首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary As components of combined fermentation of both glucose and xylose to ethanol by separated or coculture processes, the effects of initial sugar concentrations on the fermentative performances ofPichia stipitis Y7124,Candida shehatae ATCC 22984,Saccharomyces cerevisiae CBS1200 andZymomonas mobilis ATCC10988 were investigated. From the characteristics of sugar and produced ethanol tolerances the most suitable microorganisms for the achievement of glucose and xylose fermentations have been selected with respect to different fermentation schemes.Nomenclature Tf fermentation time (hours) - Ef ethanol concentration (g/l) - YP/S ethanol yield (g of ethanol produced/g of sugar used) - qp average specific productivity of ethanol (g ethanol/g of cells per hour) - max maximum specific growth rate (h–1)  相似文献   

2.
Two xylose-fermenting glucose-derepressed Saccharomyces cerevisiae strains were constructed in order to investigate the influence of carbon catabolite repression on xylose metabolism. S. cerevisiae CPB.CR2 (mig1, XYL1, XYL2, XKS1) and CPB.MBH2 (mig1, mig2, XYL1, XYL2, XKS1) were analysed for changes in xylose consumption rate and ethanol production rate during anaerobic batch and chemostat cultivations on a mixture of 20 g l–1 glucose and 50 g l–1 xylose, and their characteristics were compared to the parental strain S. cerevisiae TMB3001 (XYL1, XYL2, XKS1). Improvement of xylose utilisation was limited during batch cultivations for the constructed strains compared to the parental strain. However, a 25% and 12% increased xylose consumption rate during chemostat cultivation was achieved for CPB.CR2 and CPB.MBH2, respectively. Furthermore, during chemostat cultivations of CPB.CR2, where the cells are assumed to grow under non-repressive conditions as they sense almost no glucose, invertase activity was lower during growth on xylose and glucose than on glucose only. The 3-fold reduction in invertase activity could only be attributed to the presence of xylose, suggesting that xylose is a repressive sugar for S. cerevisiae.  相似文献   

3.
Summary The ability ofCandida guillermondii to produce xylitol from xylose and to ferment individual non xylose hemicellulosic derived sugars was investigated in microaerobic conditions. Xylose was converted into xylitol with a yield of 0,63 g/g and ethanol was produced in negligible amounts. The strain did not convert glucose, mannose and galactose into their corresponding polyols but only into ethanol and cell mass. By contrast, fermentation of arabinose lead to the formation of arabitol. On D-xylose medium,Candida guillermondii exhibited high yield and rate of xylitol production when the initial sugar concentration exceeded 110 g/l. A final xylitol concentration of 221 g/l was obtained from 300 g/l D-xylose with a yield of 82,6% of theoretical and an average specific rate of 0,19 g/g.h.Nomenclature Qp average volumetric productivity of xylitol (g xylitol/l per hour) - qp average specific productivity of xylitol (g xylitol/g of cells per hour) - So initial xylose concentration (g/l) - tf incubation time (hours) - YP/S xylitol yield (g of xylitol produced/g of xylose utilized) - YE/S ethanol yield (g of ethanol produced/g of substrate utilized) - YX/S cells yield (g of cells/g of substrate utilized) - specific growth rate coefficient (h–1) - max maximum specific growth rate coefficient (h–1)  相似文献   

