首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
宋海燕  刘再群  郑磊 《四川动物》2012,31(2):232-235,239,337
采用普通染色及免疫组化SABC染色法研究皖西白鹅小脑皮质的发育和多巴胺受体1(DRD1)阳性细胞在其发育中的表达.结果表明,小脑皮质在胚龄13 d(E13)由外向内分为外颗粒层(EGL)、浦肯野细胞层(PCL)和内颗粒层(IGL),E19由外向内分为EGL、分子层(ML)、PCL和IGL.随发育天数的增加,EGL的厚度和细胞层次呈先升后降的变化趋势,细胞密度逐渐下降;ML厚度逐渐增大,在E24到E28时增值最大;浦肯野细胞(PC)在E13、E19、E24和E28时随胚龄增大逐渐增大,在E28后趋于稳定,细胞密度随着发育天数的增加逐渐下降,在小脑皮质发育中还发现有一部分PC呈多层排列,且细胞层次逐渐变少;IGL厚度呈先升后降的变化趋势,细胞密度呈上升趋势.外颗粒层和内颗粒层在E13、E19、E24和E28时有DRD1阳性细胞表达,分子层在E24、E28、日龄7 d(P7)和15d(P15)有阳性细胞表达,PC在所检测的6个时段均有阳性表达.研究表明,小脑皮质的发育主要与细胞增殖、迁移和凋亡有关,外颗粒层的逐渐消失是以细胞迁移和凋亡为主,多层PC逐渐退化成单层是与细胞凋亡和正常突触联系的建立有关;DRD1在皖西白鹅小脑皮质发育中对外颗粒层细胞和PC起着重要作用.  相似文献   

2.
The generation cycle of germinative cells (external matrix cells) in the external granular layer of the cerebellar cortex of the 10-to 11-day-old mouse was studied by radioautography following repeated injections of H3-thymidine. The generation time is 19 hr, presynthetic time 8.5 hr, DNA-synthetic time 8 hr, postsynthetic time 2 hr, and mitotic time 0.5 hr. These proliferating cells occupy the outer half of the external granular layer and make up the external matrix layer. Neuroblasts are differentiated from the external matrix cell, migrate out from the layer and accumulate in the inner half of the external granular layer to form the external mantle layer. The transit time of the neuroblasts in the external mantle layer is 28 hr. Thereafter, they migrate farther into the molecular layer and the internal granular layer. By means of long-term cumulative labeling, the rate of daily production of neuroblasts from the external matrix cell is studied in quantitative terms. It becomes clear that the entire population of the inner granule neurons arises postnatally in the external granular layer between 1 and 18 days of age and that 95% of them is produced between postnatal days 4 and 15. Finally, the fate of the cells in the external granular layer at its terminal stage was studied by marking the cells with H3-thymidine during 15–16 days of life and following their subsequent migration and developmental changes up to 21 days of life. Comparison of radioautographs taken before and after the migration disclosed that the external matrix cells give rise to a small number of neuroglia cells. This finding revealed their multipotential nature.  相似文献   

3.
Rats were reared from birth in litters of 4, 10, and 16 to achieve different growth rates. Pups in the litters of 16 had no access to rat chow until days 21-28, when chow was made available to one of the litters to induce catch-up growth. Total body water was estimated by tritiated water (TBWHTO) on days 7, 14, 21, and 28 and then calculated from desiccation (TBWdes). TBWHTO was consistently larger than TBWdes for all groups. Differences were 10.9-16.9% on day 7 and 3.7-6.4% on day 28. On day 28, percent difference was higher in the slower-growing than the faster-growing groups. Nonaqueous hydrogen exchange was determined from tritium activity in the dried carcass. Less than 1% of the injected tritium exchanged with nonaqueous hydrogen during the equilibration period. Thus differences between TBWHTO and TBWdes in the younger animals could not be accounted for by nonaqueous hydrogen exchange but may have resulted from a larger loss of injected tritium, possibly in insensible water.  相似文献   

