首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Summary The hypothalamic neurosecretory system of normal dogs was studied by light and electron microscopy after perfusion-fixation. In the supraoptic nucleus most neurons are loaded with elementary neurosecretory granules having a content of low electron density. Neurons with less neurosecretory material and signs of enhanced synthetic activity, as recognized by the changes in the endoplasmic reticulum, were also observed.The vesiculated neurons ofJewell were studied under the electron microscope and various stages of development were described. It was postulated that they originate by a localized process of cytoplasmic cytolysis which ends in the formation of a large aqueous intracellular cavity limited by a plasma membrane. The possible significance of these vesiculated neurones is discussed. Some few myelinated neurosecretory axons are found in the supraoptic nucleus.The neurons of the paraventricular nucleus are smaller and contain less neurosecretory material. This is abundant and very pale in the axons. The median eminence consists of an inner zone, mainly occupied by the neurosecretory axons of the hypothalamic-neurohypophysial tracts, and an outer zone in which some neurosecretory axons end on the capillary of the portal system. This outer zone contains numerous axons with the axoplasm rich in neurofilaments and some containing granulated and non-granulated synaptic vesicles. Some neurons with granulated vesicles were observed in this region. The adrenergic nature of these neurons and axons is postulated.The infundibular process of the neurohypophysis shows small axons with discrete amounts of elementary granules and vesicles of synaptic type at the endings. Some enlarged axons having, in addition, large polymorphic bodies are observed and related to the Herring bodies.The size and morphology of the granules are analyzed along the entire hypothalamic-neurohypophysial system. The changes in diameter and electron density are related to the maturation of the granules and the possible significance of such evolution.Supported by grants from the Consejo Nacional de Investigaciones Cientificas y Técnicas and by the Air Force Office of Scientific Research (AF-AFOSR 963-66).  相似文献   

2.
Summary The neurosecretory hypothalamic nuclei and the inner zone of the median eminence of castrated rats were studied under the electron microscope. After one month of castration all the neurosecretory neurons of both nuclei show signs of hyperactivity characterized by dilated cisternae of the endoplasmic reticulum containing a macromolecular filamentous material and an increase in the number of ribosomes. After six months of castration, some neurosecretory neurons show an increased number of neurotubules and larger lysosomes than in the controls. Other neurons show a very significant hypertrophy of the endoplasmic reticulum, with large amounts of intracisternal filamentous material. These cells have few neurosecretory granules and in the adjacent synapses the number of granulated vesicles is increased. In the supraoptic nucleus there are two kinds of neurosecretory axons: the clear ones, which are similar to those that appear in control animals and the dark ones, which have smaller elementary granules. In the inner zone of the median eminence the axons show an increase in the number of neurosecretory granules with respect to the controls. After supplementary administration of sexual hormones, all the modifications produced by castration disappear. The ultrastructural changes observed in the neurosecretory nuclei after castration are discussed in relation to those previously described in the neurohypophysis under the same experimental conditions. A feedback regulatory action of sex hormones on hypothalamic neurosecretory neurons is postulated.Supported by grants from the Consejo Nacional de Investigaciones Científicas y Técnicas and by the Air Force Office of Scientific Research (AF-AFOSR 963-67).We are deeply indebted to Mrs. Defilippi-Novoa and Mr. Alberto Saenz for their skillful assistence.  相似文献   