4.
Conversion of lignocellulose to lactic acid requires strains capable of fermenting sugar mixtures of glucose and xylose. Recombinant Escherichia coli strains were engineered to selectively produce L-lactic acid and then used to ferment sugar mixtures. Three of these strains were catabolite repression mutants (ptsG ) that have the ability to simultaneously ferment glucose and xylose. The best results were obtained for ptsG strain FBR19. FBR19 cultures had a yield of 0.77 (g lactic acid/g added sugar) when used to ferment a 100 g/l total equal mixture of glucose and xylose. The strain also consumed 75% of the xylose. In comparison, the ptsG + strains had yields of 0.47–0.48 g/g and consumed 18–22% of the xylose. FBR19 was subsequently used to ferment a variety of glucose (0–40 g/l) and xylose (40 g/l) mixtures. The lactic acid yields ranged from 0.74 to 1.00 g/g. Further experiments were conducted to discover the mechanism leading to the poor yields for ptsG + strains. Xylose isomerase (XI) activity, a marker for induction of xylose metabolism, was monitored for FBR19 and a ptsG + control during fermentations of a sugar mixture. Crude protein extracts prepared from FBR19 had 10–12 times the specific XI activity of comparable samples from ptsG + strains. Therefore, higher expression of xylose metabolic genes in the ptsG strain may be responsible for superior conversion of xylose to product compared to the ptsG + fermentations. Received 14 December 2000/ Accepted in revised form 28 June 2002  相似文献   

5.
In the microbial lipid production system using the yeast Rhodotorula gracilis, CFR-1, kinetics of lipid accumulation and substrate utilisation at initial substrate concentrations in the range of 20–100 kg/m3 were investigated using shake flask experiments. A mathematical representation based on logistic model for biomass and Luedeking-Piret model for lipid accumulation gave reasonably good agreement between the theoretical and experimental values for substrate concentration less than 60 kg/m3. The kinetic expressions and parameters obtained through shake flask studies were directly applied to experiments in the laboratory fermentors also and the models were found to hold good for the prediction of the change of biomass, product as well as substrate with time. The attainment of a saturation in the intracellular lipid accumulation with time, however, was not predicted by the model which was shown to be an inherent feature of the Luedeking-Piret model.List of Symbols S 0, P 0 kg/m3 Initial concentrations of sugar and lipid respectively - S, S(t) kg/m3 Concentrations of sugar and lipid respeclively at any timet - p,p(t) L kg/m3 Maximum concentration of lipid produced - E % Maximum sugar utilised - dP/dt kg/(m3 · h) Rate of lipid production - -dS/dt kg/(m3 · h) Rate of sugar utilisation - max h–1 Maximum specific growth rate - X max kg/m3 Maximum biomass reached in a run - P max kg/m3 Maximum product concentration - m, n Constants used in Luedeking-Piret model in eq. (7) - , Constants used to predict residual sugar - k e maintainance coefficient - Y x g/g Biomass yield based on sugar consumed - Y p g/g Lipid yield based on sugar consumed - (dP/d t)stat kg/(m3 · h) Rate of lipid production at stationary phase - (dS/dt)stat kg/(m3 · h) Rate of sugar utilisation at stationary phase  相似文献   

6.
Summary The specific growth rate () during cultivation of Bacteroides polypragmatus in 2.51 batch cultures in 4–5% (w/v) l-arabinose medium was 0.23 h-1 while that in either d-xylose or d-ribose medium was lower (=0.19 h-1). Whereas growth on arabinose or xylose occurred after about 6–8 h lag period, growth on ribose commenced after a 30 h lag phase. The maximum substrate utilization rate for arabinose, ribose and xylose in media with an initial substrate concentration of 4–5% (w/v) was 0.77, 0.76, and 0.60 g/l/h respectively. In medium containing a mixture of glucose, arabinose, and xylose, the utilization of all three substrates occurred concurrently. The maximum amount of ethanol produced after 72 h growth in 4–5% (w/v) of arabinose, xylose, and ribose was 9.4, 6.5, and 5.3 g/l, respectively. The matabolic end products (mol/mol substrate) of growth in 4.4% (w/v) xylose medium were 0.73 ethanol, 0.49 acetate, 1.39 CO2, 1.05 H2, and 0.09 butyrate.National Research Council of Canada No. 23406  相似文献   