4.
—The effects of hypothyroidism and several degrees of undernutrition on the development of cerebellar weight, DNA, and thymidine kinase activity were studied in young rats ranging in age from 2 to 22 days. Early propylthiouracil treatment caused a delayed cerebellar cell multiplication. The activity of cerebellar thymidine kinase was suppressed at ages 2 and 5 days and was in excess of control values on days 15 and 22, thus resulting in a delay in the developmental spectrum for thymidine kinase, and extending the time span of activity beyond that of controls. Undernutrition led to varying degrees of reduced cell proliferation at experimental ages 5, 12, and 19 days. Cerebella from the most undernourished animals showed significant differences from controls in thymidine kinase activity at ages 5 and 12 days. Comparisons between sub-groups from within the oversized litters at 5 and 12 days suggested that changes in thymidine kinase activity relate to the degree of undernutrition to which the sub-group is subjected and that during development there may be a critical degree of undernutrition at which a particular essential enzyme becomes affected. This study emphasizes the biochemical similarities and differences between neonatal hypothyroidism and undernutrition, while pointing out the difficulties which exist in biochemical separation of components of the two conditions. Further evidence is presented that thymidine kinase is responsive to hormonal stimuli during cerebellar development and may play an important role in the regulation of DNA biosynthesis in brain as well as other organs.  相似文献   

5.
THE DEVELOPMENT OF D-AMINO ACID OXIDASE IN RAT CEREBELLUM   总被引:1,自引:0,他引:1  
D-Amino acid oxidase (D-amino acid: O2 oxidoreductase (deaminating), EC 1.4.3.3; D-AAO) activity is biochemically undetected in rat brain stem, cerebellum and forebrain until 14 days after birth. Adult levels are attained by day 30 in the brain stem, and by day 36 in the cerebellum. At adulthood, forebrain D-AAO activity per g wet weight of tissue is less than 2% that of the cerebellum. In contrast to the pattern in the CNS, substantial D-AAO activity is present in both liver and kidney 2 days before birth and adult levels are approached within 2 weeks of birth. Nonetheless, D-AAO activities in rat liver, kidney, brain stem and cerebellum are likely to be due to a single enzyme which has properties very similar to the purified hog D-AAO. The late ontogenesis of D-AAO activity in cerebellum and brain stem relative to that in liver and kidney parallels reported phylogenetic data. Histochemical staining for D-AAO in rat cerebellar cortex is absent until 15 days after birth when activity is first observed in some cells of the external germinal zone and adjacent molecular layer. These cells appear to migrate to a final destination around the Purkinje cell soma and leave processes at the pial surface. By 21 days of age an adult pattern of staining is manifest throughout the cerebellum but it is of weak intensity. The adult pattern includes some staining in the granular layer which seems to be associated with mossy fibers and certain cerebellar glomeruli, and strong staining at the pial surface, in the molecular layer, and in cells surrounding, but not within, the Purkinje cell soma. The data suggest that the biochemical appearance of D-AAO in developing cerebellum derives from two sources: one associated with differentiation of one of the last cell types to form from the external germinal zone, and the other with maturation of mossy fibers and their synapses (cerebellar glomeruli).  相似文献   

6.
Newborn rats were treated at different stages of their development with low doses of methylazoxymethanol acetate. The postnatal increase of the DNA content of the cerebrum did not differ from that of controls. In the cerebellum, the DNA content was transitorily reduced, but later, the external granular layer became thicker and DNA deposition increased in comparison with controls; finally, the cerebellar DNA returned to a normal value. Morphological abnormalities of the cerebellum, abnormal orientation of migrating cells, scattering of Purkinje cell bodies within the internal granule cells and specially striking abnormalities of the morphology and orientation of Purkinje cell dendrites were noted in rats treated with MAM from birth to day 3. The effects on the Purkinje cell morphogenesis persisted but were much less marked when MAM was given from 4 to 7 or from 8 to 11 days. Neonatal thyroid deficiency, as MAM-treatment between days 0 and 3, leads to an abnormal position of Purkinje cell bodies within the cerebellar cortex; it also leads to morphological abnormalities of their dendritic arborization which closely resemble those observed after MAM-treatment during the second postnatal week. It also alters the cell formation in the cerebellum. Thyroid deficiency probably exerts its effect on cell formation earlier than previous biochemical studies have shown. On another hand, the morphological abnormalities of Purkinje cell arborizations in the thyroid-deficient animals may be partly due to the perturbations of cell formation which persist later in the cerebellum.  相似文献   