3.
Summary The ultrastructure of the infundibulum has been studied and compared with that of neural lobe in normal rats. The neurohemal areas of the median eminence are similar to those of the stem but differ from those of neural lobe. The infundibular axons which end around the primary capillaries of the portal system are of a significantly finer caliber. Secondly they contain a different vesicle population. They lack the large (1500 Å–2100 Å) neurosecretory vesicles so abundant in neural lobe axon terminals but contain a smaller (less than 1000 Å) type of vesicle with an osmiophilic center. These dense-core vesicles are consistently present in the many infundibular levels examined, although they are not as numerous as the neurosecretory ones of neural lobe. They are outnumbered by vesicles of the synaptic type, whereas in neural lobe the neurosecretory ones predominate. Another difference involves the electron lucent, neurosecretory vesicle. These are abundant in neural lobe axons, but comparable aggregations of them have not been seen in infundibular axon endings of the neurohemal areas. In contrast, the internal zone of median eminence and the interior of the stem display, in addition to the fine axons, many large fibers which by size and content match the ones of neural lobe. However, careful study indicates that these are axis cylinders and not axon endings.These observations lead to the conclusion that the small calibered axons which terminate around the infundibular capillaries of the portal system constitute a separate group, and are clearly distinguishable at the ultrastructural level from the large supraoptico-neurohypophyseal axons. The latter normally traverse the infundibulum but terminate in neural lobe.This investigation was supported by U.S.P.H.S. Research Grant 5 RO 1 NB 02321-05, National Institute of Neurological Diseases and Blindness. — The author is particularly indebted to Mrs. Nora Tong for her excellent technical assistance throughout the course of this study.  相似文献   

4.
Summary The fine structures of the neurons and neuropils of the magnocellular supraoptic nucleus and the parvocellular nuclei of the rostral hypothalamus, including the suprachiasmatic and medial, lateral and periventricular preoptic nuclei, and the neuronal apparatus of the organum vasculosum laminae terminalis, have been examined in the male White-crowned Sparrow, Zonotrichia leucophrys gambelii, by correlated light and electron microscopy.The magnocellular supraoptic nucleus is characterized by large neurosecretory perikarya which contain a well developed Golgi complex and densecored granules 1,500–2,200 Å in diameter. The neuropil displays axons, dendrites and glial fibers. Some axonal profiles contain dense-cored vesicles 800–1,000 Å in diameter and clear vesicles 500 Å in diameter. Axo-somatic and axo-dendritic synapses are conspicuous in this nuclear region.The suprachiasmatic nucleus is characterized by an accumulation of small neurons with moderately developed cellular organelles and some dense-cored granules, approximately 1,000 Å in diameter. The profiles of axons within the neuropil contain dense-cored granules 800–1,000 Å in diameter and clear vesicles 500 Å in diameter.The neurons of the medial preoptic nucleus are relatively large and exhibit well developed cellular organelles and dense-cored granules 1,300 to 1,500 Å in diameter. Granular materials are formed within the Golgi complex. The medial preoptic nucleus is rich in secretory perikarya.Occasionally, neurons with granules 1,500–2,200 Å in diameter are encountered in the lateral preoptic and periventricular preoptic nuclei. They may be considered as scattered elements of the magnocellular (supraoptic and paraventricular) system.The organum vasculosum laminae terminalis consists of three layers, i.e., ependymal, internal and external zones, and exhibits a vascular arrangement similar to that of the median eminence. The perikarya of the parvocellular neurons and their axons in the internal zone contain numerous secretory granules ranging from 1,300 to 1,500 Å in diameter.This investigation was supported by Grant No. 5R040 Japan-U.S. Cooperative Science Program of the Japan Society for the Promotion of Science to Professor H. Kobayashi and Professor S.-I. Mikami, by a Scientific Research Grant No. 56019 from the Ministry of Education of Japan to S.-I. Mikami, by support from the Deutsche Forschungsgemeinschaft (Schwerpunktprogramm Biologie der Zeitmessung) to Prof. A. Oksche and by Grant No. GF 33334, U.S.-Japan Cooperative Science Program of the National Science Foundation to Prof. D.S. Farner.Herrn Professor Dr. Dres h.c. Wolfgang Bargmann zu seinem 70. Geburtstag am 27. Januar 1976 gewidmet.  相似文献   