7.
Substrates that contain hexose as well as pentose sugars can form an interesting substrate for the production of ethanol. Pichia stipitis and a respiratory-deficient mutant of Saccharomyces diastaticus were used to convert such a substrate into ethanol under continuous culture conditions. With a sugar mixture (glucose 70%/xylose 30%) at 50 g/l, the xylose was entirely consumed when the dilution rate (D) did not exceed 0.006 h–1 whereas the glucose was entirely consumed whatever the D. The study of influence of initial substrate concentration (S0) was performed at D = 0.015 h–1. Under these conditions the substrate was entirely consumed when its initial concentration did not exceed 20 g/l. With S0 = 80 g/l the residual xylose concentration reached 20.5 g/l. At low D or at low S0, P. stipitis was the dominant species in the fermentor. Increasing the D or S0 resulted in the wash-out of P. stipitis mainly because of its low ethanol tolerance. Correspondence to: J. P. Delgenes  相似文献   

8.
Summary The fermentation of an equimolar mixture of glucose and fructose into ethanol and sorbitol by a glucose negative mutant ofZymomonas mobilis was monitored. The results were analyzed using a recently described method based on polynomial fitting and calculation of intantaneous and overall parameters. These parameters described well the physiology of this mixed-substrate mixed-product fermentation. Growth of the mutant was greatly inhibited on this medium. Fructose was quantitatively converted into sorbitol while glucose was oxidized into gluconic acid .This latter product was utilized as substrate for cell growth and ethanol production.Nomenclature X biomass concentration, g/l - S total sugar concentration, g/l - Glu glucose concentration, g/l - Fru fructose concentration, g/l - Sor sorbitol concentration, g/l - P ethanol concentration, g/l - t fermentation time, h - specific growth rate, h-1 - qs specific sugar uptake rate, g/g.h - qG specific glucose uptake rate, g/g.h - qF specific fructose uptake rate, g/g.h - qP specific ethanol productivity, g/g.h - qSor specific sorbitol productivity, g/g.h - YX/S biomass yield on total sugar, g/g - YP/S ethanol yield on total sugar, g/g - YSor/S sorbitol yield on total sugar, g/g - ySor/f sorbitol yield on fructose, g/g - YP/G ethanol yield on glucose, g/g  相似文献   

9.

Background

Ethanolic fermentation of lignocellulosic biomass is a sustainable option for the production of bioethanol. This process would greatly benefit from recombinant Saccharomyces cerevisiae strains also able to ferment, besides the hexose sugar fraction, the pentose sugars, arabinose and xylose. Different pathways can be introduced in S. cerevisiae to provide arabinose and xylose utilisation. In this study, the bacterial arabinose isomerase pathway was combined with two different xylose utilisation pathways: the xylose reductase/xylitol dehydrogenase and xylose isomerase pathways, respectively, in genetically identical strains. The strains were compared with respect to aerobic growth in arabinose and xylose batch culture and in anaerobic batch fermentation of a mixture of glucose, arabinose and xylose.

Results

The specific aerobic arabinose growth rate was identical, 0.03 h-1, for the xylose reductase/xylitol dehydrogenase and xylose isomerase strain. The xylose reductase/xylitol dehydrogenase strain displayed higher aerobic growth rate on xylose, 0.14 h-1, and higher specific xylose consumption rate in anaerobic batch fermentation, 0.09 g (g cells)-1 h-1 than the xylose isomerase strain, which only reached 0.03 h-1 and 0.02 g (g cells)-1h-1, respectively. Whereas the xylose reductase/xylitol dehydrogenase strain produced higher ethanol yield on total sugars, 0.23 g g-1 compared with 0.18 g g-1 for the xylose isomerase strain, the xylose isomerase strain achieved higher ethanol yield on consumed sugars, 0.41 g g-1 compared with 0.32 g g-1 for the xylose reductase/xylitol dehydrogenase strain. Anaerobic fermentation of a mixture of glucose, arabinose and xylose resulted in higher final ethanol concentration, 14.7 g l-1 for the xylose reductase/xylitol dehydrogenase strain compared with 11.8 g l-1 for the xylose isomerase strain, and in higher specific ethanol productivity, 0.024 g (g cells)-1 h-1 compared with 0.01 g (g cells)-1 h-1 for the xylose reductase/xylitol dehydrogenase strain and the xylose isomerase strain, respectively.