7.
Abstract— At birth in the rat brain the Thy-1 antigen was present at 10% of the adult level and increased rapidly to reach near adult levels after 3 weeks. Localization studies by immunofluorescence on sections of rat cerebellar cortex during this period showed that at day 5 there was weak fluorescence associated mainly with the molecular layer and some fibre-like structures in the centre of the folium; no fluorescence was found around the cells of external granular layer. From 5 to 16 days there was a rapid increase in Thy-1 immunofluorescence with noticeably higher levels associated with the white matter than the molecular layer. However, by 21 days the reverse was found' with lower levels in white matter than in the molecular layer with a similar distribution to that observed previously in adult rat cerebellum. Small rings and patches of fluorescence were observed in the molecular and granular layers. The results indicated that Thy-1 was present on axons, mature neurons and their processes. In addition, Thy-1 immunofluorescence was found in the pia-arachnoid until around day 16.  相似文献   

8.
F3/contactin (CNTN1) and TAG-1 (CNTN2) are closely related axonal glycoproteins that are differentially regulated during development. In the cerebellar cortex TAG-1 is expressed first as granule cell progenitors differentiate in the premigratory zone of the external germinal layer. However, as these cells begin radial migration, TAG-1 is replaced by F3/contactin. To address the significance of this differential regulation, we have generated transgenic mice in which F3/contactin expression is driven by TAG-1 gene regulatory sequences, which results in premature expression of F3/contactin in granule cells. These animals (TAG/F3 mice) display a developmentally regulated cerebellar phenotype in which the size of the cerebellum is markedly reduced during the first two postnatal weeks but subsequently recovers. This is due in part to a reduction in the number of granule cells, most evident in the external germinal layer at postnatal day 3 and in the inner granular layer between postnatal days 8 and 11. The reduction in granule cell number is accompanied by a decrease in precursor granule cell proliferation at postnatal day 3, followed by an increase in the number of cycling cells at postnatal day 8. In the same developmental window the size of the molecular layer is markedly reduced and Purkinje cell dendrites fail to elaborate normally. These data are consistent with a model in which deployment of F3/contactin on granule cells affects proliferation and differentiation of these neurons as well as the differentiation of their synaptic partners, the Purkinje cells. Together, these findings indicate that precise spatio-temporal regulation of TAG-1 and F3/contactin expression is critical for normal cerebellar morphogenesis.  相似文献   

9.
Dynamic aspects of the development of the cerebellum of the white Leghorn (Gallus domesticus) were examined using 3H-thymidine autoradiography. A single dose of 25 microCi 3H-thymidine was given to embryos varying in age from 0-18 days. The embryos were all studied before hatching, either after short or after long survival times. It appeared that the superficial part of the outer mantle layer (OML-s, or called external granular layer, egl) is histologically present at day 6, but starts its activity as a secondary matrix at day 7, probably due to activation by a secondary influx of cells from the ventricular neuro-epithelium. It was also demonstrated that Purkinje cells and cells of the central cerebellar nuclei are produced by the ventricular neuro-epithelium mainly at days 3, 4 and 5. No birth of these cells was observed beyond day 5. In addition, a relationship was found between the birth patterns of Purkinje cells and cells of the central cerebellar nuclei and the longitudinal cytoarchitectonic patterns as observed in normal Nissl stained material. It was concluded that these birth patterns are an early contribution to the establishment of the longitudinal organization of the cerebellum.  相似文献   

10.
The postnatal development of the main olfactory bulb of the rat   总被引:1,自引:0,他引:1  
The postnatal development from birth to 1 year of the main olfactory bulb was examined quantitatively. The volume of the main olfactory bulb increased over seven-fold by day 30 and remained unchanged thereafter. During the same period the volume of the granular layer increased 18-fold and the mean areas of the olfactory glomeruli increased seven-fold. The mean areas of mitral cell perikarya doubled between the neonatal and juvenile periods. The total number of the mitral cells, however, declined during the first three postnatal weeks. In the internal granular layer of the main olfactory bulb, 89% of the granule cells were acquired postnatally. Much of the cellular gain occurred during the first 3 weeks, with the period of maximum acquisition between days 8 and 14. The number of subependymal cells, the precursors of granule cells, reached a peak at 12 days and gradually declined. But some primitive cells could still be found at one year of age and there was an increase in the total number of granule cells beyond day 30. The mean nuber of internal granular layer cells in a single main olfactory bulb of adult rats was about 5 X 10(6); the number of mitral cells about 4 X 10(4). In the animals injected with 3H-thymidine on day 20 and killed 2 h after injection a small but significant proportion of cells was labelled in the subependymal layer but few in the internal granular layer. In the animals killed 20 and 40 days after injection there was a 10--11-fold rise in the proportion of labelled internal granular layer cells. The proportion of labelled internal granular layer cells decreased in longer survival groups but the total number of labelled cells remained the same, even in year-old animals. However, the total number of internal granular layer cells in the sections examined increased with age.  相似文献   