5.
The distribution of melanin-concentrating hormone (MCH) in the central nervous system of the frog Rana ridibunda was determined by the indirect immunofluorescence technique using antibodies against synthetic salmon MCH, generated in rabbits. The most prominent group of MCH-like containing perikarya was detected in the preoptic nucleus. Comparatively, a moderate number of cell bodies was observed in the dorsal infundibular nucleus and in the ventral thalamic area. Brightly immunofluorescent nerve bundles were found in the preoptic nucleus and in the ventral infundibular nucleus, coursing towards the internal zone of the median eminence and the pituitary stalk. An intense network of immunofluorescent fibers was localized in the neural lobe of the pituitary. The subcellular localization of MCH-like material was studied in the neurohypophysis using the immunogold technique. It was demonstrated that MCH-like material was contained in dense core vesicles (80–90 mm in diameter) within specific nerve terminals. The present findings indicate that, in amphibians, MCH-like peptide is located in specific hypothalamic neurons. Our data suggest that MCH may be released by neurohypophyseal nerve endings as a typical neurohormone.  相似文献   

6.
Summary The hypothalamic neurosecretory system of the bullfrog, Rana catesbeiana, was studied with light- and electron microscopy. The median eminence is roughly divided into two portions. The upper portion mostly consists of ependymal cells, glial cells and preoptico-hypophysial nerve tract, whereas in the lower portion, neurosecretory axons, glial cells, processes of glial and ependymal cells, and fine blood vessels of the hypothalamic portal vein are located. A part of the neurosecretory axons of the preoptico-hypophysial tract proceeds to the lower portion of the median eminence. These axons are arranged perpendicularly to the capillaries of the hypothalamic portal vein. The glial cells are densely located in the area of the median eminence where neurosecretory material is abundant. The neurosecretory material in the neurosecretory cells, their axons, the median eminence and the pars nervosa of the bullfrog shows a positive reaction to PAS treatment.The neurohemal area of the median eminence is occupied by many neurosecretory and non-neurosecretory axons, containing neurosecretory granules and/or synaptic vesicles. The axonal portions with the synaptic vesicles which are considered to be the nerve endings abut on the capillaries of the portal system. The size of synaptic vesicles in the axon terminals containing few neurosecretory granules is larger than those in the endings with many neurosecretory granules. Infrequently glial and ependymal processes are interposed between the nerve endings and the capillary wall.In the hilar region of the infundibulum, synapses are frequently observed between the thin fibers with or without neurosecretory granules and dendrites of non-neurosecretory neurons. The probable functions of these synapses are briefly discussed on the basis of our findings. Both in the hilar region of the infundibulum and in the pars nervosa, electron-dense neurosecretory granules of two different sizes were observed. The median eminence contains only one type of granules.The fine structure of the pars nervosa shows similar structures to those of the median eminence. Both in the median eminence and the pars nervosa, the fenestrated endothelium of the capillaries was frequently observed. The thick perivascular connective tissue space containing fibroblasts and collagen fibrils was observed both in the median eminence and the pars nervosa. Vesicles in the cytoplasm of the endothelial cells which appear to take a part in the transendothelial transport were observed.This investigation was supported in part by United States Public Health Service Research Grant, No. A-3678, to Hideshi Kobayashi from the National Institute of Arthritis and Metabolic Diseases and partly by a grant for Fundamental Scientific Research from the Ministry of Education of Japan. The authors wish to express their thanks to Prof. K. Takewaki for his kind encouragement.  相似文献   

7.
Summary The neurohypophysis of foetal macaque monkeys has been studied by optical and electron microscopy. Abundant elementary neurosecretory granules are present in the infundibular process by the middle third of gestation. Most of these are of variable electron density, and surrounded by a membrane larger than the granule, so that they appear haloed. A few fibres contain membrane-bounded electron-dense granules which show no halo. Inclusions of synaptic vesicle size are rare. The infundibular stem contains a few fibres with typical inclusions smaller than 1000 Å in diameter; the latter resemble inclusions in fibres of the median eminence.Dedicated to Professor W. Bargmann on his 60th birthday.  相似文献   

