首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Recently, human artificial chromosomes featuring functional centromeres have been generated efficiently from naked synthetic alphoid DNA containing CENP-B boxes as a de novo mechanism in a human cultured cell line, but not from the synthetic alphoid DNA only containing mutations within CENP-B boxes, indicating that CENP-B has some functions in assembling centromere/kinetochore components on alphoid DNA. To investigate whether any interactions exist between CENP-B and the other centromere proteins, we screened a cDNA library by yeast two-hybrid analysis. An interaction between CENP-B and CENP-C was detected, and the CENP-C domains required were determined to overlap with three Mif2 homologous regions, which were also revealed to be involved in the CENP-C assembly of centromeres by expression of truncated polypeptides in cultured cells. Overproduction of truncated CENP-B containing no CENP-C interaction domains caused abnormal duplication of CENP-C domains at G2 and cell cycle delay at metaphase. These results suggest that the interaction between CENP-B and CENP-C may be involved in the correct assembly of CENP-C on alphoid DNA. In other words, a possible molecular linkage may exist between one of the kinetochore components and human centromere DNA through CENP-B/CENP-B box interaction.  相似文献   

2.
We have isolated and characterized a set of overlapping cDNA clones that encode the human centromere autoantigen centromere protein C (CENP-C). The identity of these clones has been established using several criteria. First, they were shown to encode a polypeptide that migrates at the expected position for CENP-C on SDS-polyacrylamide gel electrophoresis. Second, we have demonstrated that this polypeptide shares at least two epitopes with human CENP-C. Polyclonal antibodies were raised to fusion proteins encoded by nonoverlapping regions of the cDNA clones. These antibodies were shown to recognize a protein at a position appropriate for CENP-C on immunoblots of human chromosomal proteins. In addition, we used indirect immunofluorescence to demonstrate that these antibodies recognize centromeres of HeLa chromosomes in the expected pattern for CENP-C. Localization of CENP-C by immunoelectron microscopy reveals that this protein is a component of the inner kinetochore plate.  相似文献   

3.
We have identified a novel human centromere-associated protein by preparing monoclonal antibodies against a fraction of HeLa chromosome scaffold proteins enriched for centromere/kinetochore components. One monoclonal antibody (mAb177) specifically stains the centromere region of mitotic human chromosomes and binds to a novel, approximately 250-300 kd chromosome scaffold associated protein named CENP-E. In cells progressing through different parts of the cell cycle, the localization of CENP-E differed markedly from that observed for the previously identified centromere proteins CENP-A, CENP-B, CENP-C and CENP-D. In contrast to these antigens, no mAb177 staining is detected during interphase, and staining first appears at the centromere region of chromosomes during prometaphase. This association with chromosomes remains throughout metaphase but is redistributed to the midplate at or just after the onset of anaphase. By telophase, the staining is localized exclusively to the midbody. Microinjection of the mAb177 into metaphase cells blocks or significantly delays progression into anaphase, although the morphology of the spindle and the configuration of the metaphase chromosomes appear normal in these metaphase arrested cells. This demonstrates that CENP-E function is required for the transition from metaphase to anaphase.  相似文献   

4.
从12例硬皮病患者的抗染色体抗血清中发现4例是抗中期染色体鞘的,用它们和小鼠腹水癌细胞核及全细胞裂解液SDS-PAGE的蛋白印迹相反应,结果显示它们和细胞核裂解液的11条抗原蛋白相结合,而且和全细胞裂解液中除以上的11条外的另8条相结合。  相似文献   

5.
CENP-C is an evolutionarily conserved centromere protein that is thought to be an important component in kinetochore assembly in vertebrate cells. However, the functional role of CENP-C in cell cycle progression remains unclear. To further understand CENP-C function, we developed a method incorporating the hyper-recombinogenic chicken B lymphocyte cell line DT40 to create several temperature-sensitive CENP-C mutants in DT40 cells. We found that, under restrictive conditions, one temperature-sensitive mutant, ts4-11, displayed metaphase delay and chromosome missegregation but proceeded through the cell cycle until arrest at G1 phase. Furthermore, ts4-11 cells were transfected with a human HeLa cell cDNA library maintained in a retroviral vector, and genes that suppressed the temperature-sensitive phenotype were identified. One of these suppressor genes encodes SUMO-1, which is a ubiquitin-like protein. This finding suggests that SUMO-1 may be involved in centromere function in vertebrate cells. The novel strategy reported here will be useful and applicable to a wide range of proteins that have general cell-autonomous function in vertebrate cells.  相似文献   