11.
Four groups of pregnant Wistar rats, each of which consisted of 15 animals were administered 0, 12, 14 and 48 mg/kg/day of cobalt (II) chloride from the 14th day of gestation through 21 days of lactation. The offspring were observed for mortality, body weight, body and tail length and general symptomatology after 1, 4 and 21 days of nursing. The number of litters was higher for the control group. The survival ratios were also higher for the control group. Besides, a dose-dependent delay in the growth of the living young could be observed. No significant differences in organ weights in the animals killed 21 days after birth were observed. The blood parameters analysed did not show differences between the treated and control pups. Cobalt produced toxic effects on the mothers, affecting the late gestation as well as the postnatal development of the pups.  相似文献   

12.
In order to study the molecular mechanisms of neurogenesis, monoclonal antibodies (MAbs) were produced against antigens of the developing rat hippocampus. MAb 3G7-F8 was used for immunohistochemical localization of the corresponding antigen of paraffin sections of the rat brain at days 0, 5, 14, and 21 of the postnatal development. In the hippocampus of newborn and 5-day-old rats, positive immunostaining was observed in the cytoplasm and proximal segments of processes of neurons located in granular, polymorph, and pyramidal layers, as well as in entorhinal cortex. In granule cell bodies and neurons of entorhinal cortex specific staining decreased by day 14 and disappeared by day 21 after birth, whereas neurons of pyramidal and polymorph layers remained immunopositive. Diffuse specific staining in the cerebellum was observed beginning from day 5 after birth in the Purkinje cell layer. On days 14-21 positive reaction was observed in Purkinje cell bodies and in the layer containing dendrites of Purkinje cells and parallel fibers. External and internal granular layers remained immunonegative. No specific staining was observed in other regions of the brain, as well as in the control slices. These data suggest that the antigen detected by the 3G7-F8 antibody is involved in the formation of the neuronal connections.  相似文献   

13.
Differential neuronal loss following early postnatal alcohol exposure   总被引:5,自引:0,他引:5  
Neonatal rats were exposed to 6.6 g/kg of alcohol each day between postnatal days 4 and 10 while artificial-rearing procedures were used, in a manner which produced high peak and low trough blood alcohol concentrations each day. Gastrostomy controls were reared artificially with maltose/dextrin isocalorically substituted for alcohol in the milk formula, and suckle controls were reared normally by dams. The pups were sacrificed on day 10 and tissue sections (2 microns thick) were obtained in the sagittal plane through the cerebellum and in the horizontal plane through the hippocampal formation. Overall area measures were obtained for the hippocampus proper, area dentata, and cerebellum, along with areas of the cell layers of these regions. In the hippocampal formation, cell counts were made of the pyramidal cells of the hippocampus proper, the multiple cell types of the hilus, and the granule cells of the area dentata. In the cerebellum, cell counts of Purkinje cells, granule cells of the granular layer, granule cells of the external granular layer, and mitotic cells of the external granular layer were obtained from lobules I, V, VII, VIII, and IX. Alcohol selectively reduced areas and neuronal numbers in the cerebellum but had no significant effects on neuronal numbers in the hippocampal formation. Purkinje cells exhibited the greatest percent reductions, and cerebellar granule cells were significantly reduced in the granular layer but not in the external granular layer. All lobules showed these effects, but lobule I was significantly more affected than the other four lobules that were analyzed. The results demonstrate the differential vulnerability of selected neuronal populations to the developmental toxicity of alcohol exposure during the brain growth spurt.  相似文献   