8.
Summary An attempt was made to correlate functional changes in the neurohypophysis of the White-crowned Sparrow, Zonotrichia leucophrys gambelii, with morphologic features on the light- and electron-microscope levels. The aldehyde-fuchsin-staining anterior median eminence possesses essentially the same ultrastructural features as the non-staining posterior median eminence. The axon terminals are characterized by the presence of a large number of small vesicles (approximately 400 Å in diameter) and occasional electron-dense granules. The more-or-less depleted anterior median eminence occasionally evident in the photosensitive bird showing testicular development is indistinguishable ultrastructurally from the more intensely staining median eminence generally characteristic of the photorefractory bird. In the median eminence, stainability and functional state do not seem to be correlated with changes in the type, size or number of vesicles. A slight increase in the number of granules was noted in the photorefractory bird but this was considered insufficient basis to account for differences in stainability.The pars nervosa, on the other hand, responded to osmotic stimuli (saline drinking water) by loss of stainability and decrease in numbers of elementary neurosecretory granules. Small vesicles are also present in the pars nervosa axon terminals, but are intermingled with neurosecretory granules in normal birds. Acute-osmotic birds, however, had axon terminals almost entirely occupied by small vesicles.It is to be emphasized that the pars nervosa and the median eminence are two structurally very different regions of the neurohypophysis. The basis for aldehyde-fuchsin staining in the median eminence appears to differ from that in the pars nervosa. The implications of these findings are considered in regard to hypothalamic control over gonadotropic activity in the White-crowned Sparrow.Dedicated to Professor Dr. W. Bargmann in honor of his 60th birthday.This investigation was supported by grant GB-2484 from the National Science Foundation to Professor Bern, grant GB-2819 from the National Science Foundation to Professor Mewaldt, and grant NB-01353 from the National Institutes of Health to Professor Farner. The authors wish to express their appreciation of the technical assistance of Mrs. Irene Brown, Mr. John Butchart, Sally S. Kibby, Mrs. Carol Nicoll, and Mr. John Striffler. Mrs. Emily Reid kindly prepared the histograms.  相似文献   

9.
Summary The distribution of cholinesterases in hypothalamo-hypophysial neurosecretory system of the White-crowned Sparrow has been examined histochemically. The perikarya of the neurosecretory cells of the paraventricular and supraoptic nuclei have a high acetylcholinesterase activity. Acetylcholinesterase activity also occurs in the cells of the infundibular nucleus. The proximal parts of the axons of the cells of the neurosecretory and infundibular nuclei have strong acetylcholinesterase activity and weak non-specific cholinesterase activity. In the median eminence, the activity of acetylcholinesterase is strongest in the palisade layer. In the pars nervosa, there is definite, although weak, acetylcholinesterase activity.This investigation was supported by grants from the National Institutes of Health to Professor Farner (B-1353) and to Dr. Kobayashi (A-3678).  相似文献   

10.
Summary In the median eminence of the newt a medial region and two lateral regions are described.In cross section, the medial region appears to be made up of 1) an outer or glandular zone (Zone I) containing aldehyde-thionine-positive and negative nerve fibres and blood capillaries. Nerve fibres appear aligned in palisade array along the capillaries. 2) An inner zone (Zone II) made up of a) a layer of aldehyde-thionine-positive nerve fibres (fibrous layer) belonging to the preoptic hypophyseal tract and b) a layer of ependymal cells lining the infundibular lumen and reaching the blood vessels with their long processes.The lateral regions display a less pronounced stratification and aldehyde-thionine positive nerve fibres are nearly absent.A slender lamina (ependymal border) containing mainly aldehyde-thionine-positive nerve fibres and ependymal cells connects the median eminence to the pars nervosa.At the ultrastructural level, in the outer zone of the medial region at least 4 types of nerve fibres and nerve endings are identified:Type I nerve fibres containing granular vesicles of 700–1000 Å and clear vesicles (250–400 Å).Type II nerve fibres containing granular vesicles and polymorphous granules of 900–1300 Å and clear vesicles (250–400 Å).Type III nerve fibres containing dense granules of 1200–2000 Å and clear vesicles of 250–400 Å.Type IV nerve fibres containing only clear vesicles of 250–400 Å. In the inner zone too, all these nerve fiber types are found among ependymal cells, while the fibrous layer consists of nerve fibres containing granules of 1200–2000 Å in diameter.In the lateral regions Type I, Type II and Type IV nerve fibres and their respective perivascular terminals are found; axons containing dense granules (1200–2000 Å) are scanty. In these regions typical synapses between Type I nerve fibres and processes rich in microtubules are visible.The classification and functional significance of nerve fibres in the median eminence are still unsolved, but it may be assumed that nerve fibres of the medial region belong to both the preoptic hypophyseal and tubero hypophyseal tract, while the lateral regions are characterized by nerve fibres of the tubero hypophyseal tract. Peculiar specializations of the ependymal cells in the median eminence of the newt are also discussed.Work supported by a grant from the Consiglio Nazionale delle Ricerche.The authors are indebted to Mr. G. Gendusa and P. Balbi for technical assistance.  相似文献   