6.
Eukaryotic chromosomes segregate by attaching to microtubules of the mitotic spindle through a chromosomal microtubule binding site called the kinetochore. Kinetochores assemble on a specialized chromosomal locus termed the centromere, which is characterized by the replacement of histone H3 in centromeric nucleosomes with the essential histone H3 variant CENP-A (centromere protein A). Understanding how CENP-A chromatin is assembled and maintained is central to understanding chromosome segregation mechanisms. CENP-A nucleosome assembly requires the Mis18 complex and the CENP-A chaperone HJURP. These factors localize to centromeres in telophase/G1, when new CENP-A chromatin is assembled. The mechanisms that control their targeting are unknown. In this paper, we identify a mechanism for recruiting the Mis18 complex protein M18BP1 to centromeres. We show that depletion of CENP-C prevents M18BP1 targeting to metaphase centromeres and inhibits CENP-A chromatin assembly. We find that M18BP1 directly binds CENP-C through conserved domains in the CENP-C protein. Thus, CENP-C provides a link between existing CENP-A chromatin and the proteins required for new CENP-A nucleosome assembly.  相似文献   

7.
Domains required for CENP-C assembly at the kinetochore.   总被引:8,自引:1,他引:7       下载免费PDF全文
Chromosomes segregate at mitosis along microtubules attached to the kinetochore, an organelle that assembles at the centromere. Despite major advances in defining molecular components of the yeast segregation apparatus, including discrete centromere sequences and proteins of the kinetochore, relatively little is known of corresponding elements in more complex eukaryotes. We show here that human CENP-C, a human autoantigen previously localized to the kinetochore, assembles at centromeres of divergent species, and that the specificity of this targeting is maintained by an inherent destruction mechanism that prevents the accumulation of CENP-C and toxicity of mistargeted CENP-C. The N-terminus of CENP-C is not only required for CENP-C destruction but renders unstable proteins that otherwise possess long half-lives. The conserved targeting of CENP-C is underscored by the discovery of significant homology between regions of CENP-C and Mif2, a protein of Saccharomyces cerevisiae required for the correct segregation of chromosomes. Mutations in the Mif2 homology domain of CENP-C impair the ability of CENP-C to assemble at the kinetochore. Together, these data indicate that essential elements of the chromosome segregation apparatus are conserved in eukaryotes.  相似文献   

8.
T Fukagawa  C Pendon  J Morris    W Brown 《The EMBO journal》1999,18(15):4196-4209
CENP-C is an evolutionarily conserved centromeric protein. We have used the chicken DT40 cell line to test the idea that CENP-C is sufficient as well as necessary for the formation of a functional centromere. We have compared the effects of disrupting the localization of CENP-C with those of inducibly overexpressing the protein. Removing CENP-C from the centromere causes disassembly of the centromere protein complex and blocks cells at the metaphase-anaphase junction. Overexpressed CENP-C is associated with an increase in errors of chromosome segregation and inhibits the completion of mitosis. However, the excess CENP-C does not disrupt the native centromeres detectably and does not associate with another conserved centromere protein, ZW10. The distribution of the excess CENP-C changes during the cell cycle. In metaphase, the excess CENP-C coats the chromosome arms. At the metaphase-anaphase transition, the excess CENP-C clusters, and during interphase it is present in large bodies which form around pre-existing centromeres which are also clustered. These results indicate that CENP-C is necessary but not sufficient for the formation of a functional centromere and suggest that the structure of CENP-C may be regulated during the cell cycle.  相似文献   