Conclusion

The combination of the xylose reductase/xylitol dehydrogenase pathway and the bacterial arabinose isomerase pathway resulted in both higher pentose sugar uptake and higher overall ethanol production than the combination of the xylose isomerase pathway and the bacterial arabinose isomerase pathway. Moreover, the flux through the bacterial arabinose pathway did not increase when combined with the xylose isomerase pathway. This suggests that the low activity of the bacterial arabinose pathway cannot be ascribed to arabitol formation via the xylose reductase enzyme.  相似文献   

10.
We have studied the ethanolic fermentation of D-xylose with Pachysolen tannophilus in batch cultures. We propose a model to predict variations in D-xylose consumed, and biomass and ethanol produced, in which we include parameters for the specific growth rate, for the consumption of D-xylose and production of ethanol either related or not to growth.The ideal initial pH for ethanol production turned out to be 4.5. At this pH value the net specific growth rate was 0.26 h–1, biomass yield was 0.16 g.g–1, the cell-maintenance coefficient was 0.073 g.g–1.h–1, the parameter for ethanol production non-related to growth was 0.064 g.g–1,h–1 and the maximum ethanol yield was 0.32 g.g–1.List of Symbols A c Carbon atomic weight - a d1/h Specific cell-maintenance rate defined in Eq. (8) - c Mass fraction of carbon in the biomass - E g/l Ethanol concentration - f x Correction factor defined in Eq. (13) - f x Correction factor defined in Eq. (13) - f xi Correction factor defined in Eq. (14) - k d1/h Death constant - M E Ethanol molecular weight - M s Xylose molecular weight - M xi Xylitol molecular weight - m g xylose/g biomass Maintenance coefficient for substrate - m dg xylose/g biomass Maintenance coefficient when k d - q Eg ethanol/g biomass. Specific ethanol production rate - s g/l Residual xylose concentration - s 0 g/l Initial xylose concentration - t h Time - x g/l Biomass concentration - x 0 g/l Initial biomass concentration - Y E/sg ethanol/g xylose Instantaneous ethanol yield - ¯Y E/sg ethanol/g xylose Mean ethanol yield - Y E s/T g ethanol/g xylose Theoretical ethanol yield - Y E s/* g ethanol/g xylose Corrected instantaneous ethanol yield - ¯Y E s/* g ethanol/g xylose Corrected mean ethanol yield - Y x/sg biomass/g xylose Biomass yield - ¯Y xi/sg xylitol/g xylose Mean xylitol yield Greek Letters g ethanol/g biomass Growth-associated product formation parameter - g ethanol/g biomass.h Non-growth-associated product formation parameter - dg ethanol/g biomass.h Non-growth-associated product formation parameter when k d0 - h Variable defined in Eq. (6) or Eq. (7) - 1/h Specific growth rate - m1/h Maximum specific growth rate  相似文献   

11.
Anaerobic enrichment cultures inoculated with neutral and alkaline (pH 7.0–9.0) sediment and biomat samples from hot-springs in Hveragerdi and Fluir, Iceland, were screened for growth on beech xylan from pH 8.0 to 10.0 at 68° C: no growth occured in cultures above pH 8.4. Five anaerobic xylanolytic bacteria were isolated from enrichment cultures at pH 8.4; all five microbes were Gram-positive rods with terminal spores, and produced CO2, H2, acetate, lactate and ethanol from xylan and xylose. One of the isolates, strain A2, grew from 50 to 75° C, with optimum growth near 68° C, and from pH 5.2 to 9.0 with an optimum between 6.8 and 7.4. Taxonomically, strain A2 was most similar to Clostridium thermohydrosulfuricum. At pH 7.0, the supernatant xylanases of strain A2 had a temperature range from 50 to 78° C with an optimum between 68 and 78° C. At 68° C, xylanase activity occurred from pH 4.9 to 9.1, with an optimum from pH 5.0 to 6.6. At pH 7.0 and 68° C, the K m of the supernatant xylanases was 2.75 g xylan/l and the V max was 2.65 × 10–6 kat/l culture supernatant. When grown on xylose, xylanase production was as high as when grown on xylan. Correspondence to: B. K. Ahring  相似文献   