14.
Abstract: Malnutrition in mice from birth resulted in myelin of brain having higher than normal molar proportions of cholesterol and phospholipids relative to a molar unit of cerebroside + sulphatide. This was found at all ages between 20 and 60 days, and the molar ratio of these lipids in older animals was comparable to that in the younger controls. The phospholipid and the ganglioside patterns were also immature for age. The phospholipid composition was characterized by lower molar proportions of ethanolamine phosphoglyceride (EPG) and sphingomyelin (SPh) and higher proportion of choline phosphoglyceride (CPG), and the ganglioside pattern was characterized by higher molar proportions of the disialogangliosides GDla and GDlb and markedly lower proportion of the monosialoganglioside GM1. Malnutrition imposed from 30 days of age did not affect the contents of the major lipids (and so their molar ratio), but within the phospholipids there was a small but significant deficit of SPh, which was compensated by a higher content of CPG. The ganglioside pattern was as if the animals were malnourished from birth. Nutritional rehabilitation up to 60 days of age subsequent to malnutrition for the first 30 days fully corrected the ganglioside pattern, but not the molar ratio, of the major lipids (because of persistent deficit in cerebroside + sulphatide) and the composition of the phospholipids (because of small but significant deficit of SPh). The results indicate that malnutrition instituted at any time during the entire programme of myelination can affect one or other aspect of myelin development, and nutritional rehabilitation of animals malnourished in early life cannot fully correct this developmental gap.  相似文献   

15.
The work has been performed on 62 CBA mice. In the ventricular zone and in the external granular layer of the cerebellar anlage of embryos (13-17 days of the intrauterine development) mitotic index, labelled nuclei index, part of labelled mitoses have been counted. Parameters of the mitotic cycle of the matrix cells have been calculated by means of the graphic method. The proliferative pool value has been calculated. At malnutrition the cerebellar anlage structure retards in its maturation from the norm. For the matrix zones of the cerebellar anlage, higher indices of the proliferative activity are specific. At the same time, duration of the mitotic cycle of the matrix cells increases by 15-17%. It is possible, that retardation of histogenesis of the mouse cerebellar anlage, when developing under conditions of alimentary insufficiency depends on decreased rate of cell proliferation, as a result of prolonged mitotic cycle of the matrix cells.  相似文献   

16.
The distribution of GM1 ganglioside in developing mouse cerebellum was monitored by indirect immunofluorescent detection of choleragenoid receptors. In frozen sections of cerebellum from mice 5 to 10 days old, fluorescence is observed on granule cells in the inner rows of the external granular layer, in the growing molecular layer, the Purkinje cell layer, and the internal granular layer. In sections of adult mice, fluorescence is restricted to the bodies of Purkinje and internal granule neurons. The percentage of fluorescent dissociated or cultured cerebellar cells increases with the postnatal age of the mouse or the duration of time in vitro. No fluorescence is observed in the absence of choleragenoid or if the test material is extracted with chloroform:methanol. To determine whether the expression of surface GM1 ganglioside in culture is a reflection of a developmental program, mice are injected at particular times with [3H]thymidine and cerebellar cultures processed for simultaneous autoradiography and immunofluorescence. Granule cells from 8-day-old mice having cholera toxin receptors at 20 hr in vitro are a distinct population born 1 day or earlier prior to sacrifice. Cells synthesizing DNA on the day of sacrifice are not fluorescent at 20 hr in vitro. This observation correlates well with immunohistological results showing a lack of fluorescence in the outer proliferative rows of the external granular layer. Therefore GM1 ganglioside is not present on granule cell precursors but is expressed at some time after the cells become postmitotic. GM1 ganglioside is detected on growing parallel fibers in situ and neurites in vitro but not on adult axons, suggesting differential localization at a later stage of development.  相似文献   

17.
Counting of isolated cardiomyocytes has demonstrated that their number was 16.8 +/- 0.6 10(6) in both ventricles of weanling rats (28 days after birth), growing in litters of four (fast-growing). In rats growing in litters of 16 (slow-growing), the myocyte number was 11.8 +/- 0.8 10(6). In the control group (8 sucklings per litter), there were 14.2 +/- 10(6) cardiomyocytes. The fast-growing rats had more octoploid cells than slow-growing ones. Considering ploidy and cell number, the total number of myocyte genomes in fast-growing animals was 45% higher than in slow-growing ones. The total content of contractile proteins in fast-growing weanling animals was higher by 28% while sarcoplasmic proteins were 8% higher. This lack of correspondence between the number of myocyte genomes and muscle protein content was even more pronounced at the age of 110 days. The results are compared with the cytophotometric data concerning the lack of correspondence between the total protein content in a myocyte and its DNA amount and chromosome number, i.e., total dosage of the myocyte genes.  相似文献   