11.
Summary Three sites of somatostatin-synthesizing perikarya, or a related antigen, were determined by immunofluorescence in the hypothalamus of the tadpole, Alytes obstetricans (Amphibia, Anura). Two sites of neurosecretory perikarya were localized in the preoptic nuclei of the anterior hypothalamus; the axons extended either to the anterior diencephalon or to the median eminence and the pituitary. The third site was found in the posterior hypothalamus. These neurosecretory cells showed a strong immunofluorescent reaction; their axons all terminated at the level of the median eminence. Somatostatin cells were only found in intact or hypophysectomized tadpoles given somatotropin (STH). The strong reaction observed in hypophysectomized tadpoles was possibly due to the loss of the terminal portion of the neurosecretory pathway (median eminence and pituitary) by which the agent is transported to the site of discharge.  相似文献   

12.
Neurophysin, vasopressin and oxytocin were localized in different portions of the supraopticohypophysial tract (SHT) using the unlabeled antibody enzyme technique at the ultrastructural level. In vasopressin-positive supraoptic perikarya, vasopressin and neurophysin were present in all neurosecretory granules. Within the zona interna of the median eminence, vasopressin and neurophysin were present in two populations of axons, one with granules of 1300-1500 A and one with granules of 900-1300 A. Following exposure of thin sections of median eminence to antiserum to neurophysin, reaction products were present in granules and in the extragranular cytoplasm in the axons with larger granules; in all other cases reaction product was confined to the granules. Vasopressin-positive fibers were also presented in large numbers of the zona externa of the median eminence and many terminated on the pituitary primary portal plexus. A few oxytocin fibers were present on the portal capillaries in the infundibular stalk. In the posterior pituitary all axon profiles were neurophysin positive. Neurophysin was present as both a granular and cytoplasmic pool. Vasopressin-containing axons account for 90% of the neuronal elements in the posterior pituitary and oxytocin for the remaining 10%. Findings on the subcellular distribution of these peptides are related to current theories on transport and release of neurohormones.  相似文献   

13.
Summary The demonstration of perikarya of mediocellular neurones producing LRF, using indirect immunofluorescence on slides and anti synthetic LRF antibodies, requires both their activation and the inhibition of their axoplasmic transport. This fact suggests that LRF is present in an immunoreactive form, but usually in very low concentrations. Perikarya of neurons producing LRF are found principally in the preoptic and septal areas of the rat and decrease caudally, particularly beyond the retrochiasmatic area. Most of the axons coming from these perikarya are incorporated in the hypothalamoinfundibular tract and terminate around the capillaries of the primary portal plexus, particularly those of interealar plexus. Other axons (or axon collaterals) may be found in various areas (suprachiasmal crista, epithalamus, amygdala, mesencephalon) and form circuits recalling the “extrahypophyseal pathways” described for the magnocellular Gomori-positive neurons of the SON and PVN. These axons are probably concerned in intersegmental regulations involving “neurosecretory synapses”, particularly of the axosomatic type. The placement of stereotaxic lesions was used to determine the topography and direction of axoplasmic flow of the axons transporting LRF. The infundibular immunoreactive material, already discernible at the end of gestation in the foetus, shows considerable variations between birth and puberty, during the estrous cycle and under various other physiological or experimental conditions. The observations made under various experimental or physiological conditions suggest that, in the guinea-pig in particular, the greater part of the hypothalamic immunoreactive material is concentrated in the infundibular area. This area of accumulation is comparable to the distal neurohypophysis of the Gomori-positive neurosecretory system coming from the SON and PVN. This work was financed by the D.G.R.S.T. Contract No. 72-7-0375.  相似文献   