12.
Xylose or glucose (5 g/l) was utilized simultaneously with benzoate (5 g/l) byRhodosporidium toruloides andRhodotorula rubra in batch culture. At a higher glucose concentration, benzoate was utilized only after glucose was depleted from the media. Both yeasts preferentially utilized benzoate before xylose even if there were more than 5 g xylose/l.Rhodotorula glutinis preferentially utilized glucose (10 g/l) before benzoate but utilized xylose and benzoate simultaneously.The authors are with the Department of Biochemical Technology, Faculty of Chemistry, Slovak Technical University, Radlinského 9, 812 37 Bratislava, Slovak Republic  相似文献   

13.
Acetic acid is an important chemical raw material that can be produced directly from sugars in lignocellulosic biomass. Development of kinetic models that capture the bioconversion dynamics of multiple sugar systems will be critical to optimization and process control in future lignocellulosic biorefinery processes. In this work, a kinetic model was developed for the single- and dual-substrate conversion of xylose and glucose to acetic acid using the acetogen Moorella thermoacetica. Batch fermentations were performed experimentally at 20 g L?1 total sugar concentration using synthetic glucose, xylose, and a mixture of glucose and xylose at a 1:1 ratio. The product yield, calculated as total product formed divided by total sugars consumed, was 79.2, 69.9, and 69.7 % for conversion of glucose, xylose, and a mixture of glucose and xylose (1:1 ratio), respectively. During dual-substrate fermentation, M. thermoacetica demonstrated diauxic growth where xylose (the preferred substrate) was almost entirely consumed before consumption of glucose began. Kinetic parameters were similar for the single-substrate fermentations, and a strong linear correlation was determined between the maximum specific growth rate μ max and substrate inhibition constant, K s . Parameters estimated for the dual-substrate system demonstrated changes in the specific growth rate of both xylose and glucose consumption. In particular, the maximum growth rate related to glucose tripled compared to the single-substrate system. Kinetic growth is affected when multiple substrates are present in a fermentation system, and models should be developed to reflect these features.  相似文献   

14.
A laboratory reactor equipped with a screw press was used for the hydrolysis of steam-SO2-exploded willowSalix caprea by a composition ofTrichoderma reesei andAspergillus foetidus enzyme preparations at high substrate concentration. Optimal conditions providing the maximal volume of hydrolysis syrup with maximal sugar concentrations were determined. Two different hydrolysis procedures were developed in order to exclude the initial washing of steam-pretreated plant raw material by large volumes of water, which was necessary to eliminate the inhibitory effect of explosion byproducts on enzymatic hydrolysis. The first procedure included enzymatic prehydrolysis of the substrate for 1 h; separation of sugar syrup containing 40–60 g/l glucose, 20–25 g/l xylose, and up to 10 g/l disaccharides, as well as up to 35% of the initial enzymatic activity; then addition of a diluted acetate buffer (pH 4.5); and subsequent hydrolysis of the substrate by the adsorbed enzymes leading to the final accumulation of up to 140 g/l glucose and up to 15 g/l of xylose. In the second scenario, the exploded willow was initially adjusted by alkali to pH 4.5 and then hydrolyzed directly by the added enzymes over 24 h. This procedure resulted in a nearly total polysaccharide hydrolysis and accumulation of up to 170 g/l glucose and 20 g/l xylose. The reasons for inhibition of enzymatic hydrolysis are discussed. Deceased.  相似文献   