9.
We have isolated a series of overlapping cDNA clones for approximately 95% of the mRNA that encodes CENP-B, the 80-kD human centromere autoantigen recognized by patients with anticentromere antibodies. The cloned sequences encode a polypeptide with an apparent molecular mass appropriate for CENP-B. This polypeptide and CENP-B share three non-overlapping epitopes. The first two are defined by monoclonal antibodies elicited by injection of cloned fusion protein. Epitope 1 corresponds to a major antigenic site recognized by the anticentromere autoantibody used to obtain the original clone. Epitope 2 is a novel one not recognized by the autoantibody. These epitopes were shown to be distinct both by competitive binding experiments and by their presence or absence on different subcloned portions of the fusion protein. The third independent epitope, recognized by a subset of anticentromere-positive patient sera, maps to a region substantially closer to the amino terminus of the fusion protein. DNA and RNA blot analyses indicate that CENP-B is unrelated to CENP-C, a 140-kD centromere antigen also recognized by these antisera. CENP-B is the product of a 2.9-kb mRNA that is encoded by a single genetic locus. This mRNA is far too short to encode a polypeptide the size of CENP-C. The carboxy terminus of CENP-B contains two long domains comprised almost entirely of glutamic and aspartic acid residues. These domains may be responsible for anomalous migration of CENP-B on SDS-polyacrylamide gels, since the true molecular mass of CENP-B is approximately 65 kD, 15 kD less than the apparent molecular mass deduced from gel electrophoresis. Quite unexpectedly, immunofluorescence analysis using antibodies specific for CENP-B reveals that the levels of antigen vary widely between chromosomes.  相似文献   

10.
CENP-H has recently been discovered as a constitutive component of the centromere that co-localizes with CENP-A and CENP-C throughout the cell cycle. The precise function, however, remains poorly understood. We examined the role of CENP-H in centromere function and assembly by generating a conditional loss-of-function mutant in the chicken DT40 cell line. In the absence of CENP-H, cell cycle arrest at metaphase, consistent with loss of centromere function, was observed. Immunocytochemical analysis of the CENP-H-deficient cells demonstrated that CENP-H is necessary for CENP-C, but not CENP-A, localization to the centromere. These findings indicate that centromere assembly in vertebrate cells proceeds in a hierarchical manner in which localization of the centromere-specific histone CENP-A is an early event that occurs independently of CENP-C and CENP-H.  相似文献   

11.
We have used autoantibodies to probe the function of three human centromere proteins in mitosis. These antibodies recognize three human polypeptides in immunoblots: CENP-A (17 kD), CENP-B (80 kD), and CENP-C (140 kD). Purified anticentromere antibodies (ACA-IgG) disrupt mitosis when introduced into tissue culture cells during interphase. We have identified two execution points for antibody inhibition. Antibodies injected into the nucleus greater than or equal to 3 h before mitosis prevent the chromosomes from undergoing normal prometaphase movements in the subsequent mitosis. Antibodies injected in the nucleus during late G2 cause cells to arrest in metaphase. Surprisingly, antibodies introduced subsequent to the beginning of prophase do not block mitosis. These results suggest that the CENP antigens are involved in two essential interphase events that are required for centromere action in mitosis. These may include centromere assembly coordinate with the replication of alpha-satellite DNA at the end of S phase and the structural maturation of the kinetochore that begins at prophase.  相似文献   

12.
Eukaryotic cells ensure accurate chromosome segregation in mitosis by assembling a microtubule-binding site on each chromosome called the kinetochore that attaches to the mitotic spindle. The kinetochore is assembled specifically during mitosis on a specialized region of each chromosome called the centromere, which is constitutively bound by >15 centromere-specific proteins. These proteins, including centromere proteins A and C (CENP-A and -C), are essential for kinetochore assembly and proper chromosome segregation. How the centromere is assembled and how the centromere promotes mitotic kinetochore formation are poorly understood. We have used Xenopus egg extracts as an in vitro system to study the role of CENP-C in centromere and kinetochore assembly. We show that, unlike the histone variant CENP-A, CENP-C is not maintained at centromeres through spermatogenesis but is assembled at the sperm centromere from the egg cytoplasm. Immunodepletion of CENP-C from metaphase egg extract prevents kinetochore formation on sperm chromatin, and depleted extracts can be complemented with in vitro–translated CENP-C. Using this complementation assay, we have identified CENP-C mutants that localized to centromeres but failed to support kinetochore assembly. We find that the amino terminus of CENP-C promotes kinetochore assembly by ensuring proper targeting of the Mis12/MIND complex and CENP-K.  相似文献   