14.
Summary The distribution of VIP- and TRH-immunoreactivity in neurons and processes within the hypothalamus of the pigeon was investigated with light-microscopic immunocytochemical techniques. Most of the VIP-containing neurons are concentrated in the middle and caudal parts of the hypothalamus, with the greatest concentration of perikarya occurring in the medial and lateral part of the ventromedial hypothalamic nucleus and the infundibular nucleus. These cells give rise to axons that seem to extend into the median eminence. An extensive network of VIP-immunoreactive fibers and varicosities occupy the external layer of the median eminence. The majority of TRH-containing neurons is found in the anterior hypothalamus with the greatest concentration of cells in the magnocellular preoptic, medial preoptic, suprachiasmatic and paraventricular nuclei. TRH-immunoreactive fibers and varicosities form a dense arborization in the external layer of the median eminence. Lactation seems to induce substantial changes in VIP as well as in TRH-immunostaining in the median eminence and other hypothalamic regions as compared to control, sexually active animals. Furthermore, TRH-immunoreactivity decreased in the median eminence following 60-min exposure to cold. These results suggest that VIP- and TRH-containing pathways in the pigeon hypothalamus are involved in the mediation of neuroendocrine responses.  相似文献   

15.
Summary The infundibular processes of the neurohypophysis of male and female rats were studied after different periods of castration. After seven days an increase in neurosecretory granules was observed. Two types of neurosecretory nerve endings were identified: dark ones, with dense neurosecretory elementary granules of 1600 A, and clear ones, with lighter neurosecretory granules of 1800 A. Protoplasmatic pituicytes showed a large increase in lipid granules together with a general hypertrophy. After one week of castration but with hormonal therapy the protoplasmatic pituicytes appeared normal or even showed less lipid granules than in the controls.With one month of castration the changes already mentioned in the nerve endings and pituicytes were more pronounced and after six months even more accentuated. Two types of neurosecretory nerve endings were clearly identified and the protoplasmatic pituicytes were loaded with lipid granules.The probable significance of the two different neurosecretory axons was discussed in relation to recent studies on the isolation of neurosecretory terminals from the neurohypophysis. The changes in the protoplasmatic pituicytes were considered in relation to the possible significance of the lipid granules.Supported by grants from the Consejo Nacional de Investigaciones Cientificas y Técnicas and by the Air Force Office of Scientific Research (AF-AFOSR 963-67).We are deeply indebted to Mrs. Defilippi-Novoa and Mr. Alberto Saenz for their skillful assistence.Associated Investigator, Consejo Nacional de Investigaliones Científicas y Técnicas, Argentina.  相似文献   

16.
Summary The neurohypophysis of the toad Bufo arenarum Hensel can be subdivided into two well defined zones: the median eminence and the neural lobe. In its turn, the median eminence consists of two zones: a neural subependymal one, containing the axons of the hypothalamic-neurohypophysial tract; and a glandular one, made up of the capillaries of the primary plexus of the portal hypophysial system and of neurosecretory axons.Different staining techniques and certain experimental procedures (inanition, dehydration and adenohypophysectomy) showed that there are differences between the neurosecretory material of the neural lobe, which is a place of hormone liberation into the systematic circulation, and the neurosecretory material of the median eminence, which is the site of release of adenohypophysis-stimulating substances into the portal vessels.This work was introduced at the III Sesiones Científicas de Biología, Rosario, Argentina, March, 1965. The study was partially supported by the Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina) and The Rockefeller Foundation (School grant RF-58028).Fellow of the Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina. The author wishes to express his indebtedness to Dr. M. H. Burgos and Dr. F. Sacerdote for their help and criticism, to Miss B. Rodriguez. Miss M. Masot and Mr. L. Castro for their technical assistance.  相似文献   