18.
The hospital records of 478 children with protein-calorie malnutrition (PCM) were reviewed. These represented all children diagnosed as malnourished during 1975 (3.6 per cent of all hospital admittances in the National Children's Hospital); 52% of the cases were infants less than 6 months of age; 28% had low birth weight, a rate much in excess of the prevalence of low birth weight in the general population of Costa Rica (7%). In general, malnourished children had been weaned early, 75% during the first month of life. A considerable number of children belonged to "malnourishing families" which have particular characteristics favorable to establishment of malnutrition in the family. Thus, 36% of their siblings had also been admitted with malnutrition at a previous date to that of this study.  相似文献   

19.
Song HY  Liu ZQ  Zheng L 《动物学研究》2012,33(2):211-217
用免疫组织化学strept actividin-biotin complex(SABC)法,以干扰素-γ(IFN-γ)、白介素-1α(IL-1α)、神经生长因子-β(NGF-β)和肿瘤坏死因子-α(TNF-α)对胚龄13d、19d、24d、28d(E13、E19、E24、E28)和日龄7d、15d(P7、15)的皖西白鹅(WesternAnhuiwhitegoose)小脑皮质中的阳性细胞进行定位和半定量检测,探讨IFN-γ、IL-1α、NGF-β和TNF-α在小脑皮质发育中的作用。研究表明,外颗粒层细胞在E13、E19、E24、E28、P7有IFN-γ和TNF-α阳性表达;在E13、E19、E24、E28有IL-1α阳性表达;在E13、E19、E24有NGF-β阳性表达;且在所检测的6个时期中,4种细胞因子均在E19表达最强。Purkinje细胞层在E13、E19、E24、E28、P7、P15均有IFN-γ、IL-1α、TNF-α阳性表达;在E13、E19、E24、E28、P7有NGF-β阳性表达;内颗粒层细胞在E13、E19、E24、E28、P7、P15有IFN-γ阳性表达;在E13、E19、E24、E28、P7有IL-1α、TNF-α阳性表达;在E13、E19、E24、E28有NGF-β阳性表达。结果表明,E19可能为小脑皮质发育的"关键期";IFN-γ、IL-1α和TNF-α可能由小脑皮质自身合成;NGF-β可能由投射到Purkinje细胞的区域转运而来,且可能在Purkinje细胞生长发育过程中起营养作用;IFN-γ可能在颗粒细胞迁移过程中起干扰作用。  相似文献   

20.
The morphogenesis of the "hypertrophied" mormyrid cerebellum was investigated in Pollimyrus (Pisces). Two adults and 36 larvae and young fish raised in captivity were used. Two Gnathonemus petersii adults were taken for comparison. The ontogenetic development of the various cerebellar structures was analysed in inverse chronological order with the aid of serial sagittal and frontal brain sections. Special attention was given to the trilobed corpus cerebelli (C1, C2, C3), the lobi transitorii et caudales, the valvula, the crista cerebelli, the eminentia granularis and the lobus lineae lateralis. 1. The cerebellar structures are of bilateral origin; they develop from the cerebellar and acoustico-lateral "anlage" of the rhombencephalon behind the rhombomesencephalic fissure, either through budding or individualisation and appear between the 4th and 11th day after spawning. The midline fusion of the symmetrical structures is accomplished somewhat later, between the 8th and 23rd days. 2. The cerebellar structures acquire their definitive spatial organisation within 38 days, except for the valvula whose development takes much longer. Recognisable from the 11th day, the valvula upon which ridges are visible from the beginning continues to grow after the 38th day beyond the mesencephalic ventricle, finally overlying the telencephalon frontally and the different rhombencephalic structures caudally. This development, which includes a large antero-lateral folding of the valvula, takes 240 days. 3. Cytological differentiation is just as complex as the general development of the cerebellar structures. Cortical stratification first begins on the 8th to the 11th day in the corpus cerebelli and in the valvula from day 21 to 23 onwards. This differentiation is characterised throughout almost the entire cerebellum by a downward migration of the superficial undifferentiated cells which then constitute the granular layer. In the valvula, the majority of the undifferentiated cells leave the ridges to form a continuous granular layer at the base of the ridges. 4. A differentiation gradient was observed on the antero-posterior axis. 5. In spite of its complexity, the mormyrid cerebellum develops much more rapidly than the cerebellum of the trout.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号