13.
Three human centromere proteins, CENP-A, CENP-B and CENP-C, are a set of autoantigens specifically recognized by anticentromere antibodies often produced by patients with scleroderma. Microscopic observation has indicated that CENP-A and CENP-C localize to the inner plate of metaphase kinetochore, while CENP-B localizes to the centromere heterochromatin beneath the kinetochore. The antigenic structure, called "prekinetochore", is also present in interphase nuclei, but little is known about its molecular organization and the relative position of these antigens. Here, to visualize prekinetochore in living cells, we first obtained a stable human cell line, MDA-AF8-A2, in which human CENP-A is exogenously expressed as a fusion to a green fluorescent protein of Aequorea victoria. Simultaneous staining with anti-CENP-B and anti-CENP-C antibodies showed that the recombinant CENP-A colocalized with the endogenous CENP-C and constituted small discrete dots attaching to larger amorphous mass of CENP-B heterochromatin. When the cell growth was arrested in G1/ S phase with hydroxyurea, CENP-B heterochromatin was sometimes highly extended, while the relative location between GFP-fused CENP-A and the endogenous CENP-C was not affected. These results indicated that the fluorescent CENP-A faithfully localizes to the centromere/kinetochore throughout the cell cycle. We then obtained several mammalian cell lines where the same GFP-fused human CENP-A construct was stably expressed and their centromere/kinetochore is fluorescent throughout the cell cycle. These cell lines will further be used for visualizing the prekinetochore locus in interphase nuclei as well as analyzing kinetochore dynamics in the living cells.  相似文献   

14.
Zedek F  Bureš P 《PloS one》2012,7(1):e30496
In monocentric organisms with asymmetric meiosis, the kinetochore proteins, such as CENH3 and CENP-C, evolve adaptively to counterbalance the deleterious effects of centromere drive, which is caused by the expansion of centromeric satellite repeats. The selection regimes that act on CENH3 and CENP-C genes have not been analyzed in organisms with holocentric chromosomes, although holocentrism is speculated to have evolved to suppress centromere drive. We tested both CENH3 and CENP-C for positive selection in several species of the holocentric genus Caenorhabditis using the maximum likelihood approach and sliding-window analysis. Although CENP-C did not show any signs of positive selection, positive selection has been detected in the case of CENH3. These results support the hypothesis that centromere drive occurs in Nematoda, at least in the telokinetic meiosis of Caenorhabditis.  相似文献   

15.
We developed an aqueous spreading procedure that permits simultaneous analysis of human chromosomes by Q-banding and indirect immunofluorescence. Using this methodology and anticentromere antibodies from an autoimmune patient we compared the active and inactive centromeres of an isodicentric X chromosome. We show that a family of structurally related human centromere proteins (CENP-A, CENP-B, and CENP-C) is detectable only at the active centromere. These antigens therefore may be regarded both as morphological and functional markers for active centromeres.  相似文献   

16.
Human centromere protein C (CENP-C) is an essential component of the inner kinetochore plate. A central region of CENP-C can bind DNA in vitro and is sufficient for targeting the protein to centromeres in vivo, raising the possibility that this domain mediates centromere localization via direct DNA binding. We performed a detailed molecular dissection of this domain to understand the mechanism by which CENP-C assembles at centromeres. By a combination of PCR mutagenesis and transient expression of GFP-tagged proteins in HeLa cells, we identified mutations that disrupt centromere localization of CENP-C in vivo. These cluster in a 12 amino acid region adjacent to the core domain required for in vitro DNA binding. This region is conserved between human and mouse, but is divergent or absent in invertebrate and plant CENP-C homologues. We suggest that these 12 amino acids are essential to confer specificity to DNA binding by CENP-C in vivo, or to mediate interaction with another as yet unidentified centromere component. A differential yeast two-hybrid screen failed to identify interactions specific to this sequence, but nonetheless identified 14 candidate proteins that interact with the central region of CENP-C. This collection of mutations and interacting proteins comprise a useful resource for further elucidating centromere assembly.  相似文献   