17.
Summary The rat median eminence contains at least three kinds of granules or vesicles: 1. large electron-dense granules (perhaps carriers of neurohypophysial hormones), 2. small electron-dense granules with or without haloes (perhaps carriers of catecholamines) and 3. synaptic vesicle-like structures (perhaps carriers of acetylcholine). The former two electrondense granules exist in separate axons but they coexist with the latter vesicles in the same axons.The pars nervosa shows basically a similar structure to the median eminence. However, the axons containing the small electron-dense granules are very few. In the pars tuberalis, there are at least two types of cells: the cells of one type contain much cytoplasm with large round nuclei and those of the other type contain a small amount of cytoplasm with polymorphic nuclei. The cells of the former include multivesicular bodies and secretory granules, but those of the latter do not. Some of capillaries of the primary plexus are surrounded by the cells of the pars tuberalis on one side and by neurosecretory axon endings on the other side.The median eminence contains high concentration of acetylcholine or an acetylcholine-like substance and shows neurohypophysial hormone activity.Aided by Grant A-3678 from the United States National Institute of Arthritis and Metabolic Diseases. The authors are indebted to Dr. Welsh, Harvard University, for the kind gift of Mytolon.  相似文献   

18.
Zusammenfassung Der Nucleus infundibularis verschiedener Reptilien wurde licht- und elektronenmikroskopisch untersucht. Zellen dieses Kernes entsenden Fortsätze durch ein mehrreihiges Ependym in den 3. Ventrikel und bilden dort freie, intraventrikuläre Nervenendigungen (Liquorkontakt-Nervenendigungen, Lkne). Lichtmikroskopisch konnten in der Kerngruppe a) kleine, AChE-negative, toluidinblaue und b) große, AChE-positive, mit Toluidinblau hell erscheinende Nervenzellen unterschieden werden.Die knöpfchenförmigen LKNE weisen Elemente des endoplasmatischen Retikulums, freie Ribosomen, eine wechselnde Anzahl Mitochondrien, einzelne Lysosomen, asymmetrische Zilien (Typ 9+0) mit akzessorischem Basalkörper und Zilienwurzeln auf. Zwei LKNE-Typen sind unterscheidbar: a) LKNE mit granulierten Vesikeln mit einem Durchmesser von 800–1100 Å und b) LKNE mit großen, elektronendichten Granula (Durchmesser 1200–1600 Å).Im Lumen des 3. Ventrikels treten kleinkalibrige Axone auf, die kleine, granulierte Bläschen (Durchmesser 700–900 Å) enthalten und mit den LKNE des Nucleus infundibularis intraventrikuläre Synapsen bilden.Die Perikaryen des Nucleus infundibularis weisen ein reichliches endoplasmatisches Retikulum, zahlreiche Polyribosomen, Neurotubuli und Mitochondrien auf. Ähnlich wie bei den LKNE sind zwei Perikaryenarten zu unterscheiden: a) Perikaryen mit granulierten Vesikeln (Durchmesser 800–1100 Å) und b) solche mit elektronendichten Granula (1200–1700 Å). Außerdem kommen verschiedene Arten axosomatischer und axodendritischer Synapsen vor.Die Funktion der intraventrikulären Nervenendigungen und verschiedenen Synapsenarten in der Kerngruppe wird im Hinblick auf einen Informationsaustausch zwischen dem Liquor cerebrospinalis und dem Nucleus infundibularis diskutiert.
Liquor contacting neurons in the infundibular nucleus
Summary The infundibular nucleus of various reptiles was studied light and electron microscopically. Cells of this nucleus send processes through a stratified ependyma into the 3rd ventricle where they form free, intraventricular nerve terminals (liquor contacting nerve endings, LCNE). In the nucleus, two kinds of neurons could be distinguished light microscopically: a) small, AChE-negative, toluidine blue neurons, and b) large, AChE-positive cells staining light with toluidine blue.The club shaped LCNE contain elements of the endoplasmic reticulum, free ribosomes, a various amount of mitochondria, and single lysosomes. The terminals bear asymmetrical cilia (type 9+0) supplied with accessory basal bodies and rootlet fibres. Two kinds of LCNE are demonstrable: a) LCNE containing dense-core vesicles with a diameter of about 800–1100 Å, and b) LCNE with large, electron-dense granules (diameter about 1,200–1,600 Å). In the lumen of the 3rd ventricle, there occur small axons that contain small granulated vesicles (diameter about 700–900 Å), and that form intraventricular synapses with the LCNE of the infundibular nucleus.The perikarya of the infundibular nucleus contain an abundant endoplasmic reticulum, numerous polyribosomes, neurotubules and mitochondria. Similarly to the LCNE, two kinds of perikarya can be distinguished: a) perikarya containing granulated vesicles (diameter about 800–1100 Å), and b) perikarya with electron-dense granules (diameter about 1200–1700 Å). Furthermore, different types of axosomatic and axodendritic synapses occur.The function of the intraventricular nerve terminals and the different types of synapses in the nucleus is discussed with regard to an exchange of informations between the cerebrospinal fluid and the infundibular nucleus.
  相似文献   