15.
Summary The fermentation of an equimolar mixture of glucose and fructose into ethanol and sorbitol by a fructose negative mutant of Zymomonas mobilis is analysed using a recently described methodology (Ait-Abdelkader and Baratti, Biotechnol. Tech. 1993,329–334) based on polynomial fitting and calculation of instantaneous and overall parameters. These parameters are utilized to describe this mixed-substrate mixed-product fermentation.Nomenclature X biomass concentration, g/l - S total sugar concentration, g/l - Glu glucose concentration, g/l - Fru fructose concentration, g/l - Sor sorbitol concentration, g/l - P ethanol concentration, g/l - t fermentation time, h - specific growth rate, h-1 - qs specific sugar uptake rate, g/g.h - qg specific glucose uptake rate, g/g.h - qF specific fructose uptake rate, g/g.h - qP specific ethanol productivity, g/g.h - qSor specific sorbitol productivity, g/g.h - YX/S biomass yield on total sugar, g/g - YP/S ethanol yield on total sugar, g/g - YSor/S sorbitol yield on total sugar, g/g - YSor/F sorbitol yield on fructose, (g/g) - YP/G ethanol yield on glucose, (g/g)  相似文献   

16.
Previous modelling of the pullulan fermentation is discussed and found to lack any mechanistic basis. It is concluded that predictive ability can only be conferred by a structured model with at least two compartments, based upon the best available knowledge of the physiology of the microorganism. Such a model is constructed and compared with experimental data.List of Symbols A (gdm–3)(g/l) Ammonium ion concentration - B (gdm–3)(g/l) Concentration of balanced growth compartment of biomass - G (gdm–3)(g/l) Glucose concentration - k A (gdm–3)(g/l) Saturation constant for ammonium - k G (gdm–3)(g/l) Saturation constant for glucose - k S (gdm–3)(g/l) Saturation constant for sucrose - P (gdm–3)(g/l) Pullulan concentration - Q Quality of biomass=U/(U+B) - r G (gdm–1h–1)(g/l/h) Rate of removal of glucose from broth - r GB (gdm–3h–1)(g/l/h) Rate of incorporation of glucose into balanced compartment - r GB (gdm–3h–1)(g/l/h) Rate of utilisation of glucose for energy production and cell maintenance - r GP (gdm–3h–1)(g/l/h) Rate of conversion of glucose to pullulan - r GU (gdm–3h–1)(g/l/h) Rate of incorporation of glucose into unbalanced compartment - r s (gdm–3h–1)(g/l/h) Rate of conversion of sucrose to glucose - S (gdm–3)(g/l) Concentration of sucrose - U (gdm–3)(g/l) Concentration of unbalanced growth compartment of biomass - X (gdm–3)(g/l) Biomass concentration - Y G/A Grams of glucose consumed per gram of ammonium consumed - Y G/B Grams of glucose consumed per gram of balanced biomass produced - Y G/U Grams of glucose consumed per gram of unbalanced biomass produced - Y G/P Grams of glucose consumed per gram of pullulan produced - Rate constant for conversion of sucrose to glucose - Rate constant for uptake of glucose by the cells - Model parameter governing inhibition of sucrose conversion and glucose utilisation - Model parameter denoting fraction of glucose uptake devoted to cell maintenance and energy production - Model parameter governing apportionment of glucose between pseudo-growth and pullulan production This work was funded by the National Engineering Laboratory (NEL) through the Bioreactor Design Club. The authors would like to express their gratitude to the NEL for this generous support.  相似文献   