17.
We have screened for the presence of two centromere autoantigens, CENP-B (80 kDa) and CENP-C (140 kDa) at the inactive centromere of a naturally occurring stable dicentric chromosome using specific antibodies that do not cross-react with any other chromosomal proteins. In order to discriminate between the active and inactive centromeres on this chromosome we have developed a modification of the standard methanol/acetic acid fixation procedure that allows us to obtain high-quality cytological spreads that retain antigenicity with the anti-centromere antibodies. We have noted three differences in the immunostaining patterns with specific anti-CENP-B and CENP-C antibodies. (1) The amount of detectable CENP-B varies from chromosome to chromosome. The amount of CENPC appears to be more or less the same on all chromosomes. (2) CENP-B is present at both active and inactive centromeres of stable dicentric autosomes. CENP-C is not detectable at the inactive centromeres. (3) While immunofluorescence with anti-CENP-C antibodies typically gives two discrete spots, staining with anti-CENP-B often appears as a single bright bar connecting both sister centromeres. This suggests that while CENP-C may be confined to the outer centromere in the kinetochore region, CENP-B may be distributed throughout the entire centromere. Our data suggest that CENP-C is likely to be a component of some invariant chromosomal substructure, such as the kinetochore. CENPB may be involved in some other aspect of centromere function, such as chromosome movement or DNA packaging.Abbreviations CENP centromere protein  相似文献   

18.
19.
Assay of centromere function using a human artificial chromosome   总被引:8,自引:0,他引:8  
In order to define a functional human centromere sequence, an artificial chromosome was constructed as a reproducible DNA molecule. Mammalian telomere repeats and a selectable marker were introduced into yeast artificial chromosomes (YACs) containing alphoid DNA from the centromere region of human chromosome 21 in a recombination-deficient yeast host. When these modified YACs were introduced into cultured human cells, a YAC with the alphoid DNA from the α21-I locus, containing CENP-B boxes at a high frequency and a regular repeat array, efficiently formed minichromosomes that were maintained stably in the absence of selection and bound CENP-A, CENP-B, CENP-C and CENP-E. The minichromosomes, 1–5 Mb in size and composed of multimers of the introduced YAC DNA, aligned at metaphase plates and segregated to opposite poles correctly in anaphase. Extensive cytological analyses strongly suggested that the minichromosomes had not acquired host sequences and were formed in all cases by a de novo mechanism. In contrast, minichromosomes were never produced with a modified YAC containing alphoid DNA from the α21-II locus, which contains no CENP-B boxes and has a less regular sequence arrangement. We conclude that α21-I alphoid DNA can induce de novo assembly of active centromere/kinetochore structures on minichromosomes. Received: 22 August 1998 / Accepted: 28 August 1998  相似文献   

20.
In this study, we have examined a DNA element specific to the centromere domain of human chromosomes. Purified HeLa chromosomes were digested with the restriction enzyme Sau3AI and fractionated by sedimentation through a sucrose gradient. Fractions showing antigenecity to anticentromere (kinetochore) serum obtained from a scleroderma CREST patient were used to construct a DNA library. From this library we found one clone which has specifically hybridized to the centromere domain of metaphase chromosomes using a biotinylated probe DNA and FITC-conjugated avidin. The clone contained a stretch of alphoid DNA dimer. To determine precisely the relative location of the alphoid DNA stretch and the centromere antigen, a method was developed to carry out in situ hybridization of DNA and indirect immunofluorescent staining of antigen on the same cell preparation. Using this method, we have found perfect overlapping of the alphoid DNA sites with the centromere antigen sites in both metaphase chromosomes and nuclei at various stages in the cell cycle. We have also observed this exact correlation at the attachment sites of artificially extended sister chromatids. These results suggest the possibility that alphoid DNA repeats are a key component of kinetochore structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号