19.
Zusammenfassung Fluoreszierende aminerge Nervenfasern bzw. Endigungen und elektronendichte Granula mit einem Durchmesser von 500–1000 Å wurden bei Passer domesticus in den Perikaryen und im Neuropil des Nucleus infundibularis, im Neuropil des Nucleus supraopticus, im rostralen Abschnitt der neurosekretorischen Bahn (Region der Sehnervenkreuzung) und in der retikulären und Palisadenschicht der Eminentia mediana beobachtet. 2000–2500 Å große kontrastreiche Granula finden sich in den Perikaryen des Nucleus supraopticus, im Tractus supraoptico-paraventriculo-hypophyseus und im Hypophysenhinterlappen. Nach Reserpinbehandlung schwanden sowohl die gelbgrüne Fluoreszenz als auch das elektronendichte Material der 1000 Å und z. T. auch der 500–800 Å großen Bläschen. Dieses Ergebnis spricht dafür, daß beide Granulatypen Monoamine enthalten. Der Nucleus infundibularis ist nach unseren Befunden die wichtigste Quelle der etwa 1000 Å großen Granula in der Palisadenschicht der Eminentia mediana.
Fluorescence- and electronmicroscopic studies on the hypothalamo-hypophysial system of Passer domesticus
Summary In Passer domesticus, fluorescent aminergic fibers and axon terminals and dense-core vesicles of 500 to 1000 Å diameter were found in the perikarya and the neuropile of the infundibular nucleus, in the neuropile of the supraoptic nucleus, in the rostral common neurosecretory pathway (region of the optic chiasma), in the tubero-infundibular tract, and in the reticular and palisade zones of the median eminence. 2000–2500 Å electron-dense vesicles were found in the perikarya of the supraoptic nucleus, in the proximal division of the common neurosecretory pathway and in pars nervosa of the hypophysis. After reserpine treatment, the yellow-green fluorescence as well as the dense material contained in the 1000 Å vesicles and partly also in the 500–800 Å vesicles disappeared. This suggested that the 1000 Å and the 500 Å dense-core vesicles in the hypothalamo-hypophysial system of Passer domesticus contain monoamines and that the infundibular nucleus is an important source of the 1000 Å dense-core vesicles in the palisade layer of the median eminence.


Herrn Prof. Dr. Dr. E. Horstmann gewidmet.

Mit dankenswerter Unterstützung durch die Deutsche Forschungsgemeinschaft.

Stipendiat der Alexander von Humboldt-Stiftung. (On leave from the Department of Veterinary Anatomy, University of Minnesota, St. Paul, Minnesota, U.S.A.).  相似文献   

20.
Summary The corticotropin releasing factor (CRF)-synthesizing perikarya and neural processes were detected at ultrastructural level in the hypothalamic paraventricular nucleus and in the median eminence of control and colchicine-pretreated rats. The unlabelled antibody peroxidase-antiperoxidase complex (PAP) immunohistochemical method was used in a pre-embedding manner, on thick, non-frozen sections. In CRF-perikarya, neurosecretory granules (80–120 nm in diameter), free ribosomes, and the rough endoplasmic reticulum were labelled. Unlabelled axon terminals formed asymmetric synapses on CRF-containing perikarya and dendrites. Immunolabelled axons terminated in the palisadic zone of the median eminence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号