17.
This research was designed to maximize ethanol production from a glucose-xylose sugar mixture (simulating a sugar cane bagasse hydrolysate) by co-fermentation with Zymomonas mobilis and Pachysolen tannophilus. The volumetric ethanol productivity of Z. mobilis with 50 g glucose/l was 2.87 g/l/h, giving an ethanol yield of 0.50 g/g glucose, which is 98% of the theoretical. P. tannophilus when cultured on 50 g xylose/l gave a volumetric ethanol productivity of 0.10 g/l/h with an ethanol yield of 0.15 g/g xylose, which is 29% of the theoretical. On optimization of the co-fermentation with the sugar mixture (60 g glucose/l and 40 g xylose/l) a total ethanol yield of 0.33 g/g sugar mixture, which is 65% of the theoretical yield, was obtained. The co-fermentation increased the ethanol yield from xylose to 0.17 g/g. Glucose and xylose were completely utilized and no residual sugar was detected in the medium at the end of the fermentation. The pH of the medium was found to be a good indicator of the fermentation status. The optimum conditions were a temperature of 30°C, initial inoculation with Z. mobilis and incubation with no aeration, inactivation of bacterium after the utilization of glucose, followed by inoculation with P. tannophilus and incubation with limited aeration.  相似文献   

18.
Summary The relative contributions of lactate inhibition and the generation of sterile (undividing) cells to the low xylose utilisation rate of Lactococcus lactis IO-1 was investigated. The lactate inhibition constant of xylose grown cells was shown to be 9.3 times more than that of glucose grown cells. However, the sterile cell production rate and LDH inactivation rate of the xylose cultures were at least 10 times less than the glucose cultures. Thus, it is suggested that the slower substrate consumption rate in xylose medium is caused mainly by the large inhibition constant for the end product.  相似文献   

19.
Solventogenic clostridia are well-known since almost a century due to their unique capability to biosynthesize the solvents acetone and butanol. Based on recently developed genetic engineering tools, a targeted 3-hydroxybutyryl-CoA dehydrogenase (Hbd)-negative mutant of Clostridium acetobutylicum was generated. Interestingly, the entire butyrate/butanol (C4) metabolic pathway of C. acetobutylicum could be inactivated without a severe growth limitation and indicated the general feasibility to manipulate the central fermentative metabolism for product pattern alteration. Cell extracts of the mutant C. acetobutylicum hbd::int(69) revealed clearly reduced thiolase, Hbd and crotonase but increased NADH-dependent alcohol dehydrogenase enzyme activities as compared to the wildtype strain. Neither butyrate nor butanol were detected in cultures of C. acetobutylicum hbd::int(69), and the formation of molecular hydrogen was significantly reduced. Instead up to 16 and 20 g/l ethanol were produced in glucose and xylose batch cultures, respectively. Further sugar addition in glucose fed-batch fermentations increased the ethanol production to a final titer of 33 g/l, resulting in an ethanol to glucose yield of 0.38 g/g.  相似文献   

20.
Summary The effect of substrate concentration (S 0) on the fermentation parameters of a sugar mixture byPichia stipitis Y 7124 was investigated under anaerobic and microaerobic conditions. Under microaerobiosisP. stipitis maintained high ethanol yield and productivity when initial substrate concentration did not exceed 150 g/l; ethanol yield of about 0.40 g/g and volumetric productivity up to 0.39 g/l per hour were obtained. Optimal specific ethanol productivity (0.2 g/g per hour) was observed withS 0=110 g/l. Under anaerobic conditionsP. stipitis exhibited the highest fermentative performances atS 0=20 g/l; it produced ethanol with a yield of 0.42 g/g, with a specific rate of 1.1 g/g per day. When the initial substrate level increased, specific ethanol productivity declined gradually and ethanol yield was dependent on the degree of utilization of each sugar in the mixture.Abbreviations E m maximum produced ethanol (g/l) - E 0 initial ethanol (g/l) - E v evaporated ethanol (g/l) - Q p volumetric productivity of ethanol (g ethanol/l per hour or g/l per day) - q p specific productivity of ethanol (g ethanol/g cells per hour) - q pm maximum specific productivity of ethanol (g/l per hour) - S 0 initial substrate concentration (g/l) - t f time at which produced ethanol is maximum (h) - Y p/s ethanol yield (g ethanol produced/g substrate utilized) - Y x/s cell yeild (g cells produced/g substrate utilized) - Y xo/xy xylitol yield (g xylitol produced/g xylose utilized) - probability coefficient - specific growth rate coefficient (h-1 or d-1)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号