineering focused on using stem cells (SCs) have become a promising tool, and the regenerative and immunoregulatory capabilities of mesenchymal SCs (MSCs) and their exosomes have been demonstrated. Moreover, it has been essential to establishing models to reproduce the viral life cycle and mimic the pathology of COVID-19 to understand the virus's behavior. The fields of pluripotent SCs (PSCs), induced PSCs (iPSCs), and artificial iPSCs have been used for this purpose in the development of infection models or organoids. Nevertheless, some inconveniences have been declared in SC use; for example, it has been reported that SARS-CoV-2 enters human cells through the angiotensin-converting enzyme 2 receptor, which is highly expressed in MSCs, so it is important to continue investigating the employment of SCs in COVID-19, taking into consideration their advantages and disadvantages. In this review, we expose the use of different kinds of SCs and their derivatives for studying the SARS-CoV-2 behavior and develop treatments to counter COVID-19.  相似文献   

20.
The outbreak of coronavirus disease-19 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly evolved into a global pandemic. One major challenge in the battle against this deadly disease is to find effective therapy. Due to the availability and proven clinical record of hydroxychloroquine (HCQ) and chloroquine (CQ) in various human diseases, there have been enormous efforts in repurposing these two drugs as therapeutics for COVID-19. To date, substantial amount of work at cellular, animal models and clinical trials have been performed to verify their therapeutic potential against COVID-19. However, neither lab-based studies nor clinical trials have provided consistent and convincing evidence to support the therapeutic value of HCQ/CQ in the treatment of COVID-19. In this mini review we provide a systematic summary on this important topic and aim to reveal some truth covered by the mystery regarding the therapeutic value of HCQ/CQ in COVID-19.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号